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Abstract: The moving horizon estimator (MHE) formulation utilizes a window of measure-
ments to compute the estimates of the states in that particular window. This approach leads
to smoothing of the state estimates included in the window, since future information is used
to compute the same. However, the effect of smoothing, in the MHE algorithm, on the state
estimates has not been studied in the literature. In this work the performance of the MHE is
compared with recursive Bayesian state estimators (such as UKF, EnKF) to study the effect of
the moving window of the past data on the quality of state estimates, via an application on a
benchmark pH simulation case study. The simulations are carried out for two scenarios– the ideal
case and the case with a parametric model-plant mismatch. The results obtained indicate that
the use of MHE results in improved state estimates when compared to the recursive Bayesian
state estimators, but does not help compensate for model-plant-mismatch.

1. INTRODUCTION

Bayesian state estimation, using nonlinear dynamic mech-
anistic models, is an important tool in various applica-
tions of systems engineering to obtain the estimates of
the unmeasured or infrequently measured process states
and parameters. The Bayesian approach attempts to re-
construct the posterior distribution of the states, using
Bayes’ rule, based on the entire data available in the past.
It is, however, well-known that the Bayesian expressions
for the posterior probability density function (pdf ) of the
states are, in general, analytically intractable. Hence, var-
ious filtering techniques have been developed which yield
an approximate and computationally tractable suboptimal
solution to the Bayesian estimation problem.

Bayesian state estimation algorithms can be broadly di-
vided into two categories– a) Those which obtain an ap-
proximation of the conditional pdf of the posterior of the
states and b) those which assume a suitable form for the
pdf of the prior and convert the state estimation problem
directly into an optimisation problem (Patwardhan et al.,
2012). The approximation of the conditional pdf of the
states can be obtained through various methods, such
as Taylor series approximation (Sorenson, 1985), statis-
tical linearisation (Gelb, 1974) or through Monte Carlo
methods (Gordon et al., 1993; Evensen, 2007). On the
other hand, optimisation based formulations have been
specifically developed for estimation of states in the pres-
ence of constraints or bounds (Patwardhan et al., 2012).
The moving horizon estimator (MHE) (Rao et al., 2001)
is an optimisation-based approach to compute the state
estimates using a moving window of the past data. Other
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examples are the constrained EKF (Vachhani et al., 2005),
constrained UKF (Vachhani et al., 2006) and the con-
strained EnKF (Prakash et al., 2010), in which the mea-
surement update step is formulated as a constrained opti-
misation problem in order to obtain state estimates that
are consistent with the constraints. The main difference is
that the MHE computes the state estimates for a window
of time, whereas the other constrained estimators compute
the state estimates only at the current sampling instant.
Thus, the moving window formulation enables the MHE to
use future measurements to compute the state estimates
at the beginning of the window.

1.1 Comparison of Bayesian state estimators and MHE

A brief description about the properties of recursive
Bayesian state estimators and the MHE is given in this
section. Particularly the contrasting features of both types
of state estimators are described. The unscented Kalman
filter (UKF) (Julier and Uhlmann, 2004) belongs to a class
of filters based on statistical linearisation for approximat-
ing the nonlinear state and measurement equations. These
filters are based on the observation that the moments of
the distribution can be better approximated using sam-
ples, rather than Taylor series approximation of the non-
linear function (Patwardhan et al., 2012). The UKF uses
deterministically drawn samples, known as ‘sigma points’,
to approximate the distribution of the states as a Gaussian
distribution. On the other hand, the ensemble Kalman
filter (EnKF) (Evensen, 2007) is a Monte Carlo sampling
based state estimator, which is based on the premise that
the statistical properties of the states can be sufficiently
described using their first two moments, the mean and
covariance, which are obtained as sample statistics. The
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main difference between the UKF and EnKF is that while
the UKF assumes that the pdf of the posterior of the
states can be adequately approximated as a Gaussian
distribution, the EnKF does not make any assumption
about the nature of the pdf of the posterior of the states.

