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Abstract: The dynamics of Li-ion batteries are often defined by a set of coupled nonlinear
partial differential equations called the pseudo two-dimensional model. It is widely accepted that
this model, while accurate, is too complex for estimation and control. As such, the literature is
replete with numerous approximations of this model. For the first time, an algorithm for state-
of-charge estimation using the original pseudo two-dimensional model is provided. A discrete
version of the model is reformulated into a state-space model by separating linear, nonlinear,
and algebraic states. This model is high dimensional (of the order of tens to hundreds of
states) and consists of implicit nonlinear algebraic equations. The degeneracy problems with
high-dimensional state estimation are circumvented by developing a particle filter algorithm
that sweeps in time and spatial coordinates independently. The implicit algebraic equations
are handled by ensuring the presence of a ‘tether’ particle in the algorithm. The approach is
illustrated through simulations.
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1 Li-ion Batteries

Li-ion batteries are widely used in a variety of low-power
consumer gadgets and high-power automobile and aero-
nautical applications. Their popularity can be attributed
to such properties as high energy density, slow material
degradation, no memory effect, and low self-discharge.
However, these batteries are known to become explosive
when overcharged and at high coulomb rates due to over-
heating. For safe and reliable operation of Li-ion batteries,
it is important to estimate the amount of charge remaining
in the battery and the corresponding concentrations and
potentials that it depends on, which is called the state of
charge (SOC).

In Li-ion batteries, a complex combination of chemical
kinetics, transport phenomena, and electrochemical reac-
tions drive their dynamics. Only two variables, namely
voltage and current, are measured. The state of charge is
a function of the Li-ion concentration in the battery and
therefore can not be easily estimated from direct voltage
and current measurements. An obvious recourse for the
estimation of SOC is to use a dynamic model.

Li-ion batteries have been modeled at different levels of
abstraction from simple empirical models, such as equiva-
lent circuit models, to complex molecular level models. As
expected, the accuracy of these models roughly improves
with their complexity. However, the more complex models

are difficult to simulate faster than real time and have not
been very useful for estimation and control (Ramadesigan
et al. (2012)). On the other hand, simple models are not
accurate and are more weakly connected to the phenomena
occurring in the battery. It has been shown in practice
that the pseudo two-dimensional (P2D) model, developed
by Doyle (1995), is accurate over a wide range of coulomb
rates and for different battery chemistries. The P2D model
is not as complex as molecular dynamic models but is still
fairly complex for online simulation.

The P2D model consists of a set of nonlinear and coupled
partial differential equations. A number of approximations
of this model have been developed to convert the model
into a simpler form for analysis and to simulate the
model at a fast rate for use in online applications. Most
approximations of this model are either accurate at small
coulomb rates or are too slow for online implementation
(Chaturvedi et al. (2010)). The only known high-speed
implementation of P2D models is developed by Northrop
et al. (2011). However, their method is not suitable for the
application of standard estimation algorithms.

Approximate models have been used for state and param-
eter estimation in Li-ion batteries (Smith (2006)). Most
notably, the extended Kalman filter has been widely used
on approximate models (Plett (2004); Santhanagopalan
and White (2006); Domenico et al. (2010); Charkhgard
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and Farrokhi (2010)). In Klein et al. (2012) a nonlinear
Luenberger observer was designed on an approximation
of the P2D model that assumed uniform concentration
across the battery. Despite a flurry of activity in the area
of state estimation for P2D models, to the best knowledge
of the authors, there is no known approach that can be
applied on the P2D model without order-reducing model
simplifications.

For the first time, an approach for state estimation in
P2D models is developed without any simplifications—
apart from the numerical approximations that are needed
in any discrete time-based approach and one minor ap-
proximation on the solid concentration. The P2D model is
reformulated as a state-space model with linear, nonlinear,
and algebraic states. The uncertainty in the measurements
and the model is characterized by introducing stochastic
noise. The states in the models are estimated using a mod-
ified particle filtering algorithm that sweeps independently
in time and spatial domains.

