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Abstract: An online adaptive dynamic programming based iterative algorithm is proposed
for a two-player zero sum linear differential game problem arising in the control of process
systems affected by disturbances. The objective in such a scenario is to obtain an optimal
control policy that minimizes the specified performance index or cost function in presence of
worst case disturbance. Conventional algorithms for the solution of such problems require full
knowledge of system dynamics. The algorithm proposed in this paper is partially model-free
and solves the two-player zero sum linear differential game problem without knowledge of state
and control input matrices.
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1. INTRODUCTION

In a two-player zero sum game, each player’s gain is exactly
balanced by the loss of his competitor and the net gain of
the players at any point in time is zero [Isaacs (1965)].
In scenarios of perfect competition such as that exist in a
zero sum game, each player tries to make the best possible
decision taking into account the fact that his opponent also
tries to do the same. The theory of zero sum differential
game finds applications in a wide variety of disciplines
including that of control theory [Tomlin et al. (2000); Wei
and Liu (2012)].

The problem of designing optimal controller for any pro-
cess system subject to worst possible disturbance is a min-
imax optimization problem where the controller tries to
minimize and the disturbance tries to maximize the infinite
horizon quadratic cost. Using game theoretic framework,
the above minimax optimization problem can be viewed
as a zero sum differential game where the controller acts
as the ’minimizer’ or minimizing player, while the dis-
turbance acts as the ’maximizer’ or maximizing player
[Basar and Bernhard (1995); Basar and Olsder (1995)].
The optimal control in such a scenario is equivalent to
finding the Nash equilibrium or saddle point equilibrium
of the corresponding two-player zero sum differential game
[Basar and Bernhard (1995)].

To obtain the saddle point equilibrium strategy of each
player in the two-player zero sum linear differential game,
one needs to solve an Algebraic Riccati Equation (ARE)
with a sign indefinite quadratic term known as the Game
Algebraic Riccati Equation (GARE). [Kleinman (1968)]
proposed an iterative method for solving the ARE with
a sign definite quadratic term. A series of Lyapunov
equations are constructed at each iteration and the posi-

tive semi-definite solutions of the Lyapunov equations are
shown to converge to the solution of ARE. However the
algorithm proposed in [Kleinman (1968)] for solving the
ARE could not be extended to the GARE due to the
presence of a sign indefinite quadratic term.

Subsequently, several Newton-type algorithms were pro-
posed for the solution the GARE [Arnold and Laub (1984);
Damm and Hinrichsen (2001); Mehrmann and Tan (1988)].
[Mehrmann (1991)] and [Sima (1996)] proposed a matrix
sign function method for solving GARE. A more robust
iterative algorithm for solving GARE was proposed by
[Lanzon et al. (2008)], where the GARE with a sign indefi-
nite quadratic term is replaced by a sequence of AREs with
sign definite quadratic terms. Each of these AREs can then
be sequentially solved using Kleinman’s algorithm or any
other existing algorithm and the recursive solution of these
AREs converge to the solution of GARE. However, all the
above results require knowledge of full system dynamics,
which is a severe restriction owing to the uncertainties in
system modelling.

The concept of Adaptive Dynamic Programming (ADP)
was proposed by [Werbos (1992)] for solving the dynamic
programming problems related to classical optimal control
in a forward in time fashion. ADP is based on the concepts
of Dynamic Programming [Bellman (2003)] and Reinforce-
ment Learning [Sutton and Barto (1998)] and has been
widely used to reach approximate solutions of optimal
control problems [Abu-Khalaf and Lewis (2005); Lewis
and Liu (2013)]. The classical optimal control problem
is a single player linear differential game problem [Isaacs
(1965)] and a detailed analysis of the application of ADP
for the solution of single player linear differential game
problems (optimal control problems) is provided in [Wang
et al. (2009)] and [Lewis et al. (2012)].
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Recently, [Vrabie et al. (2009)] proposed a partially model-
free, online algorithm for finding the solution of single
player zero sum differential game in continuous time. How-
ever the proposed algorithm required partial knowledge of
system dynamics, namely the control input matrix. Subse-
quently, a completely model-free algorithm was proposed
by [Jiang and Jiang (2012)] in order to arrive at the opti-
mal control of linear system without requiring knowledge
of the control input and the system drift matrices.

Extending the principle of ADP to differential games, a
model-free algorithm was proposed by [Al-Tamimi et al.
(2007)] for solving the two-player linear differential zero
sum game appearing in discrete time H∞ control. [Abu-
Khalaf et al. (2008)] proposed an algorithm to solve contin-
uous time two-player nonlinear differential game problem
with full knowledge of system dynamics. In [Vrabie and
Lewis (2011)], the saddle point solution of a two player
zero sum differential game was obtained using a partially
model-free algorithm. The algorithm required no knowl-
edge of system drift dynamics, while the knowledge of
control input and disturbance matrices was still needed.

