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Abstract: This paper proposes an efficient algorithm for automatic loop shaping in Quantitative
Feedback Theory(QFT). The proposed method uses hybrid optimization and consistency
techniques. Hull consistency is used to prune the input domain by removing the inconsistent
values which are not a part of the solution. The hybrid optimization part combines interval global
optimization and nonlinear local optimization methods. The proposed method is demonstrated
on uncertain DC motor plant model and performance is compared with those of existing interval
methods.
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1. INTRODUCTION

The Quantitative Feedback Theory(QFT) approach to ro-
bust control synthesis is a frequency domain approach and
has been widely applied in industry [Horowitz, 1993]. The
key step in QFT is the gain-phase loop shaping technique
used to synthesis the controller. In this step,a controller is
synthesized to satisfy the magnitude-phase QFT bounds
on the nominal loop transmission function. The bounds
capture the robust stability and robust performance speci-
fications via quadratic inequalities. Various automatic loop
shaping design are available in the QFT literature [Bryant
and Halikias, 1995],[Gera and Horowitz, 1980].

A reliable method of automatic loopshaping uses deter-
ministic global optimization method [Nataraj and Thare-
wal, 2007] based on interval branch and bound method.
The approach is computationally slow due to usage of
interval arithmetic. To speedup this approach, Nataraj
and Kubal [2007] proposed a method based on hybrid
optimization and geometric constraint propagation ideas.
More recently, the QFT based controller synthesis prob-
lem was formulated as an constraint satisfaction prob-
lem(CSP) with quadratic inequality constraints [Nataraj
and Kalla, 2010]. The CSP has been solved using a con-
sistency technique that finds all the feasible controller pa-
rameter solutions in an initial search box based on branch
and prune method. Among all the feasible solutions, the
optimal solution is defined as the one having least high-
frequency gain. The main drawback of this approach is
its computational demand, since it looks for all feasible
solutions, and not just the optimal solution.

In contrast to the above methods, the proposed method
combines hybrid optimization and consistency technique
ideas to solve the optimization problem in a branch and
bound framework. The hybrid optimization part combines

nonlinear local optimization methods with interval global
optimization methods. Local optimization helps as it gives
early knowledge of the (approximate) global minimum.

The salient features of the proposed approach can be given:

• The method is fully automated.
• It enables the designer to specify the controller struc-

ture in advance.
• For the specified controller structure and initial

search box, this approach finds the optimal controller
solution.

The rest of the paper is organized as follows: Section 2
deals with the QFT basics, the QFT controller synthesis
problem and consistency techniques. Section 3 presents
the key components of the proposed algorithm such as
feasibility check,hull consistency and local optimization.
The proposed algorithm based on hybrid optimization and
consistency technique is then presented in section 4, and
demonstrated on a DC motor example in section 5. The
conclusion of the work is given in section 6.

2. BACKGROUND

This section gives an outline of QFT basics, the QFT
controller problem and consistency techniques.

2.1 QFT basics

QFT [Horowitz, 1993] is a frequency domain based robust
control techniques. The basic idea in QFT is to convert
the given performance specifications into bounds in the
Nichols chart. Using any gain-phase loop shaping method,
a controller is designed to satisfy all the bounds at each
design frequency. The aim of QFT is to minimize the cost
of feedback i.e., to reduce the high frequency controller
gain.
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Fig. 1. The two degree-of-freedom structure in QFT

Consider the two degree of freedom configuration shown
in Fig. 1, where G(s) and F (s) are the controller and
prefilter respectively. The uncertain linear time-invariant
plant P (s) is given by P (s) ∈ {P (s, λ) : λ ∈ λ}, where
λ ∈ Rl is a vector of plant parameters whose values vary
over a parameter box λ given by

λ = {λ ∈ Rl : λi ∈ [λi, λi], λi ≤ λi, i = 1, ..., l} (1)

This gives rise to a parametric plant family or set

P = {P (s, λ) : λ ∈ λ}
The open loop transmission function is defined as

L(s, λ) = G(s)P (s, λ) (2)