2 Pseudo two-dimensional model

A standard intercalation Li-ion battery consists of three
main regions: a positive electrode, a separator, and a nega-
tive electrode. A thorough description of the various chem-
ical, transport, and electrochemical phenomena that occur
in this battery can be found in Nazri and Pistoia (2003).
The positive and negative electrodes contain an electrolyte
that transports the lithium ions and an active material
that holds the lithium ions. The electrolyte and the active
material is held together by fillers and other binding ma-
terial. During a discharge cycle, the lithium ions leave the
active material in the negative electrode, travel through
the separator with the help of the electrolyte, and then
become deposited (or intercalated) in the active material
on the positive electrode. This process reverses itself dur-
ing a charging cycle. The dynamics of this process can be
modelled by writing conservation of mass and conservation
of charge equations. These equations can be written using
the electrolyte concentration of lithium ions ce(x, t) ∈ R+,
the electrolyte potential Φe(x, t) ∈ R, the active material
potential (also called the solid potential) Φs(x, t) ∈ R, and
the concentration of lithium ion in the spherical particles
of the active material cs(x, r(x), t) ∈ R+ where x ∈ R
denotes the one-dimensional spatial direction along which
the lithium ions are transported, t ∈ R+ is the time, and
r(x) ∈ R+ is the radial distance within an active particle
at location x.

2.1 The PDE model

The standard pseudo two-dimensional model can be de-
rived using concentrated solution and porous elctrode the-
ories. The P2D model, with a minor modification to the
solid diffusion equation, is shown compactly in Table 1
(Doyle (1995), Northrop et al. (2011)). This model con-
sists of two coupled partial differential equations and an
algebraic equation that define the conservation of mass
in the three sections of the battery. The model consists
of three partial differential equations that define the con-
servation of charge in these sections. Using i ∈ {p, s, n}
to denote positive electrode, separator, and negative elec-
trode, εi ∈ (0, 1) and Di ∈ R+ are the porosity and the
effective diffusion coefficient in section i, c̄s(x, t) ∈ R+

is the average Li-ion concentration in the solid particles,
c∗s(x, t) ∈ R+ is the surface concentration of the solid
particles, ai ∈ R+ is the ratio between the particle surface
area to its volume, t+ ∈ (0, 1) is the transference number,
Ri ∈ R+ is the radius of the particle, ie(x, t) ∈ R is the
current in the electrolyte, κi(x) ∈ R+ is the conductivity
of electrolyte, R is the universal gas constant, T is the
temperature, F is the Faraday constant, I(t) ∈ R+ is the
current applied to the battery, σi ∈ R+ is the effective
solid-phase conductivity, and ji(x, t) ∈ R is the Li-ion flux
at the surface of solid particles.

The Li-ion flux ji plays an important role in determining
the solution of these partial differential equations. This
flux is usually given by Butler-Volmer kinetics:

ji = 2ki [cec
∗
s(cmax

i − c∗s)]
0.5

sinh

(
0.5

F
RT (Φs − Φe − Ui)

)
(1)

where ki is a reaction constant, cmax
i is the maximum Li-

ion concentration in the solid particles, and Ui(x, t) ∈ R
is the open-circuit voltage. A few important observations
can be made about the PDEs in Table 1. The PDEs and
their corresponding boundary conditions are nonlinear and
highly coupled and require advanced numerical techniques
to solve. M1 and C1 have two Neumann boundary con-
ditions in each section and therefore explicit numerical
approximations can become unstable. C3 does not have
any explicit boundary conditions but are implicitly en-
forced through C2. C2 has two boundary conditions in
each section despite being a first-order PDE. However,
these boundary conditions can be enforced by finding a
suitable solid potential Φs and ionic flux ji.

In Doyle (1995) the PDEs were iteratively solved using a
first-order Taylor series approximation and in Northrop
et al. (2011) the PDEs were solved using a coordinate
transformation followed by collocation methods. Numer-
ous numerical approximations can be derived; however,
they are often not in the standard state-space form suitable
for estimation and control algorithms.

