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Abstract: To ensure safe operation of technical processes, faults have to be reliably detected
and isolated to provide information for process maintenance, shutdown, or reconfiguration. Fault
detection and isolation can be achieved by invalidation of fault candidates, i.e. models of the
system in fault-free and faulty condition. In order to enhance the performance of fault detection
and isolation, so-called active approaches use input signals with the objective that the resulting
system outputs are consistent with at most one fault candidate. Guaranteeing or analyzing
robustness of active fault diagnosis with respect to input, output, and process uncertainties and
nonlinearities is challenging. This paper provides certificates of robustness of input sequences
with respect to the aforementioned uncertainties and nonlinearities. The certificates enable the
determination of input and output uncertainties for which unique fault diagnosis results can still
be guaranteed. In addition, a method is presented to select a minimal number of outputs that still
guarantee robust fault diagnosis, thus reducing the measurement setup and cost. The approach
employs nonlinear mixed-integer feasibility problems and a relaxation framework and does not
require the explicit computation of reachable sets. The approach is applicable to polynomial
discrete-time systems and is demonstrated for a numerical example.
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1. INTRODUCTION

Fault detection and isolation (FDI) is becoming increas-
ingly important in chemical plants due to growing require-
ments for safety and availability. FDI approaches have to
cope with uncertain measurements (Blanke et al., 2006),
which impede making conclusive statements. An impor-
tant class of FDI methods are so-called active approaches
in which auxiliary input signals are used to enhance the
FDI performance (Niemann and Poulsen, 2005; Unger-
mann et al., 2012; Campbell and Nikoukhah, 2004; Zhang,
1989). Active diagnosis becomes important if faults are not
detectable or isolable during nominal plant operation, in
particular, if the reachable output sets for different faults
and the nominal behavior overlap, or if the control actions
mask the effects of faults.

Finding input signals that ensure guaranteed FDI is chal-
lenging, because the signals should not influence the sys-
tem performance and safety. To this end, several ap-
proaches have been proposed, mainly focusing on excita-
tion design and robustness against uncertainties (Blanke
et al., 2006). Campbell and Nikoukhah (2004) present a
comprehensive methodology for the design of active in-
puts for FDI over finite and infinite intervals. Recently,
a computationally efficient approach for active and guar-
anteed FDI using zonotopes and optimization has been
proposed (Scott et al., 2013). However, with few exceptions
(Andjelkovic et al., 2008), most methods allow only for

linear models or analysis methods, or focus on discrete-
event systems (Sampath et al., 1998).

This paper considers (polynomial) nonlinear discrete-time
models and addresses robustness of fault diagnosis with
respect to process uncertainties and nonlinearities (Sec. 2).
The presented methods are based on set-based invalida-
tion methods employing convex relaxations (Rumschinski
et al., 2012; Savchenko et al., 2011, 2012; Streif et al.,
2012). These methods allow guaranteed statements on
model consistency and inconsistency in the presence of
uncertainties. Based on this framework, Sec. 3 derives
certificates that enable robustness checks of fault diagnosis
subject to disturbances and measurement uncertainties. In
contrast to most other works that employ set-based ap-
proaches (e.g. Savchenko et al. (2012)), the presented ap-
proach does not explicitly compute reachable ouput sets to
check diagnosability and uses a mixed-integer formulation
instead. Sec. 4 outlines different solutions to reduce the
problem size and the presented approach. An algorithm in
Sec. 5 reduces the number of required measurement out-
puts. The proposed greedy algorithm allows the selection
of a minimum number of outputs such that robust FDI is
still guaranteed and measurement cost is reduced. Sec. 6
gives an example illustrating the robustness certificates for
separating inputs. Overall, the results enable robustness
analysis of active fault diagnosis signals, redesign of the
inputs, and selection of outputs if robustness cannot be
certified.
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2. PROBLEM FORMULATION

Given a process subject to faults, consider explicit discrete-
time models of the nominal and faulty process of the form:

x(k+1) = g
(
x(k), u(k), δg(k), p, s

)
,

y(k) = h
(
x(k), u(k), p, s

)
.