L(jω, λ) = g(jω)ejφ(jω)p(jω)ejθ(jω) (3)

The nominal open loop transmission function is

L0(jω) = g(jω)ejφ(jω)p0(jω)ejθ0(jω) (4)

or

L0(jω) = l0(jω)ejψ0(jω) (5)

where

l0(jω) = g(jω)p0(jω)

and

ψ0(jω) = φ0(jω) + θ0(jω)

The objective in QFT is to synthesize G(s) and F (s) such
that the various stability and performance specifications
are met for all P (s) ∈ P and at each ω ∈ Ω is the design
frequency set. In general, the following specifications are
considered in QFT:

(1) Robust stability margin∣∣∣∣ L(jω)

1 + L(jω)

∣∣∣∣ ≤ ws (6)

ws = desired stability margin specification
(2) Robust Input disturbance rejection∣∣∣∣ P (jω)

1 + L(jω)

∣∣∣∣ ≤ wdi(ω) (7)

wdi(ω) = Input disturbance specification
(3) Control effort constraint∣∣∣∣ G(jω)

1 + L(jω)

∣∣∣∣ ≤ wc(ω) (8)

wc(ω) = Control Effort specification
(4) Robust tracking performance

|TL(jω)| ≤
∣∣∣∣F (jω)L(jω)

1 + L(jω)

∣∣∣∣ ≤ |TU (jω)| (9)

where TL(jω) and TU (jω) are the lower and upper tracking
performance specifications. The above specification can be
converted into corresponding quadratic inequalities [Chait
and Yaniv, 1993]

(1) Robust stability margin

g2p2
(

1− 1

ws2

)
+ 2gp cos(φ+ θ) + 1 ≥ 0 (10)

where g and p are the magnitude of the controller and
plant, respectively, φ and θ are the phase angle of the
controller and plant, respectively.(see equation 3)

(2) Robust Input disturbance rejection

g2p2 + 2gp cos(φ+ θ) + (1− p2

w2
di

) ≥ 0 (11)

(3) Control Effort Constraint

g2p2 + 2gp cos(φ+ θ) + (1− g2

w2
c
) ≥ 0 (12)

(4) Robust tracking performance

g2pk
2pi

2

(
1− 1

δ2(ω)

)
+2gpkpi

[
pk cos(φ+ θi)−

pi
δ2(ω)

cos(φ+ θk)

]
+

(
pk

2 − pi
2

δ2(ω)

)
≥ 0 (13)

where

δ(ω) =

∣∣∣∣TU (jω)

TL(jω)

∣∣∣∣
The above constraints are to be met for all P (s) ∈ P,
and for all ω. The last inequality should be met for
each possible pair Pi(jω) = pi(jω)ejθi(jω) ,Pk(jω) =
pk(jω)ejθk(jω) of plants from the uncertain plant set P.

The main steps of the QFT design process are

(1) Generating plant templates: For a given uncer-
tain plant P (s) ∈ P, at each design frequency ωi ∈ Ω,
calculate the template or value set for set of plants
P (jω) in the complex plane.

(2) Computation of QFT bounds: At each design
frequency ωi, translate the stability and performance
specifications using the plant templates to obtain
the stability and performance bounds in the Nichols
plane.The bound at ωi is denoted as Bi(6 L0(jω), ωi),
or simply Bi(ωi).

(3) Design of controller: Design a controller G(s) using
loop shaping technique such that
• The bound constraints at each design frequency
ωi are satisfied.
• The nominal closed loop system is stable.

(4) Design of prefilter: Design a prefilter F (s) such
that the robust tracking specifications in (9) are sat-
isfied. Two inequalities for robust tracking specifica-
tions result from (9) :

|TL(jω)| − |F (jω)||T (jω)| ≤ 0; (14)

|F (jω)||T (jω)| − |TU (jω)| ≤ 0; (15)

where |T (jω)| = | L(jω)1+L(jω) |

2.2 QFT Controller synthesis - Problem Formulation

The QFT controller synthesis problem can be posed as
a constrained optimization problem with the objective
function as the high frequency gain of the controller,
and the constraints set for the optimization as the set

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

428



of possibly nonconvex, nonlinear magnitude-phase QFT
bounds at the various design frequencies [Nataraj and
Tharewal, 2007].