A numerical approach is developed here by reformulating
the discretized PDEs as a state-space model. The complete
derivation is not provided due to space limitations, but
a brief outline of the approximations and a pseudocode
for its implementation are presented. The time and spa-
tial coordinates are divided into M equal time inter-
vals and N equal spatial intervals. The concentrations,
potentials, and other variables at space-time coordinate
(x, t) are denoted by the corresponding discrete coordi-
nate (m,n) where m denotes discrete time and n denotes
the discrete spatial location. 1 The bold-faced variables
are obtained by concatenating their corresponding val-
ues at all the spatial locations. For instance, ce(m) =
[ce(m, 1), ce(m, 2), · · · , ce(m,N)]′. A Crank-Nicolson ap-
proximation of M1 leads to

ce(m,θ) = Ac(θ)ce(m− 1,θ) + Bc(θ)ji(m,θ) (2)

where Ac(θ) and Bc(θ) are appropriate matrices and θ ∈
Rnp is a vector of parameters. The boundary conditions
are numerically approximated and included in (2). Using
first-order implicit numerical approximation, C2 and C3
can be written as

1 Note that the same notation is used for continuous and discrete
variables, with the meaning being clear from the context.
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Table 1. Pseudo two-dimensional model. The positive electrode extends from x = 0 (n = 1) to
x = lp (n = Np), separator up to x = ls (n = Ns), and negative electrode up to x = ln (n = Nn)

Conservation Equations Boundary Conditions
Mass x = 0 x = lp x = ls x = ln

(M1) εi
∂ce
∂t

=
∂

∂x

(
Di
∂ce
∂x

)
+ ai(1− t+)ji

∂ce
∂x

= 0 −Dp
∂ce
∂x

= −Ds
∂ce
∂x

−Ds
∂ce
∂x

= −Dn
∂ce
∂x

∂ce
∂x

= 0

(M2)
∂c̄s
∂t

= −3
ji
Ri

(M3) c∗s − c̄s = −Ri

Ds

ji
5

Charge

(C1) ie = −κi
∂Φe

∂x
+

2κiRT

F
(1− t+)

∂ ln ce
∂x

∂Φe

∂x
= 0 −κp

∂Φe

∂x
= −κs

∂Φe

∂x
−κs

∂Φe

∂x
= −κn

∂Φe

∂x

∂Φ2

∂x
= 0

(C2)
∂ie
∂x

= aiFji ie = 0 ie = I ie = I ie = 0

(C3)
∂Φs

∂x
=
ie − I
σi(

Φs(m,θ)
ie(m,θ)

)
= AΦ(θ)ji(m,θ) + BΦ(θ)I(m), (3)

where AΦ(θ) and BΦ(θ) are appropriate matrices. The
PDE for the electrolyte potential in C1 is similarly ap-
proximated using first-order implicit equations to obtain

Φe(m,θ) = FΦ(ce(m,θ),θ), (4)

where FΦ : Rnp

+ × RN → RN . The PDE for the average
particle concentration M2 and the algebraic equation M3
can similarly be written as,

c̄s(m,θ) = c̄s(m− 1,θ) + B̄(θ)ji(m,θ), (5)

c∗s(m,θ) = c̄s(m,θ) + B∗(θ)ji(m,θ), (6)

with appropriate matrices B̄(θ) and B∗(θ). The PDE
model in Table 1 is represented by its discrete approxi-
mation through (2)–(6) and the flux vector based on (1):

ji = Fj(ce(m,θ), c∗s(m,θ), ie(m,θ),Φs(m,θ),Φe(m,θ),θ)
(7)

where Fj : Rnp

+ × R5N → RN . The pseudocode in the
next section solves these nonlinear implicit state-space
equations.

