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Abstract: The estimation of time-varying parameters in continuous-time nonlinear systems is consid-
ered under the framework of the modulating functions method. The parameter is approximated as a finite
Fourier series, which is reconstructed from the estimated Fourier spectral coefficients. Unlike the popular
polynomial approximation, this approach is general enough for piecewise smooth parameter changes.
The locations of abrupt jumps are accurately identified by the presence of Gibbs phenomenon. The global
Fourier spectral coefficients are then used to extract local finite Gegenbauer polynomial series to recover
smooth parameter variations between the jumps. This method of resolution of the Gibbs phenomenon
avoids the necessity of estimating a large number of Fourier coefficients for series convergence. A van
der Pol oscillator simulation example is included to demonstrate the performance of the approach.

Keywords: Continuous-time systems; Parameter estimation; Nonlinear systems; Least squares
estimation; Time-varying systems.

1. INTRODUCTION

The identification of dynamic systems deals with mathematical
descriptions of the input-output behavior by the selection of ap-
propriate model structures and estimation of the model param-
eters using measured data. This paper is focused on nonlinear
continuous-time models and the modulating functions method
for estimating time-varying parameters. Since its original intro-
duction as the method of moment functionals (Shinbrot, 1957),
the modulating functions method has gained prominence as
an efficient parameter estimation approach for a wide class of
continuous-time nonlinear systems. Several comprehensive re-
views are available, detailing a variety of modulating functions
and problem descriptions (Unbehauen and Rao, 1990; Preisig
and Rippin, 1993a; Patra and Unbehauen, 1995; Unbehauen,
1996). The main advantage of the approach is that it avoids
the estimation of initial conditions and state derivatives from
potentially noisy data.

The modulating functions method is applicable to systems
that are linear in combinations of constant parameters, which
may be obtained by inverting the estimates of the combina-
tions (Preisig and Rippin, 1993a). The general framework is
also used for time-varying parameters. Puchkov and Chinayev
(1973) used an estimate of Gregory’s interpolation polynomial
to recover the trajectory of the parameter. Preisig and Rippin
(1993b) explicitly solved for a state dependent parameter as a
function of the modulated states. A moving window formula-
tion can track slowly changing parameters (Co and Ungarala,
1997). In general, polynomial approximations are straightfor-
ward and easy to estimate (Braiek and Rotella, 1990; Ungarala
and Co, 2000).

?

This paper retains the accepted practice of estimating a time-
varying parameter as a series expansion on a chosen set of basis
functions, which has been limited to polynomials so far. The
approach is based on the fact that the product of a modulat-
ing function and a sufficiently smooth basis function is also
a modulating function (Braiek and Rotella, 1990). However,
polynomials, while convenient, are not general enough since
they are not suitable for parameters that exhibit abrupt changes
at previously unknown locations. In this paper we submit that
a Fourier series is more general to estimate gradual changes as
well as a finite number of discontinuities inside the estimation
interval. It is shown that a partial Fourier spectrum of the pa-
rameter can be estimated using the well known Pearson and Lee
(1985) formulation with trigonometric modulating functions.

A consequence of using Fourier series is poor convergence due
to series truncation and the Gibbs phenomenon. We note that
the presence of Gibbs effect identifies the location of an abrupt
change and the piece-wise smooth sections in between can be
readily recovered as finite Gegenbauer polynomial series. An
explicit formula is available to relate the Gegenbauer coeffi-
cients to the estimated Fourier spectral coefficients (Gottlieb
et al., 1992). It is noteworthy that this approach of post pro-
cessing requires only a few low frequency Fourier coefficients
to reconstruct the time-varying parameters as compared to a
full Fourier reconstruction, which also suffers from artifacts
introduced by the Gibbs phenomenon.

The van der Pol oscillator is an extensively studied nonlinear
model for a wide range of dynamic behaviors observed in phys-
ical, chemical and biological systems (Besancon et al., 2010;
Quaranta et al., 2010). Examples of models derived from the
van der Pol oscillator include the solar cycle (Pontieri et al.,
2003), chemical kinetics of periodic and chaotic dynamics of
reactive species concentrations (Samardzija et al., 1989), rhyth-
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mic contractions of the heart muscle (Karreman and Prood,
1995; Kaplan et al., 2008) and wave forms of electrical activ-
ity in intestines (Robertson-Dunn and Linkens, 1974) to name
a few. In this paper we demonstrate the estimation of time-
varying parameters, including the location of abrupt changes,
using simulated noisy measurements from a van der Pol oscil-
lator.