On the other hand, the MHE formulates a constrained
optimisation problem over a fixed-size window of past
sampling instants to compute the state estimates in that
window. Hence, the MHE not only yields the state esti-
mates for the current sampling instant, but also for the
previous sampling instants upto the length of the moving
window. One of the principle advantages of the MHE
formulation is that it systematically incorporates algebraic
constraints and bounds on the states. The constrained
optimisation problem is formulated using the information
of the states available at the beginning of the moving
window, termed as the ‘arrival cost’. The arrival cost can
be interpreted as the conditional pdf of the states obtained
using the data available upto the beginning of the moving
window. However, the computation of the arrival cost is
an open problem in the literature. For general nonlinear
systems, an analytical approach to compute the arrival
cost is not available. Therefore, one approach suggested is
to ignore the effect of the arrival cost by assuming it to be
a constant. This, however, leads to incorrect propagation
of the pdf of the states and hence a large window is
required to suppress the error introduced by this approach.
The down side of this approach is that it significantly
increases the computation complexity and costs involved
in obtaining the state estimates. Therefore, various subop-
timal approximations using Bayesian estimators, such as
EKF (Rao and Rawlings, 2002), UKF (Qu and Hahn, 2009;
Ungarala, 2009), C-EnKF (López-Negrete et al., 2011)
and constrained particle filters (Lang et al., 2007; López-
Negrete et al., 2011), have been proposed in the literature
to approximate the arrival cost. Accurate computation of
the arrival cost helps in significantly reducing the length
of the moving window needed to generate reasonably ac-
curate state estimates (López-Negrete et al., 2011).

In contrast to recursive Bayesian state estimators, the
MHE uses a window of measurements to compute the
state estimates. The MHE formulation, therefore, uses
the measurements at the current sampling instant to
compute the state estimates at the previous sampling
instants. This results in smoothing of the states at the
previous sampling instants (Rao et al., 2001), particularly
of those at the beginning of the moving window. While
the state estimates at the current instant are filtered
estimates, they are computed using the smoothed state
estimates obtained at the previous sampling instants. It
has been shown that smoothing yields more accurate
values of the posterior of the states because of using
the future information of the process to compute the
state distributions (Gelb, 1974). The disadvantage of most
smoothing algorithms (Rauch et al., 1965; Sarkka, 2008)
is that they cannot be used for online correction of the
states based on future measurements. On the other hand,
the advantage of the MHE formulation is that it can be
deployed for online state estimation, as well as utilise the
moving window for smoothing of the states.

The effectiveness of the MHE for state estimation of
constrained and bounded systems has been widely docu-

mented in state estimation literature. However, the impact
of smoothing, due to the use of a moving horizon of
measurements, on the quality of state estimates has not
been investigated in state estimation literature. Further,
there is no work reported on the effect of the moving
window of measurements on state estimates in the presence
of model-plant mismatch. In this work, the performance of
MHE is compared with recursive nonlinear Bayesian state
estimators, specifically the UKF and EnKF. Of particular
interest in this study, is the effect of smoothing as the
window size changes and its impact on the quality of the
state estimates in the following scenarios: a) no model-
plant mismatch (MPM) and b) in presence of MPM. It is a
widely reported fact in the literature that the performance
of the MHE is dependent on how accurate is the compu-
tation of the arrival cost. Hence, to minimise the influence
of arrival cost on the effect of smoothing, the arrival cost
is approximated using either the UKF or EnKF. The
performance of the state estimators is compared on the
pH balancing CSTR system (Romanenko et al., 2004),
which is well-known for exhibiting highly nonlinear state
dynamics and a nonlinear measurement equation.

The rest of the paper is organised as follows. Section 2
describes the process model used for simulations and
state estimation. The state estimation algorithms that are
evaluated in this work are described in detail in Section 3.
The simulation case study on which these approaches
are evaluated and the results obtained are discussed in
Section 4. Finally, the conclusions drawn from this study
are detailed in Section 5.

