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Abstract: Multivariate data analysis techniques are widely used in getting better insight into
the processes in the fields like chemometrics, speech processing, biomedical signal processing and
astronomy. In the present study, the problem of extracting the spectrum of a pure component
from Near Infrared (NIR) mixture spectra containing a known diluent is tackled. Different
multivariate data analysis methods such as Ordinary Least Square (OLS), Principal Component
Regression (PCR) and Non Negative Matrix Factorization (NMF) are modified to solve the
problem. It is shown that including partial knowledge such as the spectrum of the known
diluent in the data analysis techniques, accounting for errors in the absorbance measurements,
and imposing non-negativity constraints on absorbance and concentrations estimates, results in
better estimation of the pure component spectrum.

Keywords: Multivariate Analysis, NIR Spectra, Pure Spectrum, Diluent Spectra, Fermentation
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1. INTRODUCTION

Near infra-red spectroscopy (NIRS) is a widely used spec-
troscopic technique as it offers advantages over its coun-
terparts like Raman spectroscopy and mid infra-red spec-
troscopy (MIRS) in the context of online monitoring of
industrial processes. The major advantages of NIR is the
possibility of remote sensing using optic fibres and the
ability to record absorbance spectra without any sample
preparation (Siesler, 2007). Another advantage of NIR is
its ability to measure the absorbance of varying density
solutions and large sized particles like biomass. Despite
these advantages NIR was not popular until the advance-
ments of multivariate data analysis techniques. Unlike
other spectroscopic techniques, absorbance data obtained
from NIR does not contain absorbance peaks characteristic
unique to each constituent in the mixture which makes
qualitative analysis of the mixture difficult. Multivariate
data analysis methods help in comprehending NIR data
and quantifying the components in the sample (Tosi et al.,
2003).

NIR measures the frequency (wavelength) and intensity
(Absorbance) of bond vibrations. Overtones and combina-
tions of fundamental molecular vibrations are measured
in the wavelength range 800nm-2100nm, and molecules
containing C-H, N-H, O-H, S-H bonds are strong absorbers
(Celio, 2003). Depending on the energy provided by the
light source, the molecules undergo molecular vibrations

to varying energy levels, thereby causing a dip in the light
intensity at particular wavelengths which is measured as
absorbance at that particular wavelength.

2. MOTIVATION

In anaerobic bacterial fermentation, glycolysis is the fun-
damental pathway involved in energy production. Dur-
ing glycolysis the carbon source taken up by the micro-
organisms is converted to pyruvate which is further con-
verted to products like acetate, lactate, formate and
ethanol (Murray et al., 2006). Since a substantial propor-
tion of the carbon source is directed to glycolysis, quan-
tification of the end products of glycolysis helps in under-
standing the fate of glucose inside the cell and developing
methods to divert the carbon flux from glycolysis to other
desired pathways resulting in the product of interest. Since
the intermediates and products involved in this pathway
absorb in the near infrared range, it may be possible to
use NIR absorbance spectra to monitor the fermentation
reaction and estimate the change in the concentration of
these species as the reaction proceeds. Based on these
concentrations, it may ultimately be possible to develop
a comprehensive metabolic flux analysis model. As a first
step in this attempt, it is necessary to develop a multi-
variate calibration model between the NIR spectra and
concentration of the species present in the fermentation
mixture.
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In a typical fermentation process, the mixture may contain
hundreds of different species all of which absorb in the NIR
range of interest. However, many of these are present in
extremely low concentrations and may be treated as noise.
About ten species are of interest whose concentrations
we would like to track as the reaction proceeds. In order
to develop a multivariate calibration model, it would be
advantageous to obtain the pure NIR absorbance spectrum
of each of these species. It is not possible to obtain pure
solutions of all the species and they are available only as
aqueous solutions. For example, aqueous solutions of glu-
cose in water need to be prepared for measuring the NIR
spectrum. Unfortunately, water also has an absorbance
spectrum in the NIR range of interest and it is al dominant
spectrum. Thus the problem is to extract the pure species
spectrum (in this case glucose) by removing the effect of
diluent spectrum (in this case, water) from the mixture
spectra containing the diluent and the species of interest.
In this work, different approaches to remove or eliminate
the influence of NIR spectrum of the diluent (water) from
the solution spectra are developed and assessed for their
accuracy. The specific system used in this work is to obtain
NIR spectrum of glucose from NIR absorbance measure-
ments of dilute aqueous solutions of glucose.