The paper is organized as follows. A brief review of the
Pearson-Lee modulating functions method is provided in Sec-
tions 2 and 3. It is followed by Section 4 with details of the
proposed time-varying parameter estimation as reconstruction
using finite Fourier series. The resolution of Gibbs effects is
discussed in Section 5 and the simulated example of a van
der Pol oscillator is included at the end to demonstrate the
effectiveness of the approach.

2. PRELIMINARIES

A modulating function φ(t) ∈ CK is defined over [0,T ] with
terminal conditions:

Dk
φ(0) = Dk

φ(T ) = 0, k = 0, 1, . . . , K−1, (1)

where Dk = dk/dtk. Modulation of f (t) is the inner product:

〈φ, f 〉=
TZ

0

φ f dt. (2)

The terminal conditions of φ(t) allow arbitrary initial and final
values of the signal f (t). The adjointness property transfers any
differentiation operation on f (t), to φ(t):〈

φ, Dk f
〉

= (−1)k
〈

Dk
φ, f

〉
. (3)

A set of r trigonometric modulating functions Φ(t), is a linear
combination of sinusoids of the first 1+L frequencies:

Φ(t) = CF(ω, t), (4)

F(ω, t) = [1, cosωt, − sinωt, . . . , cosLωt, − sinLωt]t ,(5)
where ω = 2π/T and the matrix C[r×(1+2L)], enforces the termi-
nal conditions and linear independence. A simple block diago-
nal operator performs differentiation on Φ(t):

Dk
Φ = (−1)kCDkF, (6)

where

D = ω diag[0, d, . . . , Ld], d =
[

0 −1
1 0

]
. (7)

3. PARAMETER ESTIMATION

Modulation can be used to estimate the parameters of a nonlin-
ear differential equation of the following affine structure:

p

∑
j=1

Dk j ζ j(u,y) =
q

∑
j=1

α jDk j ψ j(u,y), (8)

where the constant parameters α j multiply derivatives of com-
putable nonlinear functions of inputs u and outputs y. This
class of systems is known as integrable nonlinear systems.
Equation (8) may be written in matrix notation as:

PW = QA, (9)

where

P =
[
Dk1ζ1, . . . , Dkpζp

]
, (10)

Q =
[
Dk1ψ1, . . . , Dkqψq

]
, (11)

A = [α1, . . . , αq]
t , (12)

and W is a column vector of ones. Modulation transforms the
nonlinear ODE into a set of r algebraic equations:
〈Φ,P〉W = 〈Φ,Q〉A or CGζW = CGψA, (13)

where

Gζ =
[
Dk1Zζ1 , . . . , DkpZζp

]
, (14)

Gψ =
[
Dk1Zψ1 , . . . , DkqZψq

]
, (15)

Z f = [C0( f ), C1( f ), S1( f ), . . . , CL( f ), SL( f )]t , (16)

Cm( f ) =
TZ

0

f (t)cosmωt dt, (17)

Sm( f ) =−
TZ

0

f (t)sinmωt dt. (18)

The integrals Cm( f ) and Sm( f ), are obtained by DFT and A is
estimated using least squares on Equation (13).

The modulating functions method can be extended to the fol-
lowing general class of systems:

p′

∑
i=1

p

∑
j=1

ζiDk j ζ j =
q′

∑
i=1

q

∑
j=1

α jψiDk j ψ j, (19)

known as convolvable nonlinear systems, where the parameters
multiply products of a function and a derivative. This is the
most general form of nonlinear continuous-time system used
in parameter estimation (Patra and Unbehauen, 1995). The fol-
lowing identity transforms the convolvable form to the integral
form:

ψiDk
ψ j =

k

∑
l=0

(−1)l
(

k
l

)
Dk−l (

ψ jDi
ψi
)
. (20)

4. TIME-VARYING PARAMETER ESTIMATION

Consider an integrable nonlinear system with time-varying
parameters:

p

∑
j=1

Dk j ζ j(u,y) =
q

∑
j=1

α j(t)Dk j ψ j(u,y). (21)