(1)

The functions g and h represent the aggregated hybrid
dynamics and the model output, respectively. The func-
tions g and h are assumed to be polynomial. The time
index is k ∈ N and x(k) ∈ Rnx , p ∈ Rnp , δg(k) ∈ Rng ,
u(k) ∈ Rnu , and y(k) ∈ Rny are the system states, time-
invariant parameters, time-variant disturbances, inputs,
and outputs available for fault diagnosis, respectively.

The binary variables s ∈ {0, 1}ds ⊂ Zds model the
faults F := {f [0], f [1], . . . , f [nf ]}. The value s = s[i],
i ∈ J := {0, 1, . . . , nf} provides an appropriate unique
fault signature, where nf is the number of faults. A model

of the form (1) is called a fault candidate for s[i]. The fault
is denoted by the superscript [i] on the variables, where
i = 1, . . . , nf . The nominal fault-free case is denoted by

the superscript [0].

This paper considers different types of process and mea-
surement uncertainties. The model parameters p are uncer-
tain and described by a bounded set P ⊂ Rnp . Similarly,
time-varying process disturbances δg(k) are assumed to be
uncertain but bounded, δg(k) ∈ Dg ⊂ Rng ,∀k.

Active fault diagnosis relies on measurements and auxil-
iary input signals. We assume nt+1 output measurements
while the system is excited by a given input sequence
at consecutive time instances t0, t1, . . . , tnt

with corre-
sponding time-index set T := {0, 1, . . . , nt}. Measurement
uncertainties are modeled as

ŷi(k)− δy,i ≤ yi(k) ≤ ŷi(k) + δy,i,

i = 1, 2, . . . , ny, k ∈ T , (2)

where yi(k) is the true but unknown output value, ŷi(k)
is the measured output value, and δy ∈ Rny denotes the
measurement uncertainty.

Uncertainties in the input sequence û := {û(0), û(1),
. . . , û(nt)}, with û(k) ∈ Rnu , are modeled by

ûi(k)− δu,i ≤ ui(k) ≤ ûi(k) + δu,i,

i = 1, 2, . . . , nu, k ∈ T , (3)

where u(k) is the input of the model (1) and δu ∈ Rnu

is the time-independent input uncertainty. These uncer-
tanties may be due to actuator or controller uncertainty.
To shorten the notation, we write u ∈ U (respectively,
y ∈ Y) instead of (3) (respectively (2)).

Relaxation and Set-based Fault Diagnosis. This
paper uses the notion of consistency for fault diagnosis. For
this purpose, a feasibility problem is constructed to check
the consistency of a fault f [i] with measurement data (2)
and input data (3):

FP[i] :



find ξ[i]

s.t. x(k+1) =

g
(
x(k), u(k), δg(k), p, s[i]

)
, ∀k ∈ T \ nt

y(k) = h
(
x(k), u(k), p, s[i]

)
, ∀k ∈ T

x(k) ∈ X , y ∈ Y, u ∈ U , ∀k ∈ T
δg ∈ Dg, p ∈ P,

where the vector ξ[i]:=[x(0),..., x(nt), u(0),..., u(nt), δg(0),

..., δg(nt), y(0), . . . , y(nt), s
[i], p]> lumps all variables in

FP[i], and X denotes given convex sets bounding the states
for all k ∈ T . To simplify notation, the variable superscript
[i] is dropped in the constraints of FP[i], except for ξ[i].

Based on the FP[i] and its solution set, one can define:

Definition 1. (Consistent fault candidate). The fault

candidate f [i] is consistent, if the FP[i] admits a solution.

Model-based fault diagnosis can be subdivided into two
tasks. The first task, fault detection, is to determine if
the nominal case f [0] is consistent with the measurements,

i.e., if the associated FP[0] admits a solution for actual
measurements. The second task, fault isolation, is to
determine which fault candidates are consistent with the
measurements. Ideally, the aim is to achieve complete fault
isolation, which means that only one fault candidate is
uniquely and unambiguously determined.

