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Abstract: The ability to monitor large numbers of variables and the flexibility to assign alarms
to each variable led to a substantial increase in the numbers of alarms in industrial plants. This,
in turn, increased the numbers of false and redundant alarms. In plant operations, the numbers
of annunciated alarms regularly exceed the acceptable rates that operators can handle. To reduce
the number of assigned alarms, a risk-based alarm system has been proposed in the literature
(Ahmed et al. (2011); Chang et al. (2011)) where alarms are assigned to groups of variables
instead of individual variables. This articles explores the options for grouping variables for alarm
allocation. Several grouping methods are discussed and an event-based grouping procedure is
detailed. Selection of the key variables for a group is performed using the information that the
variables can have to distinguish between an abnormal and a normal condition. The concept of
mutual information is used to quantify the information. Variables with high information gain
are grouped together for each respective abnormal event. To identify the redundant variables
within the groups to further reduce the number of variables to be monitored, the maximum
cross-correlation between pairs of key variables are used. A case study using the example of a
continuous stirred tank reactor is used to demonstrate the methodology.

Keywords: Alarm; Variable allocation; Alarm Flooding; Information theory; Mutual
information.

1. INTRODUCTION

Continuous developments in technologies such as the su-
pervisory control and data acquisition (SCADA) and the
distributed control system (DCS), along with the low cost
of sensors have increased the ability to monitor and store
large number of variables during plant operations. In a
complex process plant the number of observed variables
may be in thousands. Some of the process variables are
used to detect faults, which can be defined as ‘deviations
of a monitored variable or a calculated parameter from its
normal range’. A fault is a symptom of a system failure
that can be identified as ‘changes in process parameter
with disturbances from external processes, equipment fail-
ures or control system failures’. One or more failures can
lead a process to an abnormal event which is hazardous
in safety, economical, social and environmental aspects
(Venkatasubramanian et al. (2003)).

Designing an alarm system to detect failures and imple-
menting corrective actions are critical tasks in chemical,
process, and oil and gas industries. Alarms are used to
notify the operator about any faulty condition from the
respective failure before its propagation to a more haz-
ardous event. Due to the ability to monitor large num-
bers of variables with low cost, plant designers tend to
assign alarms to as many variables as they can. It simply
costs less to add an alarm than to discuss whether it is
needed or not. However many alarms that are allocated
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to different variables may indicate minor faults that have
no significant effect on any major abnormal event. With
a small disturbance, many minor ‘false’ alarms can be
triggered. On the other hand, a major failure, which can be
propagated to a severe event can trigger many redundant
minor alarms along with a primary alarm. Due to the false
and the redundant alarms, alarm rates can be increased
to a level above the operators’ physical ability to handle
alarms. This phenomena is called ‘alarm flooding’ that
can reduce the motivation of the operators to check on
alarms. Also it can reduce the ability of the operators to
effectively detect the root causes of any major failure (Izadi
et al. (2009)). According to EEMUA (2007), an operator
should not handle more than six alarm per hour. In reality,
according to different reviews, numbers of alarms exceed
this value by large numbers, during both normal and
abnormal conditions. Chang et al. (2011) has discussed
about the recent situation in industries and the standards
which they have for alarm management.

Minimizing the number of alarms without compromising
the ability to identify the significant failures is a crucial
factor in alarm system design. Many alarm management
methods have been proposed in the literature. Alarm man-
agement life cycle is proposed by ISA (2009) to manage
alarms at the design stage and alarm processing techniques
like grouping of alarms, alarm suppression and shelving are
discussed in EEMUA (2007).

To reduce the number of alarms a risk-based alarm design
procedure has been proposed in the literature (Ahmed
et al. (2011)). In this approach, alarms are allocated
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to groups of variables instead of individual variables.
However, the above reference does not outline how to
define such groups to assign alarms. In this article the
methodologies for grouping of variables are explored. An
event-based grouping option is detailed as a suitable option
for grouping of variables to allocate alarms. The remainder
of the article is organized as follows. Section 2 discusses
the different grouping options followed by the details of an
event-based grouping procedure in section 3. A case study
is presented in section 4 followed by concluding remarks.

2. GROUPING VARIABLES TO ASSIGN ALARMS

In this paper we focus on the concept of grouping variables
and assign alarms to groups of variables. Allocation of an
alarm to a group of variables will result in the annunciation
of one alarm even when one or more variables within the
group has deviated. Grouping can be performed consid-
ering various factors. Variables can be grouped according
to their types, or the equipment that they are associated
with, or according to their correlation. In addition, alarms
can be event-based where a group of variables associated
with an abnormal event can be allocated an alarm. This
concept has been used to develop a risk-based alarms
system (Ahmed et al. (2011)) where measurements of each
variable in a group are used to calculate its associated
risk; an overall risk associated with all of the variables in
a group is then evaluated and an alarm is annunciated if
the overall risk exceeds its acceptable value. The details
of the risk-based alarm system design methodology is part
of an ongoing research project. In this article, we focus on
the options to grouping of variables.