If the parameter’s functionality with time is previously deter-
mined, the embedded coefficients belonging to the parameter
model may be estimated from the resulting convolvable form
(Preisig and Rippin, 1993a). In the absence of such a priori
knowledge, a series expansion over a suitable family of basis
functions may be used to approximate the parameter trajectory
in a finite time interval:

α(t) =
N

∑
n=0

µn(t)µ̂n, 0≤ t ≤ T, (22)

where µn is a sufficiently smooth basis function and µ̂n is an un-
known coefficient. The coefficients in the resulting convolvable
form can be estimated and the parameter is reconstructed with
desired accuracy depending on N.
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4.1 Finite Fourier series approximation

Let µn be the trigonometric basis functions vector and µ̂n is the
spectral coefficient vector for n = 1, . . . , N,

µn(t) = [cosnωt, sinnωt] , µ̂n =
[

an
bn

]
, (23)

with µ0 = 1 and µ̂0 = a0. A time-varying parameter α(t),
assuming Dirichlet’s conditions, is written as a finite Fourier
series. The following lemma shows the transformation of the
convolvable form to integral form.
Lemma 1. Let α(t), be represented by an Nth order finite
Fourier series approximation over [0,T ],

α(t) = a0 +
N

∑
n=1

(an cosnωt +bn sinnωt) , (24)

then, modulation is applied to a new set of terms of the form
Dk−i{ψDi(an cosnωt +bn sinnωt)} instead of an cosnωtDkψ+
bn sinnωtDkψ.

Proof: The ith order derivative of the basis vector is:
Diµn = (nω)iµndi. (25)

Using Equation (20) on αDkψ,

αDk
ψ =

k

∑
i=0

(−1)i k!
i!(k− i)!

Dk−i (
ψDi

α
)
,

=
k

∑
i=0

(−1)i k!
i!(k− i)!

Dk−i

{
ψDi

(
µ̂0 +

N

∑
n=1

µnµ̂n

)}
,

= µ̂0Dk
ψ+

k

∑
i=0

N

∑
n=1

βk,i,nDk−i (
ψµndi) µ̂n, (26)

where

βk,i,n = (−1)i k!(nω)i

i!(k− i)!
. (27)

Modulating αDkψ with φ,〈
φ, α(t)Dk

ψ

〉
=
〈

φ, Dk
ψ

〉
µ̂0 +

k

∑
i=0

N

∑
n=1

βk,i,n

〈
φ, Dk−i (

ψµndi)〉 µ̂n. (28)

2

4.2 Estimation of spectral coefficients

In general, each of the q time varying parameters of the integral
nonlinear system in Equation (21) is modeled as a finite Fourier
series. The nonlinear functions can be regrouped into row
vectors P̄ and Q̄ as follows:

P̄ =
[
Dk1ζ1, Dk2ζ2, . . . , Dkpζp

]
, (29)

Q̄ = [ψ̄1, ψ̄2, . . . , ψ̄q] , (30)
where

ψ̄ j =
[
Dk j ψ j, Dk j(ψ jµ1), Dk j−1(ψ jµ1d) . . . , ψ jµ1dk j ,

. . . , Dk j(ψ jµN j), Dk j−1(ψ jµN j d), . . . , ψ jµN j d
k j
]
.(31)

Define a block diagonal matrix R as below:

R = diag[B1, . . . ,Bq], B j = diag[1,b1, . . . ,bM j ], (32)

bn = [βk j ,0,n, . . . ,βk j ,k j ,n]
t . (33)

Hence, Equation (21) with Fourier series models for parameters
is written in matrix notation as follows:

P̄W = (Q̄R)Ā, (34)

where Ā contains the Fourier spectral coefficients of the time-
varying parameters

Ā = (µ1,0, . . . , µ1,N1 , . . . , µq,0, . . . , µq,Nq)
t . (35)

The spectral coefficient vector can now be estimated using
trigonometric modulation as shown in Section 3. The parameter
trajectories are reconstructed as Fourier series. The choice of
the order of the Fourier series plays a crucial role in the
accuracy of the estimation, which is discussed next.

