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Abstract: In recent literature, explicit model predictive control (e-MPC) has been proposed
to facilitate implementation of the popular model predictive control (MPC) approach to fast
dynamical systems. e-MPC is based on multi-parametric programming. The key idea in e-
MPC is to replace the online optimization problem in MPC by a point location problem. After
locating the current point, the control law is simply computed as an appropriate linear function
of the states. A variety of approaches have been proposed in literature for the point location
problem. In this work, we present a novel approach based on linear machines for solving this
problem. Linear machines are widely used in multi-category pattern classification literature for
developing linear classifiers given representative data from various classes. The idea in linear
machines is to associate a linear discriminant function with each class. A given point is then
assigned to the class with the largest discriminant function value. In this work, we develop an
approach for identifying such discriminant functions from the hyperplanes characterizing the
given regions as in multi-parametric programming. Apart from being an elegant solution to the
point location problem as required in e-MPC, the proposed approach also links two apparently
diverse fields namely e-MPC and multi-category pattern classification. To illustrate the utility
of the approach, it is implemented on a hypothetical example as well as on a quadruple tank
benchmark system taken from literature.

Keywords: explicit model predictive control, linear machine classifier, multi-parametric
quadratic programming

1. INTRODUCTION

Model predictive control (MPC) requires solving an op-
timization problem online. This restricts its applicability
typically to systems with sampling periods of the order of
few seconds or minutes as commonly encountered in the
process industry. In order to extend the range of MPC
to applications with sampling periods in the milli/micro-
second range as encountered in fast dynamical systems, it
is imperative to employ efficient optimization algorithms.

A recent approach for fast solutions of online optimization
problem, based on multi-parametric quadratic program-
ming (mp-QP) (Bemporad et al., 2000a), has emerged as a
promising tool. Multi-parametric programming solves op-
timization problems by computing a parameter-dependent
solution offline and subsequently integrating the pre-
computed solution with parameters whose values become
available online. In the context of MPC, these parameters
include past inputs, measurements and reference values.
The offline solution consists of determining, i) a set of
critical regions that exhaustively partitions the parameter
space, and ii) a set of functions corresponding to each crit-
ical region, whose evaluation yields the optimized decision
variables (that is, the optimal input profile) (Bemporad et
al., 2002b, Gupta et al. 2011). The online implementation
requires, i) a search algorithm to determine the critical

region, corresponding to the current parameter values, and
ii) a subsequent evaluation of the optimized decision vari-
ables using the corresponding function. Such an approach
for solving the MPC optimization problem using multi-
parametric programming has been referred to as explicit-
MPC or e-MPC (Bemporad et al., 2002a). A well-known
impediment in a successful implementation of e-MPC for
medium to large-scale problems is that the number of crit-
ical regions may become prohibitively large and retrieving
the region corresponding to the current parameter values
itself becomes computationally challenging. Various efforts
have been presented in literature to overcome this so-called
point location problem. Tondel et al. (2003) used binary
search tree as a tool to solve this problem. Recently work
has been done by Bayat et al. (2011) and Monnigmann and
Kastsian (2011) to further reduce the online computation
time. The complexity of these algorithms depends on the
number of hyperplanes that divide the parametric space
into polyhedral regions.

In this work we propose a fundamentally different algo-
rithm for solving the point location problem. The com-
plexity of the proposed algorithm depends on the number
of regions instead of the number of hyperplanes in the
parametric space. Our novel approach is based on linear
machines that are commonly used in pattern recognition
for multi-category classification (Duda et al., 2001). Linear
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machines are widely used in multi-category pattern clas-
sification literature for developing linear classifiers given
representative data from various classes. The idea in linear
machines is to associate a linear discriminant function with
each class. A given point is then assigned to the class
with the largest discriminant function value. In context of
eMPC, these classes can be conceptualized as the critical
regions in the parametric space. Then, the point loca-
tion problem in eMPC is analogous to the classification
problem in pattern classification. However, unlike pattern
classification problems, where finite samples corresponding
to each class are available, in the case of linear eMPC, the
critical regions are polytopes, each of which is represented
by a set of linear inequalities. Designing a linear machine
for eMPC then involves identifying discriminant functions
that can classify these well-defined, contiguous critical
regions. In this paper, we propose a novel approach for
obtaining these discriminant functions using linear algebra
and optimization methods. Our approach results in dis-
criminant functions that exactly correspond to the under-
lying critical regions. Apart from being an elegant solution
to the point location problem as required in e-MPC, the
proposed approach also links two apparently diverse fields
namely e-MPC and multi-category pattern classification.
This opens up exciting possibilities of utilizing the vast
amount of pattern classification literature to understand
and solve a variety of challenging eMPC problems.