Identification of the key variables related to an abnormal
event is a challenging task. The most important variables
can be identified by various techniques such as the vari-
able selection methods, or based on expert knowledge.
Chen and Wang (2000) proposed a method based on the
principle component analysis (PCA) and the resulting
contribution plot to detect the important variables to
classify fault conditions. Orantes et al. (2008) used the
concept of entropy from the information theory to estimate
the most informative variable related to a failure for the
purpose of selecting sensor locations. However grouping of
variables for alarm allocation has not been addressed in the
literature. In this article the mutual information concept
(Pérez et al. (2006)) for key variables selection by using
information theory for Gaussian random variables is used
for grouping variables to assign alarms.

Based on their information contents, variables can be
grouped together to represent different abnormal events.
However, there can be highly correlated variables within a
group. In order to identify the redundant variable within
a group, correlation analysis is needed to be done. Various
methods have been proposed in the literature to cluster
process variables or alarms according to their correlation.
Yang et al. (2012) and Noda et al. (2011) proposed
methods to analyze correlated alarms by using binary
alarm data. Geng et al. (2005) proposed a method to
cluster variables by fuzzy clustering method. Independent
grouping analysis is proposed by Alhoniemi et al. (2007)
considering mutually dependent variables using a cost
function. Yu and Liu (2003) discussed about information

redundancy between variables using the concept of mutual
information. In this article, the maximum cross-correlation
(Swift et al. (2001)) among the variables is used to identify
the redundant variables. The following section discusses
the different grouping methods.

2.1 Grouping methods

Grouping based on variable types: Different types of
measurements such as temperatures, pressures and levels
are available from industrial plants. By grouping variables
according to their types and assigning alarms to groups
may significantly reduce the number of alarms in a plant.
For example, if there are a number of thermo-couples along
the length of a distillation column, instead of assigning
alarms to each of the measurements, one alarm can be
allocated to the set of temperature measurements. Annun-
ciation of the alarm would indicate an abnormality related
to the temperature in the column. Thus, in a particular
system which has a high number of monitored variables
of the same type, the operator can efficiently identify a
faulty situation without causing alarm flooding. However
the operator will need more information to identify the
root causes of the failures.

Grouping by plant unit or equipment: In a complex
process plant monitoring system, variables can be grouped
unit- or equipment-wise. For example, measurements from
the stripping section of a distillation column can be
grouped together to assign an alarm whose annunciation
would direct the operator to focus on that section and
take actions. Thus the operator can effectively identify the
failure location and further analyze the situation to find
the root cause without having many alarms from the same
unit or system. But due to correlation of the variable, one
unit failure can be affected by other upstream variables
and this can mislead operators.

Grouping based on correlations: Strong correlations exist
among plant variables due to their interactions and also
due to plant connectivity. For example, the composition
of the feed to a reactor may affect the conversion in
the reactor leading to a changed product composition,
product flow rate and/or the temperature in the reactor.
If alarms are assigned to each of the variables, a change
in the feed may cause a number of alarms to annunciate.
Thus one failure may lead to many alarms. If variables
are grouped according to their correlations, number of
redundant alarms can be significantly reduced. But the
information from the alarm will be unclear. Also prioritiz-
ing of alarms can be ineffective to the operator.

Grouping by abnormal events: Variables related to an
abnormal event may be grouped together to assign an
alarm. For example, for a simple tank process, the flow
rates of the inlet and the outlet streams along with the
level of liquid in the tank may be related to an overflow
condition of the tank. However, instead of assigning alarms
to each of the variables, an overflow alarm can defined
based on the above measurements. Thus number of alarms
can be reduced. In addition, the annunciation of the alarm
would inform the operator about a defined event.

The above mentioned group-based alarm assignment
would require that a single indicator be defined from the
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measurements of the variables to annunciate an alarm.
Such exercise for the first three options would require
further study; for the event-based grouping the risk of the
event associated with the variables in the group can be
used for alarm annunciation. However, challenges remain
on how to estimate the risk associated with a set of vari-
ables. Once the risk can be estimated, alarm annunciation,
its prioritization and the diagnosis to find the root cause
can be done with less difficulties. Considering this aspect,
the abnormal event-based grouping seems to be more
promising. The following section details the event-based
grouping procedure.