2.2 Pseudo-Code for Numerical Solution

The numerical solution is based on the following obser-
vations of the PDEs in Table 1 : (i) M1, M2, M3, and
C2 are linear PDEs if ji(m,θ) is known, (ii) C3 does
not have a boundary condition and therefore an initial
condition needs to be guessed, (iii) the first-order PDE in
C2 can be treated as an initial value problem and solved
iteratively until both boundary conditions are satisfied
(this is a form of the shooting method to solve ordinary
differential equations with two boundary conditions), and
(iv) ji(m,θ) must satisfy (1). The PDEs are solved by
starting with an initial guess for ji(m,θ). Then ce(m,θ)
is obtained from (2). c̄s and c∗s are obtained from (5)
and (6). C3 does not have any boundary conditions and
therefore Φs(m, 1) and Φs(m,Ns) are initially guessed and
later updated based on Broyden’s minimization algorithm.
C2 is solved recursively as an initial value problem and
ji(m,θ) is also updated using Broyden’s algorithm until all
of the boundary conditions are satisfied. This procedure is

shown in Algorithm 1 in the form of a pseudocode. “Broy”

Algorithm 1 Pseudocode

Inputs:
1: θ, Φs(0, 1), Φs(0, Ns), ce, c̄s, ji, I(m),∀m
2: T . simulation time

Initialize:
3: δ1, δ2, λ1, λ2 . tolerance parameters
4: ie(m,Np), ie(m,Nn), ij(1), ij(2)
5: for m = 0 to T do . simulate for T seconds
6: if m ≥ 1 then
7: ji(m,θ) = ji(m− 1,θ) . initialize flux
8: end if
9: ibc(1)← ie(m,Np)− I(m) . error in BC of C2

10: ibc(2)← ie(m,Nn) . error in BC of C2
11: while |ibc(1)| ≥ δ1 & |ibc(2)| ≥ δ2 do
12: . ensure C2 BCs are met
13: ij(1)← ie(m,Np)− ij(1)
14: ij(2)← ie(m,Ns)− ij(2)
15: while |ij(1)| ≥ λ1 & |ij(2)| ≥ λ2 do
16: Solve: equations (2),(5)
17: κi(x)← κi(x)
18: Solve: equations (3), (4), (6)
19: jtemp(m,θ)← right-hand side of (1)
20: . temporary variable
21: ji(m,θ)← Broy(‖ji(m,θ)− jtemp(m,θ)‖2)
22: end while
23: [Φs(0, 1) Φs(0, Ns)] = Broy(|ibc(1)|+ |ibc(2)|)
24: end while
25: end for
26: return

is a function that implements derivative-free quasi-Newton
steps to minimize its argument.

2.3 Discrete State-Space Reformulation

The discretized PDEs can be reformulated into a set of
discrete state-space and algebraic equations. Define the

following classes of states: (i) x`̀̀
m

∆
= {ce(m,θ), c̄s} are

states that evolve linearly in time (with respect to ji,

(ii) xa1
m

∆
= {Φs(m,θ), ie(m,θ)} and xa2

m
∆
= {c∗s(m,θ)}
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are states that follow an explicit linear algebraic equation,

(iii) xa3
m

∆
= {Φe(m,θ)} are states that follow an explicit

nonlinear algebraic equation, (iv) xn
m

∆
= {ji(m,θ)} are

states that follow the nonlinear algebraic equation in (7),
and (v) um = {I(m)} is the input. With this notation, the
state-space equation can be written as

x`̀̀
m =

[
Ac(θ) 0

0 I

]
x`̀̀

m−1 +

[
Bc(θ)
B̄(θ)

]
⊗ xn

m, (8)

xa1
m = AΦ(θ)xn

m + BΦum, (9)

xa2
m =

[
0 0
0 I

]
x`̀̀

m + B∗(θ)xn
m, (10)

xa3
m = FΦ(x`̀̀

m,θ), (11)

xn
m = Fj(x

`̀̀
m,x

a1
m ,xa2

m ,xa3
m ,θ). (12)

The only measurements available for a battery are the
current and voltage measurements. The voltage is given
by

v(m) = Φs(m, 0)− Φs(m,Nn). (13)