This paper is organized as follows: Section 2 briefly reviews
theoretical concepts in mp-QP and linear machine; Section
3 presents the proposed algorithm using linear machine;
Section 4 presents the results using two examples; Section
5 discusses computational issues and finally Section 6
presents the conclusion.

2. THEORETICAL BACKGROUND

2.1 Multi-parametric quadratic programming

It has been shown in Bemporad et al. (2000b) that the
linear MPC problem can be written as a mp-QP problem
of the following form:

min
z

1
2
zTHz + cT z

s.t Az ≤ b+ Fx (1)
where z ⊂ Rp is the decision variable and x ∈ X ⊂
Rd represents the parameter. The parameter dependent
solution is based on the knowledge of optimal active
constraints. Let Nc = {1, 2, . . . nc} refer to the set of
indices of nc constraints of the QP and Nic refer to set of
indices of active constraints contained in the ith optimal
active set Ai(x), i = 1, ..., nr as follows,

Ai(x) = {j ∈ Nic | Ajz − bj −Fjx = 0} (2)

where, Aj denotes the jth row of matrix A and nr is
the number of optimal active sets. The set of indices
which are not in the optimal active set Ai are members
of the inactive set Ii = Nc\Nic. Fiacco (1983) provided the
necessary condition for parameter dependent optimality.
In particular, the parametric variation of the optimal pair
of the decision variable and the dual variable (i.e. the
Lagrangian multiplier) (z, λ) in the neighborhood of x′,
a parameter vector in convex mp-QP in Eq. 1, is given by
the Basic Sensitivity Theorem as follows:

[
z(x)
λ(x)

]
= −M−1N(x− x′) +

[
z′

λ′

]
(3)

where z′ and λ′ are the optimal values at x′,

M =


H AT1 . . . ATnc

−λ′1A1 −V1 . . . 0
...

...
...

...
−λ′nc

Anc 0 . . . −Vnc


N =

[
Y −λ′1FT1 . . . −λ′nc

FTnc

]T
Vj = Ajz′ − bj −Fjx′ and Y = [0]d×p

Note that the parametric solution of Eq. 1 is obtained
as a set of piecewise affine functions of parameters as
shown in Eq. 3, where each function is valid in a closed
polyhedron called as critical region. All optimal active set
Ai and the corresponding optimal inactive sets obtained
from the Karush-Kuhn-Tucker (KKT) conditions can be
characterized as follows,

Ajz(x) ≤ bj + Fjx, j ∈ Ii(x′)
λj(x) ≥ 0, j ∈ Ai(x′) (4)

where, λj represents the Lagrange multipliers that corre-
spond to the jth constraint. These inequalities along with
the original parameter bounds X, after removal of redun-
dant constraints, represent a polyhedron in the parameter
space, termed as Critical Region (CR) and correspond to
the active set Ai,

CRAi = {x ∈ X ⊂ Rd : Ajz(x)− bj −Fjx ≤ 0, j ∈ Ii;
λj ≥ 0, j ∈ Ai} (5)

For the ith set of active constraints Ai, i = 1, ..., nr, the
optimal solution of Eq. 1 can be represented as a piecewise
affine function of x.

zAi = ΩAix+ ωAi (6)

where ΩAi and ωAi are constant matrices for the ith critical
region. Together the set of critical regions characterized by
Eq. 5 and the optimal solution given by Eq. 6 represent the
analytical solution of Eq. 1. The online component consists
of determining the current critical region i.e. solving point
location problem followed by evaluation of Eq. 6 to yield
the optimal control action.