3. EVENT-BASED ALARM ASSIGNMENT

In order to select variables to form a group, the first step
is to identify the failure that can occur in the unit or
equipment or system. This can be done by various risk
assessment methods e.g. the HAZOP and the FMEA.
Then the abnormal events which may result from the
failures are identified. Once the failures and the abnormal
events are identified, process data are required to group
variables. If the plant is at the design stage, simulation can
be carried out to generate data for the abnormal events.
For an operational plant, historical data can be used along
with simulations to meet data requirements. Using data
for both normal operations and for abnormal events, the
information theory can be used to select the key variables
associated with an event.

3.1 Selection of the key variables

The information theory, proposed by Shannon (1948)
which is routinely used in communication systems, mea-
sures the information of a random variable in a quantita-
tive manner. According to the theory, uncertainty associ-
ated with a random variable X can be measured by its
entropy H(X) using Eq.1.

H(X) = −
∑
x

P (x) log2(P (x)) (1)

Here, X is assumed to be a discrete random variable.
P (x) is the probability distribution of X = x occurrence.
Entropy is measured with unit ‘bits’, therefore log2 is
considered in calculations. For two random variables X
and Y , the joint entropy H(X,Y ) can be defined as

H(X,Y ) =
∑
x

∑
y

P (x, y) log2(P (x, y)) (2)

P (x, y) is the discrete joint probability distribution of
X = x and Y = y. The mutual information which one
random variable contains about the other random variable
can be derived as outlined in (Cover and Thomas (1991)).

I(X;Y ) =
∑
x,y

P (x, y) log2
P (x, y)

P (x)P (y)
(3)

I(X;Y ) is the mutual information between random vari-
able X and Y . Eq.3 can be simplified to give

I(X;Y ) = H(X)−H(X/Y ) (4)

H(X/Y ) is the entropy of the random variable X given Y .
The mutual information between two random variables can
be used in abnormal event-based alarm design to select the
key variables that consist most information regarding an

event. In order to do that, variable Y need to be defined
as a random variable that indicate the failures that can
propagate to specific abnormal event. For an example, if
there is only one failure that can be propagated to an
abnormal condition then Y can be defined by two random
numbers, Y = 0 (normal) and Y = 1 (failure) or else
if there are k − 1 failures that can be propagated to
the specific abnormal event then Y can have k random
numbers (k being the number of failure plus the normal
condition).

If the variable does not have the ability to distinguish
an abnormal event from the normal condition, then the
amount of uncertainty do not change. If a variable can
distinguish between conditions, then the amount of un-
certainty will be reduced. Reduction of the uncertainty or
entropy is the information gain that a variable consists.

Entropy of a continuous random variable having a nor-
mal distribution has been defined in (Cover and Thomas
(1991)) as

H(X) = −
∫
x

p(x) log2(p(x)) =
1

2
log2(2πeσ2) (5)

p(x) is the probability distribution of continues random
variable X and σ is the standard deviation of X.

Pérez et al. (2006) proved that if the variable X has a
normal distribution and if the class C is a multi-nomial
random variable having 1 to k finite outcome with a
probability distribution of P (C = c), and p(c, x) is the
joint probability distribution of C = c and X = x, then the
information that the variable can have for all the classes
is given by

I(X;C) =

k∑
c=1

∫
x

p(c, x) log2
p(c, x)

P (c)p(x)
(6)

I(X;C) is the mutual information between X and C.
During normal conditions, variations of data occur only
due to measurement noise which is typically small white
noise. But if the variable contains high information, then
for each failure condition the variation of data will be
significant. Therefore entropy between failures and the
variable will decrease. Hence from Eq. 5, the following
equation can be derived to calculate the information gain,
Pérez et al. (2006),

I(X;C) =
1

2

[
log(σ2)−

k∑
c=1

P (c)log2(σ2
c )

]
(7)

where σ is the standard deviation of the random variableX
and σc is the standard deviation of the random variable X
given C = c. P (C) is assumed to have uniform distribution
implying that the information about the normal and
failure conditions are unknown and their probability of
occurrence are the same. It is also assumed the data
acquired from simulation for each variable in different
conditions are normally distributed and the classes are
considered as multinomial random variables.

Finally variables having high I values can be selected as
the most suitable variables to monitor the respective event.
Thus the abnormal event alarm can be assigned to the
group of variables.
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3.2 Identification of the redundant variables

Different variables selected within a group may contain
the same information and thus can be considered to
be redundant. The redundant variables can be identified
using the correlation analysis. The purpose is to identify
redundant variables within a group and thus to exclude all
but one from a redundant set for monitoring.