3. MULTIVARIATE DATA ANALYSIS TECHNIQUES

According to Beer-Lamberts law (Beer, 1852), the ab-
sorbance of a dilute mixture is a linear combination of
the pure species absorbance. The absorbance spectrum of
N mixtures containing different concentrations of a diluent
and a species of interest measured at n wavelengths can be
grouped in a data matrix Z, where each row represents the
spectrum of a mixture. The relation between the mixture
and pure species spectrum can be written as

Z = CS + E (1)

C is a N × 2 molar fraction matrix with first column
corresponding to mole fraction of pure species and second
column for diluent. S is 2 × n pure spectrum matrix.
First row of S corresponds to the spectrum of the pure
species of interest and the second row is the spectrum of
the pure diluent. The matrix E represents the errors in
measurements of the mixture spectra.

3.1 Ordinary Least Square Analysis

If the spectrum of the diluent is known and the concen-
tration of the different mixtures are also specified, then
the standard method for determining the pure species
spectrum is to eliminate the effect of diluent from the
different mixtures (Billeter et al., 2009).

The adjusted measurements after removal of the diluent
spectrum can be written as

Z̄ = Z − C.2S2. (2)

where, C.j implies jth column of C matrix and Si. the
ith row of S matrix. In obtaining Eq. (2), it is implicitly
assumed that both the concentration and the absorbance
measurement of the diluent are noise free.

The pure species spectrum can be obtained from the ad-
justed measurements using a ordinary least squares (OLS)
or partial least squares (PLS) regression. For example,
if OLS is used, then the pure species spectrum can be
estimated as

Ŝ1. = (CT
.1C.1)−1CT

.1Z̄
T (3)

Alternatively PLS can also be used to estimate the pure
species spectrum (Ham et al., 1997).

3.2 Principal Component Regression

When the measured data is adjusted by using the spectrum
of the diluent in the standard approach, it is implicitly
assumed that the diluent spectrum is perfectly known
and is free of errors. However, since the diluent spectrum
is also measured using the same instrument, it will also
contain same errors, which should be taken into account.
We propose a modified Principal Component Regression
(PCR) method which extract the pure species spectrum
while simultaneously denosing the diluent spectrum.

The data matrix is first augmented using the diluent
spectrum. The augmented matrix is given by

Z̃ =

[
Z
S2.

]
(4)

The concentration matrix is also augmented in a corre-
sponding manner as follows

C̃ =

[
C.1 C.2

0 1

]
(5)

Principal Component Analysis (PCA) is applied to the
augmented data matrix and the scores corresponding to
the first two Principal Components (PC) corresponding
to the two largest eigenvalue values are obtained. For
this purpose, the singular value decomposition of the
augmented data matrix is computed as

Z̃ = U1D1V
T
1 + U2D2V

T
2 (6)

where U1 and V1 are the singular vectors corresponding
to the first two largest singular values, and D1 is a
diagonal matrix containing the corresponding singular
values (square root of eigenvalues). The first term in the
right hand side of above equation can also be regarded as
the denoised spectra of all mixtures including the diluent
spectrum.