As discussed earlier various techniques have been proposed
to solve the point location problem, which is the most
critical step of e-MPC implementation online. In this paper
we propose a novel approach based on linear machine to
solve the point location problem.

2.2 Linear Machine

Linear machine is based on linear discriminant analysis
where the boundary separating two adjacent classes is
linear in the variables (Duda et al., 2001). Given a set
of nr classes, with each class represented by a set of
known points, the problem in multicategory classification
is to develop a classifier that can assign a point to one of
the nr classes. The linear machine based solution to this
classification problem is to associate a linear discriminant
function gi(x) with each class i as (Duda et al., 2001):

gi(x) = αTi x+ αi,0; i = 1, 2, ..., nr (7)
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In the above αi is the weight vector and αi,0 is the bias
or threshold weight associated with the ith class. These
linear discriminant functions should satisfy the following
property:

gi(x) ≥ gk(x) ∀ k 6= i (8)
whenever point x ∈ class i. Thus, a linear machine
divides the space in nr regions with gi(x) being the
largest whenever x is in class i. The boundary shared by
contiguous classes i and k is given by a hyperplane as
(Duda et al., 2001)

gi(x)− gk(x) = 0 (9)
Given a set of points for each of the nr classes, several
approaches for obtaining a linear machine are available
in the pattern classification literature. These include the
Kessler’s construction and minimum squared error ap-
proaches (Duda et al., 2001).

We now propose to extend the above ideas for the point
location problem in e-MPC. In principle, we can sample
points from each critical region obtained by mp-QP and
then apply the known algorithms (Duda et al., 2001) for
obtaining a linear machine. However, the resulting linear
machine will then be a function of the sample (and its
size) chosen for this purpose and thus may not be able to
assign the correct critical region when solving the point
location problem. In the next section, we propose a novel
approach for obtaining a linear machine directly from
the knowledge of the hyperplanes defining each critical
region. The approach utilizes tools from linear algebra and
optimization to design a linear machine whose partition
of the parameter space exactly coincides with the critical
regions in e-MPC.

3. LINEAR MACHINE ALGORITHM FOR POINT
LOCATION PROBLEM

Consider the parametric space X that is partitioned into
nr polyhedra P1, P2, . . . Pnr

. The ith polyhedral region Pi
can be represented by nfi

facets enclosing that region as:

Aix ≤ bi;∀i = 1, 2, ..., nr (10)

where Ai ∈ Rnfi
×d, bi ∈ Rnfi are obtained from Eq. 5

as discussed in Section 2.1. The jth facet of polyhedron
Pi is represented by the hyperplane Hi

j(x) = Aijx −
bij = 0. Let nf denote the total number of facets in the
parametric space. Note that since neighboring polyhedra
share common facets, nf 6=

∑nr

i=1 nfi
.

Designing a linear machine for the point location prob-
lem now involves identifying linear discriminant function,
gi(x) = αTi x+αi,0 = αi,1x1 +αi,2x2 + . . . αi,dxd +αi,0 for
each region Pi. The proposed approach for designing such
discriminant functions involves two steps:

• Determination of neighboring regions, i.e. regions
sharing a common facet.
• Determination of the discriminant functions based on

the identified neighboring regions.

3.1 Determination of Neighboring Regions

Determination of neighboring regions is a non-trivial prob-
lem due to the fact that regions sharing a common hy-
perplane may not necessarily share a common facet. The

various possibilities for regions sharing common hyper-
plane are illustrated in Fig. 1. Fig. 1(a) represents regions

Fig. 1. Regions R1 and R2 sharing common hyperplane
H1

R1 and R2 that share a common hyperplane H1 but do
not intersect at any point. Fig. 1(b) represents regions R1
and R2 sharing a common hyperplane H1 and intersecting
at a single point A. Fig. 1(c) represents regions R1 and
R2 sharing a common facet which is represented by the
common hyperplane H1. Thus sharing a hyperplane does
not necessarily imply that the regions are neighboring
regions.