2. PROCESS MODEL

The model for a continuous nonlinear process can be
described by the following differential equations

dx

dt
= f (x,u,θ, t) (1)

y (t) = h (x, t) (2)

where, x ∈ R
n represents the process states, u ∈ R

m

represents the manipulated inputs, θ ∈ R
p represents

the process parameters and y ∈ R
r represents the mea-

surements. For the purpose of simulations and modelling
for state estimation, a discrete-time approximation of the
process is obtained as follows

xk = xk−1 +

∫ kT

(k−1)T

f [x(τ),u(τ)] dτ +wk (3)

=F (xk−1,uk−1) +wk−1 (4)

yk = h (xk) + vk (5)

where, wk−1 ∈ R
n represents the random unmeasured

process disturbances modelled as additive in the process
dynamics and vk ∈ R

r represents the measurement noise.
The pdf s of these random disturbances are assumed to
be known. It is also assumed that wk−1 and vk are
independent and mutually uncorrelated. Further, it is
assumed that the measurements are sampled at regular
time intervals, which are integral multiples (k ∈ I) of
the sampling time T . The manipulated inputs uk−1 are
held piece-wise constant between two sampling intervals
(k − 1) ≤ t < k.
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3. STATE ESTIMATION ALGORITHMS

3.1 Recursive Bayesian state estimation

Recursive Bayesian state estimation algorithms approxi-
mate the conditional pdf of the posterior of the states
using the measurements available upto the corresponding
sampling instant. In this work, state estimation algorithms
that approximate the pdf of the posterior based on sta-
tistical linearisation techniques are considered for state
estimation. These state estimators are based on the obser-
vation that better approximations of the pdf of the states
can be obtained using samples rather than Taylor series
linearisation (Patwardhan et al., 2012). The unscented
Kalman filter (UKF) (Julier and Uhlmann, 2004) and the
ensemble Kalman filter (EnKF) (Evensen, 2007) are the
two widely used filters, based on statistical linearisation.
A brief and compact description of the UKF and EnKF
algorithms is provided in this section.

Np samples of the states, process disturbances and mea-

surement noise are drawn at the (k − 1)
th

sampling instant
as follows

Xk−1 =
{

x̂
(1)
k−1|k−1, x̂

(2)
k−1|k−1, . . . , x̂

(Np)

k−1|k−1

}

(6)

Wk−1 =
{

w
(1)
k−1,w

(2)
k−1, . . . ,w

(Np)
k−1

}

(7)

Vk =
{

v
(1)
k ,v

(2)
k , . . . ,v

(Np)
k

}

(8)

These samples can either be drawn deterministically, as
in the UKF algorithm or by drawing them randomly
from their given pdf, as in the EnKF algorithm. Every
particle, (i = 1, 2, . . . , Np), is propagated through the state
dynamics and measurement equations

x̂
(i)
k|k−1 =F

(

x̂
(i)
k−1|k−1,uk−1

)

+w
(i)
k−1 (9)

ŷ
(i)
k|k−1 = h

(

x̂
(i)
k|k−1

)

+ v
(i)
k (10)

The weighted mean of the predicted states and measure-
ment particles is obtained as follows

x̄k|k−1 =

Np
∑

i=1

ωix̂
(i)
k|k−1 (11)

ȳk|k−1 =

Np
∑

i=1

ωiŷ
(i)
k|k−1 (12)

where, ωi are suitable weights such that
∑Np

i=1 ωi = 1. The
UKF assigns a higher weight to the mean, compared to
the rest of the sigma points

ω1 =
κ

n+ κ
; ωi =

1

2 (n+ κ)
i = 2, . . . , Np (13)

where, ω1 is the weight assigned to the mean, while ωi is
the weight assigned to the rest of the sigma points. The
number of sigma points are fixed at Np = 2 (2n+ r) + 1.
Thus, since Np is fixed, κ is a tuning parameter that
governs the spread of the sigma points around the mean
and the weights associated with the sigma points. On
the other hand, the EnKF assigns an equal weight to
all particles, ωi = 1

Np
(∀ i = 1, 2, . . . , Np). Thus, Np is a

tuning parameter for the EnKF.