Solving the tasks of fault detection and isolation is non-
trivial, especially for nonlinear and uncertain systems.
However, for the considered polynomial model class, the

feasibility problem FP[i] can be relaxed into a semidefinite
or linear program. With these convex relaxations, outer
approximations can be derived of the possibly nonconvex
solution set (see Fig. 1). The outer approximations are
guaranteed enclosures of all solutions consistent with the

FP[i]. The Lagrangian dual of the convex relaxation can
be used to check whether a consistent solution exists, i.e.,
checking whether the solution set is empty. The used weak
duality theorem and the relaxation process guarantee that,
if the objective of the dual program is unbounded, then

the feasibility problem FP[i] does not admit a solution.
Feasibility of the resulting relaxed problems can be checked
efficiently for moderate-size systems with available solvers.
Due to space limitations, readers are referred to (Rum-
schinski et al., 2010; Savchenko et al., 2011; Rumschinski
et al., 2012) for theoretical and numerical details of the set-
based framework, and to the free Matlab toolbox ADMIT
(Streif et al., 2012) that performs all of the reformulation
steps in the set-based framework.

Separating Inputs and Output Selection. The
aforementioned methods allow the guaranteed invalidation
of fault candidates. Diagnosability of a system requires
that the output sets of different fault models do not overlap
for all possible uncertainties at least at one measurement
time-point, see Fig. 1. Measurements will then allow one to
decide which fault has occurred. However, the faults may
not be detectable or isolable under all operating conditions
and inputs, particularly in a closed-loop system in which
a fault-tolerant controller compensates for the faults. To
overcome this, input sequences can be computed such that
any observed sequence of outputs is consistent with at
most one fault candidate in F . Such input sequences are
referred to as separating inputs, see Scott et al. (2013).
By definition, if a separating input is injected into the
system, then all faults in F are diagnosable from output
measurements provided that the actual fault scenario is in
F , that is, the reachable sets (for all possible uncertainties)

of the fault candidate models FP[i] are disjoint sets, see
Fig. 1 for an illustration.
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Fig. 1. Illustration of Problems 1 and 2. (a) The projection of the solution sets onto the output space (y1,y2) at time

tnt of the fault models FP[i] and FP[j] overlap, which then prevents unique diagnosis. (b) The application of a
separating input û leads to non-overlapping output sets that are separated (in a maximum norm sense) by at least
the measurement uncertainty (dashed box). The plot between (a) and (b) shows the set of separating input û in
which, for any input value within the uncertainty set, output set separation is guaranteed. (c) Measuring output
y1 is sufficient to isolate the faults, since the projection of the output sets onto subspace y1 results in disjoint sets.
Output y2 alone does not guarantee output separation due to overlapping sets in the projection.

Assume that a potential separating input sequence û has
been determined with one of the methods referenced in
Sec. 1. Such an input sequence could have been computed
either by means of structural analysis, optimization or
stochastic approaches, without guaranteed certificates for
robustness. To guarantee that the potential input sequence
allows the isolation of all faults regardless of model non-
linearities and uncertainties, consider the problem:

Problem 1. (Robustly separating inputs). Certify that
the uncertain input signal u ⊆ U robustly separates out-
puts within a finite number of nt time steps for the input
uncertainties δu, output uncertainties δy, and for process
uncertainties Dg, P, X .

In principle, one can measure all outputs of and also inject
all inputs to the system with the best accuracy that is
technically possible to achieve best fault diagnosis results.
This however is expensive in practical applications and not
desirable. This motivates the determination of those mea-
surement outputs and corresponding maximally tolerable
measurement uncertainty together with a minimal desired
input precision that allows unique fault detection and
isolation. The precision of the input signal is determined
within the solution of Problem 1; Problem 2 considers the
determination of a minimal set of measured outputs:

Problem 2. (Robust output selection). Determine a
subset of outputs O ⊆ {1, 2, . . . , ny} for a given accuracy
δy,j , j ∈ O that enables robust and guaranteed fault
detection and isolation despite input uncertainties δu and
process uncertainties Dg, P, X .