In this work, the controller structure is represented in the
gain-pole-zero form

G(s, x) =

kG

nz∏
i1=1

(s+ zi1)

np∏
k1=1

(s+ pk1)

(16)

where the controller parameter vector is

x = (kG, z1, ...znz , p1, ..., pnp). (17)

Here zi1 and pk1 can be real or complex values.

The magnitude and phase functions of G(s, x) are defined
as

gmag(ω, x) = |G(jω, x)|; gang(ω, x) = 6 G(jω, x) (18)

For the given robust stability and performance specifica-
tions, the initial QFT design method is followed up to the
QFT bound generation step.

Proceeding with the minimization of kG as the objective,
the QFT controller synthesis can be formulated as the
following constrained global optimization problem:

find min kG

subject to H(x) <= 0

Where x is the vector of controller parameters in (17).

The QFT bound Bi(6 L0(jωi, x), ωi) at each design fre-
quency ωi is to be respected, leading to the set of inequality
constraints H (x). Typically, the constraint set H (x) is
nonlinear and non-convex and is given by H (x) = {hi(x)},
where hi (x) represents a single-valued bound constraint

hui (x) = |L0(jωi, x)| −Bi(6 L0(jωi, x), ωi) ≤ 0 (19)

hli(x) = Bi( 6 L0(jωi, x), ωi)− |L0(jωi, x)| ≤ 0 (20)

Where hui ,hli denotes the single-valued upper and lower
bound constraints respectively. A multiple-valued bound
can be split in terms of hui and hli, and represented in the
above form.

2.3 Consistency Techniques

Well known consistency methods are Hull and Box consis-
tency approach. Hull consistency is a constraint inversion
procedure with respect to each variable in a constraint
and it checks the consistency only on the bounds of the
variable domains. HC4 is the most important hull consis-
tency method available in the literature [Benhamou et al.,
1999]. It works in two steps, called as forward evaluation
and backward propagation on a binary constraint tree. In
the forward phase, tree traversal is from the bottom to top
node, evaluating at each node the natural interval evalu-
ation of that sub-term of the constraint. In the backward
phase, the tree is traversal from the top to bottom node,
projecting on each node the effects of interval narrowing
already performed on its parent node.

For further details, readers can refer to this link 1 .
1 http://www.sc.iitb.ac.in/∼jeya/ProposedHybridAlgorithm.pdf

3. PROPOSED ALGORITHM COMPONENTS

The proposed algorithm has three main components (a)
Feasibility check, (b) Hull consistency, and (c) local opti-
mization. These are explained below.

3.1 Feasibility Check

Let |Bi|max and |Bi|min be the top most and bottom most
value of the single valued QFT bound for the entire phase
interval 6 L0(jωi, z). Based on the location of the L0 box
with respect to this bound, one of the following cases
arises, see Fig. 2

(1) If the entire L0 box lies on or above |Bi|max (box A in
Fig. 2) then hli is satisfied for any controller parameter
vector z ∈ z, so that the entire box z is feasible at ωi.
Here z = x.

(2) If the entire L0 box lies below |Bi|min (box B in Fig.
2) then hli is not satisfied for any controller parameter
vector z ∈ z, so that the entire box z is infeasible at
ωi.

(3) Else box z is indeterminate (box C in Fig. 2).

An algorithm based on above ideas is as follows

FC ALGORITHM : flagz=FC(L0mag, L0phase, Bi, Ω, z)
Inputs: The controller parameter box z, interval extensions
[Moore, 1966] L0mag(ωi, z), L0phase(ωi, z), QFT boundsBi
and design frequency vector Ω.

Output: flagz describes the feasibility status of the box z.