The cross-covariance of states and measurement errors and
innovations covariance is obtained as follows

ε
(i)
k|k−1 = x̂

(i)
k|k−1 − x̄k|k−1 (14)

e
(i)
k = ŷ

(i)
k|k−1 − ȳk|k−1 (15)

Pxe,k =

Np
∑

i=1

ωi

[

ε
(i)
k|k−1

] [

e
(i)
k

]T

(16)

Pee,k =

Np
∑

i=1

ωi

[

e
(i)
k

] [

e
(i)
k

]T

(17)

For the update step, the Kalman gain and the updated
particles of the states are computed as follows

Kk =Pxe,kP
−1
ee,k (18)

x̂
(i)
k|k = x̂

(i)
k|k−1 +Kk

[

yk − h
(

x̂
(i)
k|k−1

)]

(19)

The updated estimate of the states is obtained as a
weighted mean of the updated particles

x̄k|k =

Np
∑

i=1

ωix̂
(i)
k|k (20)

It may be noted that in the UKF algorithm, samples of the
states are drawn from their posterior at every sampling
instant using their filtered mean and the corresponding
covariance. However, in the EnKF algorithm, the filtered
particles are propagated to the next sampling instant
without any re-sampling.

3.2 Moving Horizon Estimator

The moving horizon estimator (MHE) obtains the state
estimates as a solution to the optimisation problem that
maximises the following pdf of the past trajectory of the
states over a fixed window of measurements

p
(

Xk−1
k−Nh

∣

∣Yk
0

)

(21)

where, Xk−1
k−Nh

= {xk−Nh
, . . . ,xk−1} and Nh denotes

the length of the window. Under the assumptions that
the states follow a first order Markov process and the
modelling assumptions described in Sec. 2, the MHE is
formulated to solve the following problem

{

x̂j|k

}k

j=k−Nh
= arg min

X
k−1

k−Nh

Pk−Nh
+

k−1
∑

l=k−Nh

‖ wl ‖
2
Q−1

+

k
∑

l=k−Nh+1

‖ el ‖
2
R−1

(22)

s.t.

xl+1 =F (xl,ul) +wl (23)

el = yl − h (xl) (24)

xL ≤ xl ≤ xH (25)

The term Pk−Nh
is the ‘arrival cost’ , which sums up the

effect of past observations on the state xk−Nh
(Rao and

Rawlings, 2002) and is given by

Pk−Nh
= − log [p (xk−Nh

|Y0:k−Nh
)] (26)
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For the general class of nonlinear systems it is difficult
to obtain the negative of the log–likelihood function of
the states. Hence, the arrival cost is approximated as the
square of the weighted two–norm of the estimation error at
the beginning of the window (López-Negrete et al., 2011)

Pk−Nh
≈

∥

∥xk−Nh
− x̂k−Nh|k−Nh

∥

∥

2

P
−1

k−Nh|k−Nh

(27)

The above approximation can be obtained using recursive
Bayesian state estimators such as the EKF, UKF or
EnKF, which yield the first two moments of the posterior
distribution used in Eq. 27. It may be noted that the
above formulation of the MHE utilises the moments of
the posterior of the states distributions to approximate the
arrival cost. This, consequently yields the filtered estimates
of the states at the current time instant. In this work it is
proposed to use the UKF and EnKF to approximate the
arrival cost in the MHE formulation.