To perform the correlation analysis, data are standardized
to have zero mean and the cross-correlation between pairs
of variables are estimated. There can be time lags between
variables. Hence to calculate the maximum correlation,
time lag is varied and the correlations are calculated to get
the maximum positive or negative value. Maximum time
lag can be decided using process knowledge (Swift et al.
(2001)). Pearson correlation coefficient is used to calculate
the similarity. At the maximum positive coefficient φmax

time lag is lagmax and at maximum negative coefficient
φmin time lag is lagmin. Then the maximum absolute
correlation is calculated as follows (Yang et al. (2010)),

φmax is taken at lagmax if φmax ≥ −φmin

φmin is taken at lagmin if φmax < −φmin

Correlation matrix can be used to develop a correlation
color map and variables that are highly correlated with
each other are grouped together. The high correlated color
cluster indicate the variables that have high correlations.
For the purpose of better visual representation, grouping
can be done by calculating the similarity distance between
each pair of variable. After getting the distance between
variables in the data, variables close to each other can be
linked and presented in clusters in a hierarchical tree (Yang
et al. (2012)). A dendrogram is used to present correlated
variables. Fig. 1 present the complete methodology for
variable allocation for the event-based alarm system.

Failure and Abnormal 
event identification 

Simulate failure 
and generate data

Calculate
mutual information

Between 
failures and variables

Group redundant 
variables

Group variables
with high information 
on abnormal events

Calculate correlation 
among variable for

abnormal conditions

Filter redundant 
Variables

Expert knowledge

Allocate variables 
for respective 

abnormal event group

Fig. 1. Methodology for grouping variables to assign
alarms

4. CASE STUDY AND RESULTS

4.1 Case study

As a case study, a jacketed continuous stirred tank reactor
(CSTR) is considered. An irreversible exothermic reaction
A→ B is assumed to take place in the reactor with a first
order kinetics. A temperature controller is used to control
the reactor temperature by manipulating the coolant flow
rate. The level of the reactor tank is also maintained
by manipulating the reactor outlet flow. Heat losses are
considered negligible and a perfect mixing condition is
assumed. All the parameter for the model is taken from
(Luyben (1996)) and the controller PI parameters are
taken from (Chang and Yu (1990)). To demonstrate the
methodology, Simulink is used to built a plant model.
Different failure conditions are simulated with Simulink to
generate data. For the CSTR, 11 variables are identified.
Table 1 lists the variables.

Table 1. List of variables for the CSTR.

No Measuring variable

1 Reactor liquid percent level
2 Coolant utility outlet temp
3 Reactant concentration
4 Reactor vessel temperature
5 Reactor output flow rate
6 Coolant utility flow rate
7 Reactant feed temperature
8 Reactant feed flow rate
9 Coolant inlet temperature
10 Level controller output
11 Temperature controller output

Variables 5 and 6 are manipulated to control variables
1 and 4, respectively. Other variables are uncontrolled
variables.

Ten failures are considered for this study. Using Simulink,
data for all the failures and the normal condition are
generated. Table 2 presents the failures.

Table 2. Possible failure conditions for the
CSTR process

No Failure

F1 Reactant feed flow disturbance - High flow
F2 Reactant feed flow disturbance- Low flow
F3 Coolant system failure - High coolant temperature
F4 Coolant system failure - Low coolant temperature
F5 Reactor out flow valve failure- High flow
F6 Reactor out flow valve failure- Low flow
F7 Coolant flow valve failure- High flow
F8 Coolant flow valve failure- Low flow
F9 Reactant feed quality failure - High concentration
F10 Reactant feed quality failure - Low concentration

Some of these failure can propagate to more sever abnor-
mal events. Table 3 presents the abnormal events and the
respective failures that can lead to the events.

4.2 Grouping variables

Using the concept of the information theory, variables are
grouped according to their information gain. First a pair-
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Table 3. Possible abnormal events for the
CSTR process

Abnormal Event Failure

Runaway F3,F8
Flooding F1,F6
Low quality products F9,F4,F7

wise comparison for the normal and a failure is carried out
to identify variables that can reduce the uncertainty of the
failure under consideration. Fig. 2 presents the information
gain of all of the variables in the form of a bar chart for
the failure F8: coolant valve failure - low coolant flow.
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Fig. 2. Information gain of different variable corresponding
to the failure F8: coolant valve failure - low coolant
flow

As observed from Fig. 2, there are 5 main variables 4, 2, 11,
3 and 6 have the significant information about the failure.
Accordingly, this set of five variables are considered as the
key variables for the for the failure F8. Following the same
procedure, key variables are identified for all the failures.