2.4 Uncertainty Characterization

The model in Table 1 is based on a number of theoretical
and experimental approximations. It is natural to expect
that this model will not represent the exact dynamics of a
Li-ion battery. The discrepancy between the model and
the true dynamics of the battery is model uncertainty,
which can be due to structural errors in the model or
due to parameter errors or both. The structural errors
were accounted by adding random Gaussian noise to all
of the states and the parameter errors were accounted by
introducing Gaussian noise (or priors) on the parameters.
A common practice in the state estimation literature is
to characterize only structural uncertainty by arbitrarily
adding Gaussian noise. However, a true characterization of
uncertainty should include both structural and parameter
errors. The parameter prior is assumed to be Gaussian and
given by

pθ(θ) = N (θ;θ,Σθ). (14)

The stochastic states are defined by

X`̀̀
m|x`̀̀

m(θ) ∼ N (0,Σ`). (15)

Xai
m|xai

m(θ) ∼ N (0,Σi) for i = 1 to 3. (16)

Xn
m|xn

m(θ) ∼ N (0,Σn). (17)

and the stochastic measurements by

Vm|vm ∼ N (0,Σv) (18)

where capital letters are used to denote random variables.

2.5 State of Charge

The state of charge is an important notion that quantifies
the residual amount of charge in a battery. The residual
charge can be quantified by the concentration of Li-ions
in the solid particles. If cmax is the maximum possible
concentration of Li-ions in the solid particles, then the
bulk state of charge (SOC) in the positive electrode is

S(t) =
1

lp

∫ lp

0

c̄s(x, t)

cmax
dx (19)

and the corresponding approximate expected value is

E [S(m)] ≈ ∆x

lpcmax

Np∑
n=1

∫
c̄s(m,n)pc̄s(c̄s(m,n)|v1:m)dcs.

(20)

where pc̄s(c̄s(m,n)|v1:m) is the density function of average
solid particle concentration.

3 Tethered Particle Filter

The state of charge is a function of other unmeasurable
variables such as concentrations and potentials. These
internal variables have to be estimated using only the
current and voltage measurements. The related state esti-
mation problem is rather challenged due to the nonlinear,
implicit, and complex relations between the unmeasured
variables. Particle filters are a class of approximate non-
linear estimators that can be made arbitrarily accurate by
increasing the computational complexity. The traditional
particle filtering algorithms are based on standard Markov-
type state-space models. However, the model in (8)–(12)
has a particular structure that includes implicit nonlinear
equations. In a standard state-space model, the states
are iteratively calculated at each time step with only one
iteration per time step. The model (8)–(12) may require
numerous iterations at each time step to solve the implicit
nonlinear equations. Any particle approach will there-
fore require performing these iterations on each particle.
Hence, a straightforward application of particle filtering
algorithm, while possible, is computationally prohibitive.
A novel particle filtering algorithm that reduces the com-
putational complexity by utilizing the special structure of
the state-space model (8)–(12) is presented next.

3.1 Decentralized and Tethered Particles

An inspection of the structure of the state-space model
(8)–(12) indicates that the states are dependent on each
other in a particular fashion that makes it possible to split
the estimation problem into lower dimensional problems.
First, define the state vector

xm = {x`
m,x

a1
m ,xa2

m ,xa3
m ,xn

m}. (21)

The objective of the state estimation algorithm is to ap-
proximate the density function pxm

(xm|v1:m). The dimen-
sionally of pxm

(xm|v1:m) is 7N where N is the number
of discrete spatial locations. Due to the high dimension-
ality of the density function, any particle-based approach,
with finite particles, will fail with degenerate particles. A
common approach often used to avoid estimating high-
dimensional density functions is to estimate marginal den-
sities of the form pc̄c(c̄s(m,n)|v1:m). In fact, this marginal
density is all that is needed to estimate the state of charge.