4. THE pH PROBLEM

The pH system Romanenko et al. (2004) consists of a
CSTR in which a neutralisation reaction between a strong
acid (HA) and strong base (BOH) occurs in the presence
of a buffer agent (BX). The process is described by the
following equations

dx1

dt
=

qA

V
(x1,in − x1)−

1

V
x1qB (28)

dx2

dt
=−

qA

V
x2 +

1

V
(x2,in − x2) qB (29)

dx3

dt
=−

qA

V
x3 +

1

V
(x3,in − x3) qB (30)

ξ3 +

(

Kw

Kx
+ x3 + x2 − x1

)

ξ2 +

(x2 − x1 −Kx)
Kw

Kx
ξ −

K2
w

Kx
= 0 (31)

where x1, x2, x3 refer to the concentrations of acid (A),
base (B) and buffer agent (X) respectively. qA is acid flow
rate and qB is the base flow rate. Kx and Kw are the
dissociation constants of the buffer and water respectively
and ξ = 10−pH . The value of the pH, which is the
measured variable, is derived as follows

a= 1; b =
Kw

Kx
+ x3 + x2 − x1; g = −

3b

a

c= (x2 − x1 −Kx)
Kw

Kx
; z =

c

3a

d=−
K2

w

Kx
; q = g3 +

bc− 3ad

6a2

pH =− log10

{

[

q +

√

q2 + (z − g2)
3

]1/3

+

[

q −

√

q2 + (z − g2)
3

]1/3

+ g

}

(32)

The process parameters taken from the work by Roma-
nenko et al. (2004) are given in Table 1. The operating
conditions are chosen such that the system exhibits a

highly nonlinear behaviour in the given region. Random
disturbances in the process were simulated by adding a
zero-mean Gaussian white noise signal in the state dy-
namics. To simulate the effect of measurement noise, a
zero-mean Gaussian white noise was added to the pH
measurement signal. The values of the noise covariance
matrices and operating conditions are given in Table 2. A
sampling time of T = 5 s was chosen for the process.

Table 1. pH process: process and model param-
eters

Parameter Process Model (MPM)

CA,i 1.2× 10−3 1.2× 10−3

CB,i 2.0× 10−3 2.0× 10−3

CX,i 1.2× 10−3 1.2× 10−3

V 2.5 2.5
Kw 1.0× 10−14 1.0× 10−14

Kx 1.0× 10−7
2 .0 × 10

−7

Table 2. pH process: operating conditions

Variable Operating Value Unit

u
[

1 0.265
]

l/min

x0 10−4
×

[

9.30 5.40 4.30
]

mol/l

x̂0 10−4
×

[

9.76 5.67 4.52
]

mol/l

pH (true) 5 –

Q 10−11
×

[

2 2 2
]

mol2/l2

R 1× 10−4 –

4.1 Results

The comparison of the state estimators was carried out
for two scenarios: a) state estimation with no model-
plant mismatch (MPM) and b) state estimation with
a parametric MPM. For each scenario, the simulations
were carried out for 3000 s (600 sampling instants). The
system was excited by subjecting the acid (qA) and base
(qB) flow rates to a pseudo random binary sequence
(PRBS) of inputs. The amplitude of the input in qA was
0.1 l/min with switching frequency [0 0.09 ωN ], where
ωN is the Nyquist frequency of the process. Similarly,
the amplitude of the input in qB was 0.026 l/min with
switching frequency [0 0.13 ωN ]. The root mean square
error (RMSE) of the state estimates is used as a criterion
for comparing the performance of the state estimators

RMSE =

√

√

√

√

1

N

N
∑

j=1

(

xi,j − x̄i,j|j

)2
(33)

where, N is the number of samples of the data and
the subscript i refers to the ith element of the state
vector. An average value of the RMSE obtained through
25 Monte Carlo simulations of the process, with every
state estimator, is reported in the results. For each of the
runs, the initial conditions of the process and the state
estimator along with the input changes are identical, while
the realizations of the process and measurement noise are
different.

The performance of the state estimators, namely the
UKF, EnKF and the MHE are first compared for the
scenario with no MPM. The process parameters are given
in Table 1, with the model parameters being identical
to those of the process. First, the performances of the
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UKF and EnKF are evaluated for different values of their
respective tuning parameters. This is done with a twofold
objective. At first, it compares the performance of the two
recursive Bayesian state estimators. Second, this exercise
helps in obtaining the tuning parameters of the UKF
and EnKF that provide reasonably good performance in
terms of the RMSE values of the state estimates (Eq. 33),
which can be further used in the MHE algorithm for
approximating the arrival cost.