In order to group the variables according to the abnormal
events, information gains are calculated by considering
all the failures that can propagate to the corresponding
abnormal event. Fig. 3 presents the information gain for
all of the listed variables for the abnormal event, runaway
reaction.
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Fig. 3. Information gain of different variable for the event
- runaway reaction

Table 4. Selected variable groups for different
abnormal events.

Event Key Redundant Chosen
Variables variables group

Runaway (2,3,4,6,9,11) (2,3,4) and (6,9) (2,6,11)
Flooding (1,3,5,8,10) (3,5,8) (1,8,10)

Low Quality (2,3,4,11) (2,4) (3,4,11)

As shown in Fig. 3, the variables 4, 2, 11, 6, 3 and 9 can give
significant information about the event. Accordingly, this
set of six variables are considered as the key variables for
the event runaway reaction. Following the same procedure,
key variables are identified for all the events.

4.3 Redundant variable selection

Correlation analyses are carried out to identify the redun-
dant variables within a group of key variables which are
selected for each events. The maximum cross correlation
matrix is generated by varying the time-lag between each
pair of variables for each abnormal condition data. It is
converted to a correlation color map. For the purpose
of visualization a hierarchical cluster tree is developed
in the form of a dendrogram as shown in Fig. 4 that
show the correlations among variables in a runaway re-
action. Finally it is required to choose one variable from
each redundant group for the purpose of minimizing the
monitored variables. Choosing the most suitable variable
may become a challenging task. Process knowledge as well
as sensor characteristics may be required to consider for
this purpose. In this case the variable with the highest
information gain among the redundant variables is chosen.
Table 4 presents the list of variables that can be allocated
to the groups corresponding to the individual events and
the highly correlated variables within different groups. It
also shows the final group selection for each of the events.
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Fig. 4. Correlation among variables for runaway event

4.4 Discussion

From the results, reactor vessel temperature (variable 2),
coolant utility flow rate (variable 6) and temperature
controller output (variable 11) are the main variables that
have most information regarding runaway reaction. It is
obvious that the main variable that can be used to detect
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a runaway is the reactor temperature. Main root cause for
the runaway reaction is the failure of the coolant system.
Variable 6 and 11 are directly related to the coolant system
failures.

Primary variable for flooding condition monitoring is level
of the reactor (Variable 1), therefore it should be a key
variable. The main root cause is the level controller failure
and feed flow valve failure. Variables that are directly
related to both failures are identified as the key variables
that are reactant feed flow rate (variable 8) and level
controller output (variable 10).

Low quality production can be quantified by reactant
concentration (variable 3) which is a key variable according
to the methodology. Incomplete reaction due to the low
temperature is the main reason for low quality production.
Present methodology has identified reactor vessel tem-
perature (variable 4) and temperature controller output
(variable 11) as other key variables to detect low quality
production.

The case study demonstrates that process knowledge jus-
tifies the selection of the key variables by the proposed
methodology.

4.5 Other grouping types

As mentioned in Section 2, there are other options to group
variables. Table 5 presents the selected group of variables
according to different grouping methods. As shown in
the table, different methods may result in significantly
different results.

Table 5. Results on group formation using
different methodologies.

Groups G1 G2 G3 G4 G5

Variable type 1 2,4,7,9 3 5,6,8 10,11

Plant/Unit 4,2,6,9,11 1,4 3,7,8 1,5,10

Correlation 2,3,4 6,9 7,11 5,8,10 1

Event base 2,6,11 1,8,10 3,4,11

5. CONCLUSION

Methodologies to allocate variables to groups for the pur-
pose of designing group-based alarm systems are discussed.
A procedure for selection of variables to form groups for an
event-based alarm system is detailed. The method uses the
information theory and the concept of mutual information
to select the key variables to allocate to a group. Correla-
tion analyses are then carried out to select the redundant
variables within a group. A case study using the example
of a CSTR is used to elaborate the proposed methodology.
Following the same procedure, variable selection to design
an event-based alarm system can be carried out for an en-
tire plant. Once variables are selected to form groups, one
alarm will be assigned to each group. Finally, a risk-based
approach will be used to estimate the risks associated with
the variables in a group and the overall risk associated with
a group will be evaluated. The alarm will be annunciated
if the overall risk is higher than a pre-chosen threshold.
This article outline the grouping methods; risk estimation,
overall risk evaluation, choice of thresholds and diagnosis
of alarms will be addressed in future works.
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