BEGIN FC ALGORITHM

(1) FOR i = 1, ..., n
(a) Evaluate |L0(jωi, z)| and 6 L0(jωi, z)
(b) Evaluate |Bi|max, |Bi|min
(c) IF inf |L0(jωi, z)| ≥ |Bi|max THEN set

flag(ωi) = feasible.
ELSE IF sup |L0(jωi, z)| ≤ |Bi|min THEN set

flag(ωi) = infeasible and go to Step 3.
END FOR

(2) IF flag(ωi) = feasible for all ωi, i = 1, ..., n THEN
set flagz = feasible and EXIT FC ALGORITHM.

ELSE set flagz = indeterminate and EXIT FC
ALGORITHM.

(3) Set flagz = infeasible and EXIT Algorithm.

END FC ALGORITHM

3.2 Hull Consistency

HC4 filter operates on each QFT quadratic inequality con-
straint [Nataraj and Kalla, 2010] separately as explained
in section 2.3. It works untill there is no reduction in any
of the input parameter domain in a iteration.

Inputs: The controller parameter box z and quadratic
inequality constraints (Ci).
Output: A reduced controller parameter box z, Reduction
flag (flagHC).
HC ALGORITHM : (z, f lagHC) = HC4(Ci, z).

BEGIN HC ALGORITHM

(1) Forward Evaluation Phase (see Section 2.3)
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Fig. 2. Feasibility conditions for different locations of L0

box with respect to single valued lower bound Bi at
ωi.

(2) Backward Propagation Phase (see Section 2.3)

END HC ALGORITHM

3.3 Local Optimization

Local constrained optimization methods are used to
quickly locates the approximate global minimum, provided
the obtained local solution is a feasible one. In our context,
the gain intervals are clipped to have local solution at their
supremum since the objective is to seek the solution with
minimum high frequency gain. And other controller pa-
rameters with local solutions by clipping their end points.

Local Optimization (zlocal, flagzlocal
)= LO(z, f, ci)

Input: The controller parameter box z, Objective function(f)
and bound constraints(H(x)). Here f = inf(z(1)).

Output: A Locally optimum solution zlocal, and value of a
feasibility flag flagzlocal

of the locally optimum solution.

BEGIN LO ALGORITHM

(1) Let z= Mid z, where Mid = Midpoint
(a) With z as the starting point, call a nonlinear

constrained local optimization routine to solve
the optimization problem. For instance, we can
call fmincon routine of MATLAB [MathWorks,
2009]

(b) Augment z: z ← (zlocal, z).

END LO ALGORITHM

3.4 Usefulness of HC4 in QFT Design

Let us consider the fixed(for simplicity) plant transfer
function for the speed loop of a DC Motor [Borghesani
et al., 1995]

P (s) =
10

s(s+ 1)
;

The design specification is the bandwidth specification i.e.∣∣∣∣ L(jω)

1 + L(jω)

∣∣∣∣ ≤ 0.707; ω > 10

The design frequency set is

Ω = [0.01, 0.05, 0.1, 0.2, 1, 2, 10, 12, 15, 35, 100]

A gain controller(K) with input domain [0, 100] is chosen.
For bandwidth specifications, the quadratic inequality can
be written as

(K2) ∗
(

1− 1

wb2

)
∗ p2 + 2 ∗ cos(φ) ∗K ∗ p+ 1 = [0,∞]

Fig 3 shows the backward propagation phase of the con-
straint tree where arrows are used to represents the top
down phase. The projection of a variable with multiple
occurrence in a constraint tree is different.

At Node 9 :
Father Node = N6 = 2*Cos(φ)*K ; Brother Node = N8=
2*cos(φ)

ProjectionN9 =
BackwardpropagationN6

ForwardEvaluationN8

=
[−16.73.., 0]

[−1.994..,−1.994..]

ProjectionN9 = [0, 8.3892..]