The scores matrix corresponding to the first two PCs is
given by

T = Z̃V1 (7)

The second step is to use OLS regression to relate the
concentrations to the scores matrix as follows

C̃ = TB + ε (8)
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Two possible solutions to the regression matrix B can be
obtained depending on the assumptions made. If we make
the standard assumption that the scores are free of errors,
but the concentration measurements contain errors, then
the regression matrix B is given by

B = (TTT )−1TT C̃ (9)

If on the other hand, we assume that the concentrations
are free of errors and the scores contain errors, then the
regression matrix is given by

B =
[
(C̃T C̃)−1C̃TT

]−1
(10)

In order to obtain estimates of the pure species spectrum,
we define a mixture whose concentration vector is Cpure =
[1 0]. This vector represents the concentration of a
mixture containing only the pure species, without the
diluent. The scores corresponding to this concentration are
obtained using the PCR regression model as

Tpure = CpureB
−1 (11)

The pure species spectrum is estimated by

Spure = TpureV
T
1 (12)

We refer to the use of Eq. (9) to obtain the regression
matrix as PCR-S method, and the use of Eq. (9) for
deriving the regression matrix as the PCR-C method.

3.3 Non Negative Matrix Factorization

The approach described in the preceding two subsections
will not ensure that the estimated spectrum contains non-
negative absorbances for all wavelengths. This gives rise to
physically unrealistic spectrum which have to be corrected
using ad-hoc measures such as scaling the estimated ab-
sorbances between 0 and 1. In order to overcome this prob-
lem, methods such as non-negtave matrix factorization can
be used.

Non-negative matrix factorization (NMF) is a matrix
decomposition approach that factorizes a non-negative
matrix into two low-rank non-negative matrices (Lee and
Seung, 1999). It has made great success in biological
data mining. In chemometrics, NMF has a long history
under the name Self modelling Curve Resolution (Lawton
and Sylvestre, 1971). Also early work on non-negative
matrix factorizations was performed by a Finnish group
of researchers in the middle of the 1990’s under the name
positive matrix factorization (Paatero and Tapper, 1994;
Anttila et al., 1995). It became more widely known as
non-negative matrix factorization after Lee and Seung
(1999) investigated the properties of the algorithm and
published some simple and useful algorithms for two types
of factorizations.

Given the absorbance measurements (always positive) of
mixtures containing a known number of species, NMF
can be used to obtain both the relative concentrations
of species in the different mixtures as well as the pure
species spectrum. Furthermore, the method ensures that

the estimated concentrations and absorbances are non-
negative. The use of NMF to estimates pure species
spectrum from mixture spectra is also known as the blind
source separation. It may be noted that NMF does not use
any knowledge of the mixture concentrations or the pure
component spectrum in deconvolution of the mixtures.

In this work, the augmented mixture matrix (Eq. 4) is
subjected to PCA and first two PC’s are extracted. These
PC’s are used in NMF algorithm available in MATLAB
NMF Toolbox to extract the source spectrum for the
diluent (S2.) as well as pure species (S1.). The inclusion of
the diluent absorbance spectra in the data matrix, utlizes
all the available information in the analysis, except the
measured concentration of the diluent.

The different approaches for extraction of pure spectrum of
glucose are evaluated using NIR absorbance measurements
of different concentrations of aqueous solutions of glucose

4. MATERIALS AND METHODS

Glucose powder was procured from HiMedia (Mumbai,
India). Solutions were made in double distilled water to
avoid the influence of any other substrates in present in
water. Around 6 - 7 mixtures of varying concentration
starting as low as 0.01 g/l to 50 g/l were prepared. Foss
Near Infra Red Systems (Model 6500) was used to obtain
the NIR absorbances of the mixtures at path length of 1
mm. Absorbance measurements in the range 800-2200 nm
were made at 0.5 nm intervals. Absorbance spectrum of
pure water and a 60 % glucose aqueous solution is shown
in Fig. 1.