To determine if region Pi shares its jth facet, represented
by hyperplane Hi

j , with region Pk, we first determine if
hyperplane Hi

j represents a facet of region Pk. If Hi
j is

a facet of both the regions, then to determine whether
Hi
j is a common facet of region Pi and Pk, a point x

on hyperplane Hi
j is obtained by solving the optimization

problem given by FORMULATIONI,

FORMULATION I:
if (Pi ∩ Pk) 6= φ

{max t

s.t. x ∈ Pi
x ∈ Pk
t ≤ d(x,Hi

l ) ∀ l ∈ {1, . . . , nfi
} − {j}} (11)

where t is the minimum distance between x and all facets of
region Pi except jth facet, d(x,Hi

l ) is the distance of point
x from lth facet of ith region. The optimization problem
(Eq. 11) can be either infeasible or feasible with t ≥ 0.
When the solution is feasible with t > 0, region Pi and
Pk share a common facet given by hyperplane Hi

j . In this
case the common facet between region Pi and Pk can be
represented as H∗i,k = A∗i,kx− b∗i,k which is equal to Hi

j(x).

The results of implementation of FORMULATIONI are
now discussed for the three cases in Fig 1. For case (a) Eq.
11 will be infeasible as (R1 ∩ R2) = φ since the regions R1
and R2 do not share a facet. For case (b) Eq. 11 is feasible
with t = 0 In this case x is point A which is the point of
intersection of the two regions. The distance of Point A
from H2 (another facet of R1) is zero thus implying that
the two regions do not share a common facet. The solution
to Eq. 11 for case (c) is feasible with t > 0 as x is a point
B on facet H1 obtained by maximizing the minimum of its
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distance from H2 and H3 which are the other facets of R1.
The distance t is greater than 0 in this case thus implying
that the two regions share a common facet.

Once neighboring regions are determined, a linear machine
is constructed as discussed next.

3.2 Determination of Linear Discriminant Functions

Given the set of nr critical regions and information about
neighboring regions we intend to identify linear discrim-
inant functions gi(x) = αTi x + αi,0 = αi,1x1 + αi,2x2 +
. . . αi,dx + αi,0 associated with each region Pi, ∀i ∈
{1, . . . , nr} The key idea in the proposed approach is that
hyperplanes H∗i,k dividing neighboring regions Pi and Pk
correspond to decision boundaries for these regions. In
other words, the discriminant functions gi(x) and gk(x)
should be equal whenever H∗i,k(x) = 0. This then leads
to an equality constraint on discriminant function pair
(gi(x), gk(x)) as:

− gi(x) + gk(x) = βi,k(A∗i,kx− b∗i,k)

or − αTi x+ αTk x− αi,0 + αk,0 − βi,k(A∗i,kx− b∗i,k) = 0
(12)

In writing the above, we have assumed that region Pi
corresponds to H∗i,k(x) ≤ 0 while region Pk corresponds
to H∗i,k(x) ≥ 0. The choice of signs (-1 for gi(x) and
+1 for gk(x)) in the above equation then ensures that
gi(x) > gk(x) whenever H∗i,k(x) < 0. Further, βi,k is
a positive constant to be determined along with the
parameters of the discriminant functions gi(x) and gk(x).
The parameter βi,k is included since the discriminant
functions can be identified only upto a scaling factor. On
matching coefficients term by term in Equation 12 leads
to:

−αi,1 + αk,1 − βi,kA∗i,k(1) = 0
...

−αi,d + αk,d − βi,kA∗i,k(d) = 0
−αi,0 + αk,0 + βi,kb

∗
i,k = 0 (13)

These equations are written for all pairs of neighboring re-
gions as identified using the approach discussed in Section
3.1. This then leads to the following homogeneous system
of linear equations of the form:

Gy = 0 (14)

where y = [α1,1 . . . α1,d α1,0 α2,1 . . . αnr,d αnr,0 β1 . . . βnf
]T

is the vector of parameters of linear discriminant functions
and scale factors that need to be determined. Since each
pair of neighbouring regions is separated by a unique
facet there are a total of nf scale factors and βi,k can
be represented as βj where jth facet of nf facets set is a
common facet between region Pi and Pk. G is a matrix
of size (nf (d + 1) × (nr(d + 1) + nf )). Any vector in the
null space of G will be a solution to Eq. 14. The general
solution of Eq. 14 can be written as

y =
NNS∑
u=1

cuy
u (15)

where NNS is the dimension of the null space of matrix G
and yu, u = 1, ..., NS are the basis vectors of the null space
of G. While any choice of the coefficients cu of the linear

combination will ensure that y is a solution to Eq. 15, it
will not necessarily lead to positive values for all the scale
factors βi,k. We thus propose the following optimization
problem to select the coefficients cu, u = 1, ..., NNS . Apart
from ensuring that the scale factors are positive, this
formulation will also lead to well separated discriminant
functions.

FORMULATION II:
min s

s.t s ≥ |gi(x).gk(x)|
||gi(x)||||gk(x)||

∀i ∈ (1, . . . , nr−1) and k ∈ (i+ 1, . . . , nr)

NNS∑
u=1

cuy
u
β ≥ [0]nf×1 (16)

where yuβ contains the last nf elements of yu (correspond-
ing to scale factors). In Formulation II, in order to obtain
well separated linear discriminant functions the minimum
angle between all pairs of linear discriminant functions is
maximized. This is done by minimizing the maximum of
absolute value of cosine of angle between pairs of linear
discriminant functions. Here s is the maximum of abso-
lute value of cosine of angle between all pairs of linear
discriminant functions. Further, positivity of scale factors
βi,k is also explicitly ensured in the above formulation.

The overall approach for the point location problem as
proposed in this work can then be summarized as:

• Given the facets defining each critical region, the
linear machine is constructed as discussed in this
section. This is an offline activity.

• The region in which the given parameter vector x lies
is computed by first evaluating the linear discriminant
functions for each region, gi(x) ∀i ∈ nr and then
identifying the discriminant function which achieves
the maximum value. In other words the index of the
critical region containing the parameter x is given by
{i | gi(x) = max{g1(x), . . . , gnr

(x)}}.
While it is known in pattern classification literature that
the classification regions corresponding to a linear machine
are convex (Duda et al., 2001), the converse is not always
true. We are currently investigating this issue further.

4. EXAMPLES

In this section two examples showing implementation of
linear machine algorithm are presented

4.1 Implementation for a 2-dimensional polyhedral region

The linear machine algorithm is implemented for a hypo-
thetical 2-dimensional region shown in Fig. 2. The poly-
hedral region contains 8 convex contiguous regions and
12 facets. The linear machine was obtained as discussed
is Section 3.2 and the corresponding linear discriminant
functions are given in Table 1. The value of s obtained by
solving FORMULATION II comes out to be 0.9918. A
plot of these linear discriminant functions values for the
2-d polyhedral region is given in Fig. 3. From this figure,
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Fig. 2. 2-dimensional polyhedral region for implementing
linear machine algorithm

Table 1. Linear Discriminant functions for 2-
dimensional polyhedral region (Fig. 2)

Region Linear Discriminant Function gi(x)

R1 0.04583x1 − 0.15674x2 − 0.03396
R2 −0.04583x1 − 0.15674x2 − 0.03396
R3 −0.04583x1 − 0.29053x2 − 0.03396
R4 0.04583x1 − 0.29053x2 − 0.03396
R5 0.19037x1 − 0.01220x2 − 0.17850
R6 −0.19037x1 − 0.01220x2 − 0.17850
R7 −0.19037x1 − 0.43507x2 − 0.17850
R8 0.19037x1 − 0.43507x2 − 0.17850

it can be seen that for any region Ri, the corresponding
linear discriminant function gi(x) has the maximum value.

Fig. 3. Linear discriminant functions value correspond-
ing to the 2-dimensional polyhedral region shown in
Fig. 2. The linear discriminant functions correspond-
ing to different regions are represented by the follow-
ing colors: g1-yellow, g2-magenta, g3-cyan, g4-red, g5-
green, g6-blue, g7-white, g8-black.