For the UKF, κ is a tuning parameter (Eq. 13). The
performance of the UKF was evaluated for different values
of κ and the results are presented in Table 3. From the
table, it can be seen that there is very little change in
the RMSE of the state estimates for different values of κ.
This indicates that for this particular example, the value
of κ does not have a significant effect on the performance
of the UKF. For the EnKF algorithm, the number of
particles (Np) used to approximate the distributions is a
tuning parameter. The RMSE values obtained for various
values of Np are reported in Table 3. As expected, the
performance of the EnKF improves as Np is increased.
This is because a larger number of particles helps in
better approximation of the pdf of the posterior. But,
an increase in Np results in a corresponding increase in
computational time and costs and beyond Np = 150, there
is not much noticeable improvement in the performance of
the EnKF, when compared to a corresponding increase in
computational time. The comparison of the two recursive
Bayesian state estimators shows that the RMSE of the
state estimates obtained using the UKF are lower by at
least 5.5 % than those obtained using the EnKF. Thus, for
the pH simulation problem, the UKF performs better than
the EnKF. State estimation with the MHE was first carried
out by using the UKF (MHE-UKF) for approximating the
arrival cost and then using the EnKF (MHE-EnKF) for
the same. The simulation results using the UKF for state
estimation indicate that the tuning parameter κ does not
have a significant impact on the performance of the state
estimator. Hence, while any value of κ can be used, a
value of κ = 3 was chosen for the MHE-UKF. For the
EnKF, there is an improvement in the performance of the
estimator as Np increases. Hence, Np = 150 was chosen for
the MHE-EnKF as there is no significant improvement in
the EnKF performance for Np > 150 compared to the
increase in computation time. The RMSE of the state
estimates using the MHE-UKF and the MHE-EnKF were
obtained for different lengths of the moving horizon (Nh).
The RMSE values of the state estimates obtained using
the MHE-UKF and MHE-EnKF for various values of Nh

are reported in Table 3. The performance of the MHE
is compared against that of the state estimator used to
approximate the arrival cost. Thus, the performance of
the MHE-UKF is compared against that of the UKF and
the performance of the MHE-EnKF is compared against
the EnKF. In both cases the RMSE values of the state
estimates reduce as the length of the window is increased.
For Nh = 8, the RMSE of the state estimates obtained
using MHE-UKF are lower by approximately 4-8 % than
those obtained using the UKF. Similarly, the RMSE values
obtained using MHE-EnKF are lower by approximately 3-
9 % than those obtained using the EnKF. The reduction
in the RMSE values is principally due to the use of the
moving window of measurements. The moving window of

Table 3. RMSE of state estimates: Comparison
of state estimator performance for no MPM

case

Parameter x1 × 104 x2 × 104 x3 × 104

κ UKF

2 0.1459 0.1365 0.1505
3 0.1407 0.1357 0.1428
4 0.1423 0.1317 0.1511
5 0.1371 0.1368 0.1537

Nh MHE-UKF (κ = 3)

2 0.1409 0.1341 0.1411
4 0.1380 0.1321 0.1344
8 0.1374 0.1294 0.1285

Np EnKF

30 0.1760 0.1650 0.1771
50 0.1691 0.1567 0.1703
80 0.1685 0.1607 0.1638
150 0.1583 0.1450 0.1601
200 0.1560 0.1445 0.1544

Nh MHE-EnKF (Np = 150)

2 0.1494 0.1486 0.1602
4 0.1465 0.1451 0.1575
8 0.1436 0.1445 0.1550

measurements improves the approximation of the posterior
of the states, thereby reducing the error in the state
estimates.