800 1000 1200 1400 1600 1800 2000 2200
0.5

1

1.5

2

2.5

3

3.5

4

wavelength λ (nm)

A
bs

or
ba

nc
e

 

 

0% Glucose
60% Glucose

Fig. 1. NIR Spectra of Glucose diluted in Water

5. RESULTS AND DISCUSSION

The different multivariate data analysis methods described
in section 3 were applied to the NIR absorbances mea-
surements to obtain the pure spectrum of glucose. The
estimated glucose spectrum by different methods is shown
in Fig. 2. The PCR and NMF approaches also provide an
estimate of water spectrum. The experimental measured
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water spectrum as well as those estimated using PCR and
NMF are shown in Fig. 3. For comparison, the spectrum
of water and glucose estimated by Ham et al. (1997) using
a Partial Least Squares (PLS) method on NIR data of
aqueous mixtures is shown in Fig. 4. In these figures, the
spectra are scaled such that the maximum absorbance is
unity.
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Fig. 2. Pure Spectra of Glucose

From Fig. 2 it is observed that the estimated spectrum
of glucose using all methods except NMF have negative
absorbances in the wavelength range 800-1400 nm. NMF
ensures that the estimated absorbance for the entire wave-
length range is non-negative. A comparison of the glucose
spectrum with that obtained by Ham et al. (1997)(Fig.4)
shows that the spectrum obtained using NMF has good
qualitative agreement in the common range 1500-2200 nm.
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Fig. 3. Pure Spectra of Water

The performance of different approaches is quantita-
tively assessed by using Leave-one-out-cross-validation

(LOOCV) procedure. In this procedure, the measurements
corresponding to one of the mixtures is dropped (Valida-
tion data) and the method is applied using the remaining
mixture measurements(Training data). The concentration
of glucose in the mixture left out is predicted using its ab-
sorbance spectrum and compared with the concentration
used in preparing the mixture.This procedure is repeated
such that each observation in the sample is used once as
the validation data. The average percentage error in the
predicted concentration obtained using different methods
are shown in Table 1.

Fig. 4. Pure Spectra of Glucose and Water obtained by
Ham et al. (1997)

In Table 1, ”% Error in 0.01g/l” signifies the error in
predicting the concentration for a mixture spectrum of
concentration 0.01g/l glucose using the pure spectra of
glucose and water obtained leaving out 0.01g/l glucose
spectrum in estimation. It can be seen that error in
predicting lower concentration is high in comparison to
higher concentration. This is due to the fact that the effect
of lower glucose is masked by water spectrum.

The error in predicting 1g/l (100mg/dl) of glucose is in
coherence to Ham et al. (1997), which is typical blood
sugar concentration.

Table 1. Error in predicted Glucose concen-
tration using different multivariate calibration

methods

OLS PCR - C PCR - S NMF

% Error (average) 14.14 7.37 8.18 7.45
% Error in 0.01g/l 23.41 16.57 17.36 15.32
% Error in 1g/l 19.13 8.87 9.02 7.63
% Error in 60g/l 8.2 5.4 5.32 4.88

The results show that as compared to the standard OLS
method, the proposed approaches provide more accurate
estimates. The reason for this can be attributed to the
use of denoised water spectrum in the proposed methods
in contrast to the OLS method which assumes that the
measured water spectrum is exact. PCR-C (PCR assum-
ing no error in concentration) has a better results over
PCR-S (PCR assuming no error in scores) as variability
in measurement of spectra is higher in comparison to
sample preparation. Among the proposed methods the
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performance of NMF is marginally better than the others
methods

6. CONCLUSION

Improved methods for extracting a pure species spectrum
from mixture absorbances containing a known diluent are
proposed in this work. The importance of denoising the
diluent spectrum in improving the concentration predic-
tions is brought out. Among the proposed methods NMF
provides physically realistic spectrum of the pure species
and also provides marginally more accurate estimates of
the concentrations. It may be possible to further improve
the performance of NMF by utilizing the available informa-
tion regarding the mixture concentration in the analysis.
Prediction may also improve considering the a short range
of wavelength where the effect of particular bond vibration
is significant.
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