The next sections address the stated problems.

3. SEPARATING INPUTS

This section provides certificates for robust diagnosis de-
spite input uncertainties δu and output uncertainties δy.
The problem is approached by starting with the rigorous
requirement for diagnosability using an associated mixed-
integer formulation. While this approach is very flexible
and also allows the incorporation of qualitative fault de-
scriptions (see Rumschinski et al. (2012)), it also leads to
a computationally demanding problem. In the subsequent

Sec. 4, possible means for problem size reduction are dis-
cussed. Note that the presented approach does not require
the explicit computation of reachable sets as done e.g. in
Savchenko et al. (2012).

Constraints for Output Set Separation. As the
first step, define the requirements and constraints for
separation of the output sets of two faults f [i] and f [j]

with i, j ∈ J , i 6= j, leading to the feasibility problems

FP[i] and FP[j]. For unique fault diagnosis, every possible
pairwise comparison of two faults must have separated
output sets, at least at one time-point. This requires
to check a large number of different combinations. To
simplify the presentation, this section considers only a
single fault pair [i, j], with i, j ∈ J , i 6= j including
the nominal case. The extension to the full case where all
pairwise combinations are considered in a single feasibility

problem FP[J ] is straightforward. It can, however, lead
to a large and possibly intractable problem. Without loss
of generality, the full-case feasibility problem is tackled in
Sec. 4.

Since the outputs of the system are uncertain, the mini-

mum distance between the outputs y
[i]
l and y

[j]
l must be

larger than the output uncertainty 2δy,l, cf. (2). Define

σ
[i,j]
l (k) :=

(
y
[i]
l (k)− y[j]l (k)

)2 − (2δy,l)2, l ∈ O, (4)

and demand that σ
[i,j]
l (k) ≥ 0 at least for one k ∈ T

and one l ∈ O (cf. Fig. 1). For this purpose, reformulate
condition (4) by binary variables that are constrained to
be one if condition (4) holds:

β
[i,j]
l (k) ≥

σ
[i,j]
l (k)

M
and β

[i,j]
l (k) ≤

σ
[i,j]
l (k)

M
+ 1. (5)

The constant M is large enough to ensure −1 ≤ σ[i,j](k)
M ≤

1 for all admissible values of σ
[i,j]
l (k); M can be computed

by preprocessors using interval arithmetic (Streif et al.,

2012). The binary variable β
[i,j]
l (k) can take the values of 0

or 1 if σ
[i,j]
l (k) = 0. However, this does not restrict further

reasoning and can be avoided in practice by adding a small
enough number to either equation in (5), see references in
Rumschinski et al. (2012).
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The binary variables β
[i,j]
l (k) indicate whether the two

faults FP[i] and FP[j] have disjoint output sets with respect
to the measurement uncertainties at time index k (cf.
Fig. 1). The constraint∑

l∈O

∑
k∈T

β
[i,j]
l (k) ≥ 1, (6)

demands that output sets are disjoint at least at one time
instance k ∈ T .

Robustness Certificate for Separating Input Sets.
With the above equations, the feasibility problem

FP[i,j] :


find ξ[i], ξ[j], β

[i,j]
l (k), k ∈ T , l ∈ O

s.t. constraints in FP[i]

constraints in FP[j]

constraints (4), (5), (6),

combines the feasibility problems FP[i], FP[j], and the con-
straints for separated output sets. The combined feasibility
problem contains (nt + 1)ny additional binary variables
and 2(nt + 1)ny + 1 additional constraints due to the
requirements for output set separation. The input uncer-
tainty δu is assumed to satisfy (3), i.e., u ∈ U .