A parametric mismatch in the value of the buffer dissoci-
ation constant (Kx) was introduced to create the scenario
of model-plant mismatch (MPM). The model parameters
for this scenario are given in Table 1. The simulations
that were carried out for the no-MPM case were repeated
for this scenario, with identical initial conditions of the
estimators and the process (Table 2). The input excitation
used was also the same as that used previously. The aver-
age RMSE values of the state estimates are obtained for
each state estimator through 25 Monte Carlo simulations
of the process. The RMSE values of the state estimates,
obtained for various values of the tuning parameters of
each state estimator are given in Table 4. Simulation
results obtained using the UKF and EnKF confirm the fact
that the performance of the state estimators is dependent
on the accuracy of the model used. When compared to
the RMSE values of the states in Table 3, it can be
seen that due to MPM, the performance of the UKF is
worse by approximately 8-30 %, while that of the EnKF is
worse by approximately 10-18 %. As in the ideal case, the
simulations for the MHE are repeated using the UKF and
EnKF for approximating the arrival cost. The RMSE val-
ues of the state estimates obtained for the MHE-UKF and
MHE-EnKF for different lengths of the moving window are
given in Table 4. From the table it can be seen that the
RMSE values obtained using the MHE-UKF are lower by
approximately 4-7 % than those obtained using the UKF
and those of the MHE-EnKF are lower by approximately
4-8 % than those obtained using the EnKF. From Tables 3
and 4 it can be seen that the RMSE values of the state
estimates obtained using the MHE-UKF and MHE-EnKF
are higher if there is a MPM. These results indicate that
while the use of the MHE improves the approximation of
the posterior of the states, it does not help in compensating
for the errors introduced due to MPM.
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Table 4. RMSE of state estimates: Comparison
of state estimator performance for MPM case

Parameter x1 × 104 x2 × 104 x3 × 104

κ UKF

2 0.2187 0.1785 0.1634
3 0.2165 0.1862 0.1658
4 0.2154 0.1723 0.1745
5 0.2167 0.1675 0.1664

Nh MHE-UKF (κ = 3)

2 0.2073 0.1836 0.1614
4 0.2119 0.1812 0.1531
8 0.2105 0.1778 0.1490

Np EnKF

30 0.2550 0.1893 0.1961
50 0.2326 0.1934 0.1748
80 0.2185 0.1802 0.1766
150 0.2276 0.1772 0.1784
200 0.2230 0.1765 0.1778

Nh MHE-EnKF (Np = 150)

2 0.2143 0.1811 0.1779
4 0.2087 0.1774 0.1757
8 0.2058 0.1762 0.1732

5. CONCLUSIONS

The objective of this work was to ascertain the effect of
using a moving horizon of past data on the quality of
the state estimates for the following two scenarios: ideal
case where plant and model are exact and the case where
there is a MPM, when compared to those obtained using
recursive Bayesian state estimators. The benchmark pH
simulation case study was used to study this effect. The
arrival cost in the MHE was approximated with two recur-
sive Bayesian state estimators: the UKF and the EnKF. In
both cases (no-MPM and MPM), the results demonstrate
that the MHE-UKF performs better than the UKF and the
same for the MHE-EnKF over the EnKF. These results
indicate that the moving horizon of past measurements
results in the use of smoothed state estimates to com-
pute the current estimates of the states. The smoothing
operation reduces the error caused by approximation of
the posterior of the states, which is the major reason for
the improvement in performance. Further, as expected,
the performance improves with increase in the length of
the moving horizon. But, beyond a certain length, the
percentage reduction achieved in the RMSE values is not
commensurate with the increase in the associated compu-
tation time. However, the improvement in the performance
achieved with the MHE is associated with an increase in
the computation time required for the simulations. This is
due to the time required to solve the nonlinear optimisa-
tion problem (Eq. 22-25) to obtain the state estimates.

In the scenario of a model-plant mismatch, as expected,
the results show that the performance of the state esti-
mators deteriorates in comparison to the ideal case. In
presence of a MPM too, the use of the MHE results in
lower RMSE values of the state estimates when compared
to those obtained using the UKF and EnKF. The results,
therefore, indicate that while the use of a moving horizon
of data results in improving the approximation of the
posterior distribution of the states it does not help in
compensating for the error introduced due to model-plant
mismatch.
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