N9new = N9old ∩ProjectionN9

= [0, 100] ∩ [0, 8.3892]

N9new = [0, 8.3892]

Fig. 3. Backward Propagation Phase

At Node 10 :
Father Node =N7 =K2 ; Brother Node = 2 (Power Term)

ProjectionN10 =
√

(BackwardPropagationN7)

=
√

[0, 70.37..]

ProjectionN10 = [−16.56.., 16.56..]

N10new = N10old ∩ProjectionN10

= [0, 100] ∩ [−16.56.., 16.56..]

N10new = [0, 16.56..]

After the first backward propagation phase, the gain value
at Node 9 is [0, 8.3892] where as at Node 10, its value
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is [0, 16.56..]. Thus, after one iteration, the gain interval
reduces from [0, 100] to [0, 8.3892] .

4. PROPOSED ALGORITHM

The proposed algorithm begins with an initialization part,
by assigning the value of initial search domain x to the
current box z. The feasibility of box z is tested as described
in section 3.1. A triple (z, z, f lagz) is formed where z
is the lower bound of objective function over the box z
and the initialization part is completed by putting this
triple in the working list(L). The algorithm then calls the
hull consistency algorithm as explained in section 3.2. The
reduced box is given to local optimization as described in
section 3.3.

After this, the current box under process z is split into two
subboxes v1,v2 and feasibility test is carried out on each
subbox. The subbox found to be infeasible is discarded and
any remaining one is added to the working list(L). The
list is arranged such that the second members of all triples
i.e. minimum value of objective function over respective
boxes in list do not decrease. If, at any iteration, the box
z of the leading triple is of sufficiently small width(ε) or
the List(L) is empty, then algorithm is terminated after
printing out the optimal controller solution Z. We now
present the algorithm.

ALGORITHM: QFT CONTROLLER DESIGN

Inputs: The tracking and stability bounds at the vari-
ous design frequencies obtained using the QFT toolbox
[Borghesani et al., 1995], an initial search box x of con-
troller parameter values, interval extensions L0mag(ω,x),
L0phase(ω,x), Quadratic inequality constraints ci, i =
1, 2, ...m, the design frequency vector Ω = {ωi, i = 1, ..., n}
and a prespecifiedbox tolerance ε.

Outputs: One of the following

• Message ‘No feasible solution exists in the given
search box x’.
• An optimal controller parameter vector Z satisfying

all the QFT bounds.

BEGIN ALGORITHM

(1) Set z = x and initialize zv ← {}
(2) Execute Feasibility Check algorithm,

flagz=FC(L0mag L0phase, Bi, Ω, z).(see Section 3.1)
(3) IF flagz = infeasible, then PRINT ‘No feasible solu-

tion exists in the given search box’ and EXIT ALGO-
RITHM.
IF flagz = feasible, then PRINT ‘controller parame-
ter box is z’ and EXIT ALGORITHM.
IF flagz = indeterminate, then ENTER Iterative
Part(Steps 4-16).

(4) Initialize list L := {z, z, f lagz} where z = inf z(1) .
(5) Execute Hull Consistency (HC4) Algorithm,

(z, f lagHC) = HC4(Ci, z).(see Section 3.2).
(6) Execute Local optimization part,

(zlocal, flagzlocal
)= LO(z, f, ci).(see Section 3.3)

(7) Bisect the current box z in the longest direction, into
two subboxes v1 and v2 such that z = v1

⋃
v2.

(8) Execute Feasibility Check algorithm,
flagvj=FC(L0mag, L0phase, Bi, Ω, vj), j = 1, 2.

(9) Set v1 = inf v1(1), v2 = inf v2(1) and form the triples
{v1, v1, f lagz1}, {v2, v2, f lagz2}.

(10) IF flagvj = infeasible THEN discard the
triple {vj , vj , f lagzj}, j = 1, 2.

(11) Remove the triple {z, z, f lagz} from the list L.
(12) Add any remaining triple(s) from step 10 to the list

L.
(13) Sort the list L such that the second members of all

pairs of L do not decrease.
(14) Denote the first item in the list as {z, z, f lagz}.
(15) IF Width(box)≤ ε OR list L is empty, THEN PRINT

‘Optimal controller parameter vector is Z’ and EXIT
algorithm.