The special model structure in (8)–(12) makes it possible
to reduce the dimensionality by partitioning the states and
splitting the filter density into a series of marginal density
functions,

pxm
(xm|v1:m) = px`

m
(x`

m|v1:m,x
n
m)pxa1

m
(xa1

m |v1:m,x
n
m)

× pxa2
m

(xa2
m |v1:m,x

`
m,x

n
m)pxa3

m xn
m
(xa3

m ,xn
m|v1:m),

(22)

However, observing that C1, C2, and C3 have derivatives
only in space, the dimensionality of the density functions
can be further reduced. At any given time m, the model
has a Markov structure in the spatial direction as well,
so the marginal density functions in (22) can further be
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reduced to marginal densities in the spatial direction.
The optimal marginal estimators are shown in Table (2).
For instance, D4 is treated as a two-dimensional density
function with states Φe(m,n) and ji(m,n) and a spatial
filter sweep is performed using a modified particle filter
algorithm. D1, D2, and D3 can be estimated rather easily
with Kalman filters (see Table 2). A naive particle filter
can theoretically be applied to D4. In addition to the
large dimensionality of the states, the states are implicitly
related and therefore a solution to the model at any given
time will have to be recursive. A particle-based algorithm
has to run these recursions as many times as the number of
particles. To mitigate the computational complexity of this
naive approach, the particles corresponding to the flux are
not propagated; instead, a mean of the flux is propagated
to the next time step. The mean flux particle (that is,
the mean of the particles corresponding to xn

m) is called a
tethered particle.

Definition 1. Tethered Particles: Suppose that the
state space consist of two sets of states, xm and zm, and

let X
(i)
m and Z

(i)
m for i = 1 to N be the corresponding

particles at time m. The process of reducing the number

of particles by collapsing Z
(i)
m into a predetermined particle

Z̄m is called tethering. Z̄m is the tethered particle.

Once the flux particles are tethered, only one iteration is
required to solve the implicit equations, which reduces the
computational cost. The state-space model has a peculiar
structure wherein all of the particles are expected to
satisfy the boundary conditions exactly. This is achieved
by modifying the importance-sampling density function of
the particle filter. A Dirac delta importance function is
chosen at the boundary conditions so that the particles
collapse to the exact boundary condition. A pseudocode
for this approach for estimating the states is provided in
Algorithm 2. The state of charge in (20) is esitimated using
a particle approximation of pc̄c(c̄s(m,n)|V1:m) as follows,

E [S(m)] ≈ ∆x

lpcmax

Np∑
n=1

∫
c̄s(m,n)p̂cs(cs(m,n)|V1:m)dcs

≈ ∆x

lpcmax

P∑
i=0

Np∑
n=1

c̄s(m,n)(i) (23)

where P is the number of particles and c̄s(m,n)(i) are the
particle estimates of the average solid concentration.

4 Simulations

4.1 Simulation of Deterministic Model

The deterministic model is simulated using Algorithm 1
at a constant galvanostatic discharge current of I(m) =
−30 A/m2. The initial guesses for the solid potential
at its boundary conditions are chosen to be Φs(0, 0) =
4.116 V and Φs(0, ls) = 0.074 V, which were obtained
through a trial-and-error process for quick initialization.
Note that rational but arbitrary initialization of these
boundary conditions can generate extremely large Li-ion
fluxes leading to divergence of the proposed algorithm—
in fact, no algorithm will converge under this scenario.
The initial electrolyte concentration is assumed to be
uniform across the battery at 1000 mol/L. The initial Li-
ion flux was assumed to be 10−6 mol/s-m2. The rest of the
model parameters and empirical diffusion and conductivity

Algorithm 2 Tethered Particle Filtering

1: for m = 1 to T do
(1) Obtain xn

m by solving the deterministic model.
(2) Estimate px`

m
(x`

m|v1:m,x
n
m) using a Kalman filter.