5. RESOLUTION OF THE GIBBS PHENOMENON

Given a piecewise smooth α(t), the series constructed with
2N +1 Fourier coefficients offers slow convergence. No matter
how large N may be, the error persists in the form of overshoots,
undershoots and spurious oscillations around the discontinu-
ities. Similarly, for non-periodic α(t), the series fails to con-
verge at 0 and T , a case of jump discontinuity. This behavior of
the Fourier series representing non-periodic piecewise smooth
functions is known as the Gibbs phenomenon. Traditionally, the
error is reduced with the use of Fejer or Lanczos smoothing fac-
tors, which suppress the influence of spectral coefficients cor-
responding to high frequency modes (Acton, 1990). Although
these methods reduce the levels of oscillations and overshoots,
they do not eliminate the Gibbs effects.

More powerful techniques are now available due to Gottlieb and
coworkers in a series of papers during 1990s. The reader is re-
ferred to a review paper (Gottlieb and Shu, 1997). The Gottlieb
method showed that the first 2N + 1 Fourier coefficients con-
tain enough information to obtain an exponentially convergent
Gegenbauer polynomial series approximation of α(t) (Gottlieb
et al., 1992).

The Gottlieb method is employed here as a post processing
step in parameter estimation using finite Fourier series and
modulation. Although it is desirable to eliminate the spurious
oscillations and overshoots due to the Gibbs phenomenon, its
very presence is an accurate indicator of the location of a
discontinuity. Thus, a finite Fourier series is general enough to
estimate parameters with abrupt changes at unknown locations.

The main result of the Gottlieb method is included here for
completeness. A finite Gegenbauer polynomial series for an
analytic and non-periodic square integrable function α(x) is
defined over x ∈ [−1,1] as:

α(x) =
M

∑
m=0

gλ
m(x)ĝλ

m, (36)

where ĝλ
m is the Gegenbauer spectral coefficient and gλ

m(x) is
the Gegenbauer polynomial of degree m with a parameter λ.
A three-term recurrence formula is available to generate the
family of Gegenbauer polynomials:

gλ
m+1(x) =

2(m+λ)x
m+1

gλ
m(x)− m+2λ−1

m+1
gλ

m−1(x), (37)

with gλ
0(x) = 1 and gλ

1(x) = 2λx.
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If the first 2N + 1 complex Fourier spectral coefficients cn of
α(x) are known, then the Gegenbauer spectral coefficients ĝλ

m,
are explicitly related to cn by the following equation:

ĝλ
m = δ0mc0 +Γ(λ)im(m+λ) ∑

0<|n|≤N
Jm+λ(πn)

(
2

πn

)λ

cn, (38)

where δ is the Kronecker delta and J is the Bessel function of
the first kind.

The proposed method of parameter estimation contains three
tuning parameters that affect both the accuracy of estimated
parameter trajectories as well as numerical stability. They are
the number of frequencies in the Fourier series N, the order
of the Gegenbauer polynomial series m, and the Gegenbauer
parameter λ. The choice of N is related to the computational
cost of DFT, which may be chosen to keep the cost reasonable.
Strategies for choosing m and λ regarding susceptibility to
numerical round-off errors are available in literature (Gelb,
2004; Jackiewicz and Park, 2009).

6. SIMULATION EXAMPLE

Consider the three parameter Van der Pol oscillator with un-
known parameter a(t), b = 3 and c = 1:

d2y
dt2 = a(t)

dy
dt

(1−by2)− cy, (39)

which is rearranged into the following affine form:

D2y+ y = α(t)D(y− y3). (40)

Three types of changes in α are investigated:

Case 1: linear function
α(t) = 1+0.05t. (41)

Case 2: logistic function

α(t) = 1+
2

1+ e−0.5(t−10) . (42)

Case 3: double logistic function with an abrupt change

α(t) =


2− 1

1+ e−(t−5) t ≤ 10,

2− 1
1+ e−(t−15) t > 10.

(43)

The system is simulated for T = 20 with y(0) = 1 and Dy(0) =
0.4 and sampled at ∆t = 0.01. Zero mean Gaussian noise
with σ = 0.05 is added to the sampled data. Fig. 1 shows the
simulated noisy data for the three cases.