The feasibility problem FP[i,j] is used to check if there
exists any input sequence u ∈ U that separates the
outputs. However, the resulting problem is a nonlinear
mixed-integer problem that is challenging to solve. Convex
relaxations are applied as presented in the previous sec-
tion, with use of infeasibility certificates provided by the
Lagrangian dual. This allows the determination of outer
approximations of separating input sets. Also, if the feasi-

bility problem FP[i,j] can be shown to be inconsistent, then
it can be certified that no separating input exist. However,
the outer approximations do not ensure that all input
sequence parameterized by the set U guarantees output

set separation. Therefore we modify FP[i,j] to be able to
derive certificates that guarantee output set separation.

We approach the problem from the opposite direction and
determine the solution sets for which all outputs overlap
at all time-points, which introduces the constraint∑

l∈O

∑
k∈T

β
[i,j]
l (k) = 0, (7)

which is the inversion of constraint (6). If the solution
set can be proved to be empty, then the output sets
are disjoint at least at one time point. To determine
the solution set, the constraint (7) instead of (6) is

incorporated into the feasibility problem FP[i,j], to obtain:

F̂P
[i,j]

:


find ξ[i], ξ[j], β

[i,j]
l (k), k ∈ T , l ∈ O

s.t. constraints in FP[i]

constraints in FP[j]

constraints (4), (5), (7).

The solution set of F̂P
[i,j]

gives the input values for which
the outputs overlap at all time instances. If it can be

shown that F̂P
[i,j]

does not admit a solution for a given
input uncertainty U , then all inputs robustly separate

the outputs. As above, it is difficult to check that F̂P
[i,j]

admits a solution. However, convex linear relaxations can
be used to show that there exists no solution using the

Lagrangian dual. This analysis allows the statement of the
following theorem:

Theorem 1. (Certificate for separation of output sets).

If the solution set of the convex relaxation of F̂P
[i,j]

is
empty, then it is guaranteed that any realization u ∈ U
leads to separated outputs y ∈ Y at least for one k ∈ T
and one l ∈ O.

Proof: Follows directly from the construction of F̂P
[i,j]

.

Note that constraints on the inputs or states can be

added straightforwardly to F̂P
[i,j]

. However, to guarantee
robustness with respect to these constraints, constraints
have to be included in a similar manner as above in (4)–
(7).

Thm. 1 enables one to check for robustness of a precom-
puted input sequence with uncertainties δu with respect to
process uncertainties and nonlinearities. The computation-
ally demanding determination of reachable output sets to
analyze diagnosability is avoided by using a single mixed-
integer problem. It is also possible to search for a maximal
input uncertainty for which output set separation can be
guaranteed by iteratively and heuristically increasing δu,

to reformulate FP[i,j] as an optimization that minimizes
an affine function of δu, or to test different uncertainty
combinations as demonstrated for the example in Sec. 6.

4. PROBLEM SIZE REDUCTION

The presented mixed-integer formulation can account for
the combinatorial problem of comparison of different fault
outputs at different time-steps and avoids the explicit
computation of reachable sets by solving a single feasibility
problem. In addition, it allows for the incorporation of
qualitative fault descriptions (Rumschinski et al., 2012).
However, it might suffer from a large number of binary
variables. This section discusses two solutions to reduce
the problem size even in the case when many faults are
considered.

Reformulation and simplifications. Constraint (7)

imposes all β
[i,j]
l (k) to be zero, which allows to simplify

Eq. (5). This yields a computationally simpler problem
with fewer binary variables. Note that this can result in
a simple feasibility problem if the FP does not contain
integer variables.

Reduction for more than two faults. For unique
FDI, all faults in F have to be considered. One way to do
this is to compare all faults in a pairwise manner using

Thm. 1, which would require solving

(
nf + 1

2

)
problems

F̂P
[i,j]

. An alternative way is to add equations for all faults
in F and the corresponding pairwise comparisons to obtain

a single feasibility problem that comprises all faults, FP[J ].
Even for small models, however, this might lead to an
intractable problem.