(16) Go to Step 5.

END ALGORITHM

5. DESIGN EXAMPLE

The proposed algorithm is demonstrated on a DC motor
plant model having uncertain plant parameters. To show
the capabilities of the proposed approach, we also compare
its performance with existing interval based algorithms
([Nataraj and Tharewal, 2007],[Nataraj and Kalla, 2010])
in terms of performance metrics such as number of itera-
tions and average computational time.

Consider the uncertain plant transfer function of a DC
motor [Zolotas and Halikias, 1999]

P (s) =
ka

s(s+ a)
; k ∈ [1, 10], a ∈ [1, 10]

where the nominal parameter values are k0 = 1, a0 = 1.
Our aim is to design a robust PID controller meeting the
closed-loop specifications given below

(1) Robust Stability margin specification: ωs = 1.2 in (6)
(2) Tracking performance specifications:

In (9), we have

TL(s) =
0.6584(s+ 30)

s2 + 4s+ 19.752
;

TU (s) =
8400

(s+ 3)(s+ 4)(s+ 10)(s+ 70)
;

The initial search domain for the controller parameter is
taken as [kp] = [5, 103]; [ki] = [0.1, 10] ; [kd] = [3, 5] .
The controller solutions are to be found to an accuracy
= 0.1. The design frequency(rad/sec) set is chosen as
ω = [.5, 1, 2, 10, 30, 60].

For this problem Zolotas and Halikias designed a PID
controller (singular value decomposition approach) given
by

Ga(s) = (12.6 + 3.95s+
4.46

s
) (21)

we now apply the proposed algorithm. For some insight
into the algorithm working, consider the following situa-
tion be at some iteration. Let the controller parameter box

[kp, ki, kd] = {[7.021.., 9.0431..], [0.1, 3.76..], [3, 5]}. (22)

After HC4 pruning, the box reduced to

[kp, ki, kd] = {[7.02.., 7.19..], [0.1, 0.79..], [3.88., 5]}. (23)

Now the mid point of reduced box is taken as starting
point for local optimization solver and the local solution is
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Table 1. Performance comparison

Algorithm Iterations Time(sec)

HC4 [Nataraj and Kalla, 2010] 201 204.13

IGO [Nataraj and Tharewal, 2007] 342 70

Proposed Hybrid Optimization 9 10.3
IGO = Interval Global Optimization

(kp, ki, kd) = {7.10, 0.44, 4.44}. Update the parameter box
with feasible local solution as below,

[kp, ki, kd] = {[7.02.., 7.10..], [0.1, 0.44..], [3.88.., 4.44..]}.
(24)

The Proposed algorithm in section 4 gives the PID con-
troller

Gb(s) = (7.03 + 3.89s+
0.1

s
) (25)

For further details, readers can refer to this link 2 .
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2 http://www.sc.iitb.ac.in/∼jeya/ProposedHybridAlgorithm.pdf

A controller high frequency gain reduction of up-to 55
percent is obtained as compared to Zolotas and Ha-
likias approach. And upto 5 times speed up is obtained
with proposed algorithm than existing interval algorithms
([Nataraj and Tharewal, 2007],[Nataraj and Kalla, 2010]).

Table 1 compares the performance metrics given by the
existing interval algorithms and the proposed hybrid ap-
proach.

6. CONCLUSIONS

A computationally efficient method for automatic loop
shaping in QFT is proposed. The proposed method uses
hybrid optimization techniques and consistency ideas. The
method operates on the various QFT quadratic inequali-
ties describing the robust stability and performance spec-
ifications , over the set of uncertain plants at each design
frequency. The proposed algorithm outperforms the exist-
ing algorithms in terms of performance metrics such as
number of iteration and average computation time. Thus
aids in producing globally optimum controller solution in a
reasonable time for a given controller structure and initial
search domain. The proposed algorithm can be extended
to multivariable systems with fair numerical efficiency.
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