The coordinate transformation x = 2t/T −1, is necessary such
that x ∈ [−1,1], which requires a shift in the Fourier basis
functions to be centered on zero:

µn = [cos(nωt−nπ), sin(nωt−nπ)]. (44)

The linear change in the parameter is estimated as a fourth
order (N = 4) Fourier series, shown in Fig. 2. Using higher
order series can result in smoother middle section but would not
eliminate the undershoot and overshoot near the edges of the
data window. Furthermore, the estimate will always converge to
the middle of the jump discontinuity between the edges of the
data window, in this case 1.5. Using the Gottlieb method, the

−1
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case 1: linear

da
ta

, y

0 5 10 15 20
−1

0

1

case 3: double logistic

time, t
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, y

−1

0

1

case 2: logistic

da
ta

, y

Fig. 1. Simulated data for three cases of parameter change.
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Fig. 2. Estimation of linear parameter change.

parameter is recovered from the Fourier coefficients by a first
order (M = 1) Gegenbauer polynomial series with parameter
λ = 1. This example demonstrates that it is not necessary to es-
timate a large number of Fourier coefficients to reconstruct the
parameter. Larger N is feasible for more accuracy because the
estimate reveals that the parameter change is an odd function
with a1,..., N = 0, which reduces the problem size from 2N + 1
down to N +1.

In the second case, a ninth order (N = 9) Fourier series is
estimated as shown in Fig. 3. The trend of the logistic function
is broadly captured by the series but suffers from oscillations,
which may be damped out by the use of Lanczos sigma factors.
However, the the error will remain at the edges. A seventh order
(M = 7) Gegenbauer series with parameter λ = 3 adequately
reconstructs the parameter. It should be noted that the first two
cases can be readily estimated as polynomials directly since the
parameter is analytical inside the time interval.

The third case is a more challenging parameter estimation
problem, it involves an abrupt change in the parameter value
at t = 10. Fig. 4 shows a Fourier series estimate with N = 12.
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Fig. 3. Estimation of gradual parameter change.

The estimated series follows the analytical trends of both halves
and indicates the existence of a jump discontinuity due to
the presence of an undershoot followed by sharp rise and an
overshoot. The midpoint between the peaks occurs at t = 10.
Thus, the signature of Gibbs phenomenon can be effectively
employed to find the location of abrupt changes. This feature
alone gives the Fourier series a versatility not possible with
the use of polynomial models. In the subsequent step, the time
interval is split into two halves and a local Gegenbauer series
(M = 5 and λ = 5) is reconstructed for each window.

Since the Gegenbauer polynomials are defined on x ∈ [−1,1],
focusing on a subinterval [x1,x2] = [−1,0] and [0,1] requires
another coordinate transformation, x = εz+ρ, where ε = (x2−
x1)/2 and ρ = (x2 + x1)/2, such that z ∈ [−1,1]. The explicit
formula for Gegenbauer coefficients in Equation (38) is adapted
for the local coordinate system as follows:

ĝλ
m = δ0mc0 +Γ(λ)im(m+λ)×

∑
0<|n|≤N

Jm+λ(πnε)
(

2
πnε

)λ

cneinπρ. (45)

The above equation is derived from the construction proposed
in Gottlieb and Shu (1996), and is limited to cases where the
jump discontinuities at the edge and inside the window are the
same.

7. CONCLUSIONS

The modulating functions method has been previously extended
to time-varying parameter estimation in continuous-time non-
linear systems. The parameters are usually approximated as
polynomials in the estimation time interval. The approach is
limited to analytical parameter variations due to the limita-
tions of polynomials as basis functions. This paper generalizes
the approach to piecewise smooth changes by estimating the
finite Fourier series approximation of parameter trajectories.
It is shown that the presence of Gibbs phenomenon acts as
an indicator of discontinuities. The spurious oscillations, over-
shoots and undershoots due to series truncation and Gibbs phe-
nomenon are eliminated by recovering the analytical portions
of the parameter trajectory as local finite Gegenbauer series.
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Fig. 4. Estimation of abrupt parameter change.

Several guidelines are available for the choice of the tuning pa-
rameters N in the Fourier series and M and λ in the Gegenbauer
series, which is also the subject of ongoing research. Presented
with the advantage of arbitrary initial conditions and direct use
of noisy signals, the generalization is a useful tool for time-
varying system identification.
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