4.2 Simulation Case Study: Quadruple Tank System

The linear machine algorithm was also used for the
quadruple tank system (Johansson, 2000) control problem.
The system consists of four interconnected tanks as shown
in Fig. 4. The objective is to control the water level in
the lower two tanks with the two pumps. The process
inputs, (ν1, ν2) represent input voltages to the two pumps
and the states (h1, h2, h3, h4) represent the level of water
in the four tanks. Outputs h1 and h2 (water level in the
two bottom tanks) represent the variables to be controlled.
At nominal operation, with input voltages in both pumps
being 3V , the corresponding values of h1 and h2 are
12.4 and 12.7 cm, respectively. The nonlinear state space
model is linearized and simulated for a sampling time of
5 seconds, with constraints on deviation variables for level

Fig. 4. Quadruple Tank System (Johansson, 2000)

h as ±[5, 5, 1, 1]cm, input voltage ν as ±[1, 1]V and ∆ν as
±[0.1, 0.1]V .

Critical regions were generated using the MPT Toolbox
(Kvasnica et al., 2004) for this four tank system control
problem with prediction and control horizons of 5 and 1
samples, respectively. Control action was obtained as a
function of states for the various critical regions. For the
given parameter ranges, the state space was partitioned
into 15 critical regions by 22 facets. Fig 5 shows the polyhe-
dral partition representing state space X for x4 = 0, where
xi = hi − h0

i represents deviation of state from steady
state. For each region a linear discriminant function was

Fig. 5. State space X partitioned into critical regions for
x4 = 0

determined using the linear machine approach presented
in our work. Control action was then implemented for the
system with initial condition (h1, h2, h3, h4) = (15.2630,
15.7832, 2.3339, 2.1090) using linear machine algorithm.
The resulting control actions and the corresponding sys-
tem response are shown in Figures 6 and 7, respectively.
To compare our approach with some existing approaches
in terms of the computational requirements, the control
action is also implemented using: (i) the inbuilt algorithm
in the MPT toolbox (Kvasnica et al., 2004), and (ii) the
binary search tree algorithm (Tondel et al., 2003). The
MPT toolbox algorithm uses a sequential search which
involves searching in each region one at a time, until the
region that contains the current point is found. For this
system, the average time taken for implementing control
action online by linear machine algorithm was 0.05 seconds
while the corresponding times taken by binary search tree
algorithm and the sequential search of MPT toolbox were
0.04 and 0.14 seconds, respectively.
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Fig. 6. Manipulated variables for Quadruple Tank System
(Johansson, 2000)

Fig. 7. Controlled variables for Quadruple Tank System
(Johansson, 2000)

5. COMPLEXITY ANALYSIS

The point location problem that is solved using linear
machine algorithm during online e-MPC implementation
consists of two steps: 1) computing linear discriminant
functions values for current state x(t), and 2) determining
the maximum linear discriminant function value. The first
step involves multiplying a matrix containing the coef-
ficients of nr linear discriminant functions with current
state vector x(t). The second step requires nr − 1 com-
parisons (Cormen et al., 2001) to compute the maximum
linear discriminant function and will largely determine
the computational performance of our approach. Thus the
complexity of our proposed algorithm is O(nr).

Complexity of other algorithms given in the literature such
as binary tree algorithm (Tondel et al., 2003) and multiway
tree algorithm (Monnigmann and Kastsian, 2011) depends
on the number of hyperplanes that divide the polyhedral
space into critical regions. For binary tree approach, this
complexity is O(log2 nf ) (Tondel et al., 2003). Currently
we are investigating use of search trees in the proposed
linear machine approach to reduce its complexity.

6. CONCLUSION

In this paper we have presented a novel approach to solve
the point location problem in e-MPC using the idea of
linear machine adapted from the multicategory pattern
classification literature. The approach for building a linear
machine for the given critical regions was discussed. The
approach was implemented on a hypothetical example
and the well known four tank system to demonstrate its
potential. Apart from being an elegant solution to the
point location problem as required in e-MPC, the proposed
approach also links two apparently diverse fields namely e-
MPC and multi-category pattern classification. This opens

up exciting possibilities of utilizing the vast amount of
pattern classification literature to understand and solve a
variety of challenging eMPC problems.
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