Here a different approach is proposed that considers all
possible fault combinations at once with only slight in-
crease of the problem size compared to the case with
only two faults [i, j]. The basic idea is to consider the
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combined feasibility problem F̂P
[i,j]

as given above, but
without fixing the fault signature variables s[i] and s[j] to
their respective values. Rather, we keep the (binary) fault
signature variables as decision variables and search for a
pair of fault signatures that violate the output separation
constraints. If no solution is found, then Thm. 1 certifies
that the output sets are separated.

To derive the required constraints on s[i] and s[j], note that
s[i] and s[j] are not fixed, but are rather decision variables.
Demand that
ds∑
l=1

s
[i]
l = 1,

ds∑
l=1

s
[j]
l = 1, s

[i]
l + s

[j]
l ≤ 1, l = 1, 2, . . . , ds.

(8)
The first two equations in (8) imply that each fault is
represented by a single binary variable, which is mild
assumption and is often the case or can be achieved
by introducing additional binary variables and suitable
rewriting of (1). The last constraint in (8) ensures that
no two faults are the same.

Eq. (8) introduce ds + 2 additional integral constraints
that are special ordered sets of type one, which are usually
dealt with efficiently by mixed-integer solvers during the
branch-and-bound method. Eq. (8) can be used to build a

feasibility problem FP[J ] that combines all faults in f ∈ F
simultaneously. Thm. 1 can be used to certify that all
inputs parameterized from the set U robustly separate the
outputs of all faults.

5. OUTPUT SELECTION

It is intuitively clear that more outputs and more accu-
rate measurements can improve the performance of FDI.
However, accurate measurements of all available outputs
might not be necessary for unique FDI. To reduce costs,
it is of interest to use a minimum number of sensors such
that faults can still be robustly detected and isolated. To
this end, Problem 2 is addressed next.

Define the cost ci ∈ R+, i = 1, . . . , ny, for measuring the
output yi at the given accuracy δy,l. Then the following
greedy algorithm can be used to select a minimum number
of outputs for which the cost is locally minimized.

Algorithm 1. (Output selection).

Input: output index set O
cost vector c ∈ Rny

Returns: selected output index set O which minimizes cost

SORT O w.r.t. descending cost c
WHILE O is not empty

FOR i = 1 TO LENGTH(O)
SET O∗ ← O
REMOVE ith elements from O∗

IF Lagrangian dual of F̂P
[i,j]

with selected outputs O∗

is unbounded
SET O ← O∗

BREAK for-loop
END
IF i = LENGTH(O)

BREAK while-loop
END

END
END

Algorithm 1 returns a subset of the outputs O for which
robust FDI is guaranteed, and can be extended straight-
forwardly to incorporate more than two faults as described
in the previous section.

6. EXAMPLE

Due space limitations, the approach is demonstrated for
an academic example. Consider a nonlinear discrete-time
system with three fault candidates given by

f [0] : x(k+1) = u(k) +
(
p1x

2(k)− x(k)
)
p2, (9)

f [1] : x(k+1) = u(k) +
(
p1x

2(k)− x(k)
)

(p2 + 0.5), (10)

f [2] : x(k+1) = (u(k) + 0.5) +
(
p1x

2(k)− x(k)
)
p2, (11)

where f [0] is the nominal case, f [1] is a sensor-offset fault,
and f [2] is an actuator-gain fault. The parameters p1, p2
and the initial condition x0 are unknown but bounded in

P = {0.098 ≤ p1 ≤ 0.102, 0.495 ≤ p2 ≤ 0.505} ,
X = {0.95 ≤ x(0) ≤ 1.05} .