Generate P particles X`,i
m such that

p̂x`
m

(dx`
m|v1:m,x

n
m) =

1

P

P∑
i=1

δX`,i
m

(dx`
m)

(3) Estimate pxa1
m

(xa1
m (j)|v1:m,x

n
m) and

pxa2
m

(xa2
m (j)|v1:m,x

n
m) using a spatial Kalman

filter where xa1
m (j) and xa2

m (j) are the jth elements
of the respective vectors. Generate P particles
Xa1,i

m and Xa2,i
m such that

p̂xa1
m

(dxa1
m (j)|v1:m,x

n
m) =

1

P

P∑
i=1

δ
X

a1,i
m (j)

(dxa1
m (j))

p̂xa2
m

(dxa2
m (j)|v1:m,x

n
m,X

`,i
m )

=
1

P

P∑
i=1

δ
X

a2,i
m (j)

(dxa2
m (j))

(4) Estimate pxa3
m

(xa3
m (j)|v1:m,x

n
m) using a particle

filter where xa3
m (j) is the jth element of xa3

m .
Generate N particles Xa3,i

m such that

p̂xa3
m

(dxa3
m (j)|v1:m,x

n
m) =

1

P

P∑
i=1

δ
X

a3,i
m (j)

(dxa3
m (j))

2: end for

0 50 100 150

−1

0

1

2
·10−5

j i
(m

o
le

s/
s/

m
2
)

Pos. Sep

Neg.

(a) Flux

0 50 100 150
−30

−20

−10

0
i e Pos. Sep Neg.

(b) Electrolyte current

Fig. 1. (a) Li-ion flux, (b) electrolyte current at different
times during the simulation along the length x of the
battery: “Pos.” is the positive electrode, “Sep” is the
separator, “Neg.” is the negative electrode.

relations are taken from Northrop et al. (2011). The
tolerance parameters are set to δ1 = δ2 = 0.1 and λ1 =
λ2 = 0.1. The proposed simulation algorithm runs through
the discharge cycle of about 3500 s in real time in less than
3 s in Matlab (the run time of the algorithm depends on
the resolution of the discrete spatial grid and the tolerance
parameters). Figure 1 shows the evolution of fluxes and
electrolyte current with time in the three sections of the
battery. Figure 2a shows the discharge curve.

4.2 Simulation of Stochastic Model

The stochastic model is obtained by additive Gaussian
noise as in (15)−(18). The standard deviation of the noise
on the concentration is 1, on the potentials is 0.001, on
the electrolyte current is 0.01, and on the voltage is 0.1.
The discharge current is randomly switched between −35
A/m2 and −25 A/m2 with a Nyquist frequency of 0.01 Hz.
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Table 2. Optimal estimators.

Density Optimal Marginal Estimator Dimension of Estimator
Full Marginal
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m) Temporal & Spatial Kalman filter 2N 2

(D2) pxa1
m

(xa1
m |v1:m,x

n
m) Spatial Kalman filter 2N 2
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m

(xa2
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m) Spatial Kalman filter N 1
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m
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(b) Stochastic simulation. (−−) is
the noisy measurement and (−) is
the prediction.

Fig. 2. Discharge curves.
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Fig. 3. The estimated mean of state of charge (−) vs. the
true state of charge (- -).

Figure 2b shows the corresponding discharge curve and
the predicted voltage from the estimator. The proposed
approach is implemented with P = 2000 particles. Figure
3 shows the estimated state of charge and the true state of
charge obtained from the deterministic model. A common
practice in the Li-ion battery literature is to assume Gaus-
sian states and use an extended Kalman filter (EKF) for
state-of-charge estimation. However, a plot of the time evo-
lution of the state-of-charge density function clearly shows
non-Gaussian behaviour (see Figure 4). These simulations
suggest that, while EKF may work fine at low coulomb
rates, at high coulomb rates the quality of SOC estimates
may suffer unless powerful nonlinear estimators such as
particle filters are used.

5 Conclusions

The complex nonlinear PDEs that define the dynamics
of a standard Li-ion battery are discretized and refor-
mulated as a large dimensional state-space model. The
state of charge and other battery properties that depend
on unmeasured state variables such as concentrations and
potentials are estimated using a modified particle filtering
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Time (s)SOCm
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S
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Fig. 4. The probability density function of the state of
charge: SOCm is the mean-removed state of charge.

algorithm. The algorithm uses a novel technique called
‘tethering’ to reduce computational complexity.
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