Consider that an input sequence, leading to disjoint out-
puts is known for the arithmetic mean values of the pa-
rameters and initial conditions (i.e., p1 = 0.1, p2 = 0.5,
and x0 = 1). In Fig. 2, the considered sequence and ap-
propriate output sequences for the mean-value case of the
fault candidates (9)–(11) are shown. The aim is to certify
robustness of output set separation with respect to the
uncertainties of the parameters and initial condition, and
to obtain suitable measurement and input uncertainties.

y(k)

u(k)

0

1

2

0

4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

k

k

f [0] f [1] f [2]

Fig. 2. Input and output signals of f [0,1,2] for the arith-
metic mean of the parameters and initial conditions.

The consistency approach in Sec. 3 and Thm. 1 incor-
porating the uncertainties X , U , δu, and δy is employed
to determine if robust diagnosis can be certified for a
combination of input and output uncertainties. The results
were obtained with the Matlab toolbox ADMIT (Streif
et al., 2012) using the mixed-integer solver CPLEX.

The results are summarized in Table 1, where the consid-
ered input and output uncertainties are shown together
with the information if a certificate for the robustness of
diagnosis can be given (X) or not (X).

Fig. 3 provides more insight on the certificates for robust
diagnosis by showing the outer boundings of the reachable
outputs for (a) δu = 0.1, δy = 0.1 (not certified) and (b)
δu = 0.05, δy = 0.1 (certified) from Tab. 1. Fig. 3 also
shows measurements that were randomly sampled from
a uniform distribution with width δy centered at values
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PPPPPPδu
δy 0.005 0.01 0.05 0.1

0.05 X X X X
0.10 X X X X
0.20 X X X X
0.30 X X X X

Table 1. Certified (X) and not certified (X)
robustness for diagnosis.

obtained from a Monte Carlo simulation, which indicates
that the outer boundings of y(k) are quite tight in this
problem. The time bases of the fault candidates are slightly
shifted for plotting purposes. Note here that the reachable
sets are shown for ease of presentation here. However,
their time-consuming computation is not required for the
presented analysis.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
k

k

f [0] f [1]

f [0] f [1]

y(k)

y(k)

0

4

8

0

4

8

(b)

(a)

Fig. 3. Boundaries on output measurements with 20 sam-
ples of a Monte Carlo simulation with f [0] and f [1]

for: (a) a non-certified case (δu = 0.1, δy = 0.1) and
(b) a certified case (δu = 0.05, δy = 0.1).

Enlarged samples for k = 2 are shown in Fig. 3 that clarify
whether the output sets of the nominal and faulty case
can be separated. The output sets overlap in Case a, but
not in Case b. It is evident that the Case a leads to a

feasible solution for the inverted feasibility problem F̂P
[i,j]

.
In contrast, a certificate for robust diagnosis can be given
in Case b.

7. CONCLUSIONS

While active FDI methods for linear systems are well
established and computationally efficient (see e.g. Scott
et al. (2013), Campbell and Nikoukhah (2004), and ref-
erences within), it is not necessarily guaranteed that the
obtained input sequences are robust with respect to pro-
cess uncertainties and nonlinearities. This paper presents a
method that can be applied directly to polynomial systems
with defined uncertainties to certify robustness of fault
separation with respect to nonlinearities or uncertainties
for given input sequences. The approach also enables the
redesign of active FDI. If robustness cannot be certified,
then the engineer can choose different input sequences, im-
prove the precision of measurement or actuation devices,
or refine the fault or process models.

The certificates can also be used in a heuristic search for
separating input sets that guarantee fault diagnosis, by us-

ing Monte Carlo sampling to determine separating inputs
and to then expand the uncertainties locally around the
sample. Furthermore, the determined uncertainty bounds
can be used as constraints in nonlinear optimization to
choose the best input sequences that minimize input en-
ergy or cost, while diagnosability is still guaranteed.

The presented approach can be computationally costly
and may not be applicable in all real-time applications.
However, in many applications, only fault detection is
performed online, and fault isolation is done offline. When
faults are suspected, separating inputs can then be de-
signed offline for diagnosis. Then, enough time and com-
putational power is available to apply the results of this
work and determine robustly separating inputs.
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