In this paper, an online partially model free iterative
algorithm is proposed to solve the two-player zero sum
differential game problem. The contribution of this result
over existing results in the literature is that the saddle
point solution is arrived at without the knowledge of
system drift and control input matrices. Only knowledge
of the disturbance input matrix is required and hence, the
proposed algorithm is comparatively more robust than the
one proposed in [Vrabie and Lewis (2011)]. The proposed
algorithm thereby reduces the need of rigorous system
identification requirements, which otherwise is necessary
for obtaining the system drift and control input matrices.
The algorithm is data-driven and the saddle point solution
of the game problem can be achieved online.

The algorithm makes use of two iterative steps namely, the
outer level iteration and the inner level iteration. In the
outer level iteration, the two-player zero sum differential
game problem is converted to a sequence of optimal control
problems. The inner level iteration motivated by the work
of [Jiang and Jiang (2012)], is used to find the model-
free solution of each of these optimal control problems.
It is shown that the solution of optimal control problems
converge to the saddle point equilibrium solution of the
underlying game problem. The algorithm is implemented
on a linearized power system model [Wang et al. (1963)]
to arrive at the optimal controller in presence of worst
case disturbance. The algorithm can be extended to any
process system with partially unknown dynamics.

2. PRELIMINARIES

2.1 Problem Formulation

The H∞ controller design was formulated by [Basar and
Bernhard (1995)] as a two-player zero sum differential
game. Consider the differential game formulation given
below,

ẋ = Ax+B1w +B2u (1)

y = Cx, (2)

where x ∈ Rn is the state vector assumed to be mea-
surable, u ∈ Rm is the control input and w ∈ Rd is the
disturbance input.

The controller player’s objective is to minimize the infinite
horizon cost function given by,

J(x(0), u(t), w(t)) =
1

2

∞∫
0

(xTCTCx+uTu−wTw)dt. (3)

At the same time, the disturbance player who is in perfect
competition with the controller player tries to maximize
the cost function (3). The optimal strategies to be adopted
by the players in the zero sum game is termed as the
saddle-point equilibrium.

The saddle point equilibrium strategy for each player is
defined as follows:-

Definition 1. A pair of strategies {u∗, w∗} is in saddle
point equilibrium, if the following set of inequalities are
satisfied for all permissible u and w [Basar and Olsder
(1995)]:

J(x, u∗, w) ≤ J(x, u∗, w∗) ≤ J(x, u, w∗) (4)

The quantity J(x, u∗, w∗) is called the saddle point value
of the zero sum game. The two-player zero sum differential
game described above is a two-player optimization prob-
lem and the saddle point strategies can be found by using
the Pontryagin’s Maximum Principle.

Hamiltonian for the cost function in (1) and the system in
(3) can be defined as,

H(x, u, v, λ) =
1

2
(xTCTCx+ uTu− wTw)

+ λT (Ax+B1w +B2u). (5)

Applying the necessary condition for optimality of ∂H
∂u = 0

and ∂H
∂w = 0,

u∗ = −BT
2 Π∗x(t) (6)

w∗ = BT
1 Π∗x(t), (7)

where Π∗ is the positive definite symmetric solution to the
ARE given by,

0 = AT Π∗ + Π∗A+ CTC −Π∗(B2B
T
2 −B1B

T
1 )Π∗. (8)

The saddle point equilibrium value is given by ,

J(x(t), u∗, w∗) = x(t)T Π∗x(t). (9)

Hence, to obtain the saddle point equilibrium strategy of
each player in the two-player zero sum differential game,
one needs to solve the ARE (8) with the sign indefinite
quadratic term, Π(B2B

T
2 −B1B

T
1 )Π.

2.2 Iterative Solution Using Knowledge of Full System
Dynamics

The iterative solution of the GARE (8) with full knowledge
on system dynamics was given by [Lanzon et al. (2008)].
Consider real matrices A, B1, B2 and C, where (C,A) is
observable and (A, B2) is stabilizable. Then, the iterative
method for solving the ARE (8) is given as [Lanzon et al.
(2008)]:
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1. Start with
Π0 = 0. (10)

2. Solve, for the unique positive definite Zk where k ≥ 0,

0 = (A+B1B
T
1 Πk−1 −B2B

T
2 Πk−1)TZk

+ Zk(A+B1B
T
1 Πk−1 −B2B

T
2 Πk−1)

− ZkB2B
T
2 Z

k + F (Πk−1), (11)

where,

F (Πk−1) = AT Πk−1 + Πk−1A+ CTC

−Πk−1(B2B
T
2 −B1B

T
1 )Πk−1. (12)

3. Update
Πk = Πk−1 + Zk. (13)

where the Πk and Zk possess the following properties:

(1) (A+B1B
T
1 Πk, B2) is stabilizable ∀k

(2) F (Πk+1) = ZkB1B
T
1 Zk ∀k

(3) A+B1B
T
1 Πk −B2B

T
2 Πk+1 is Hurwitz ∀k

(4) Π∗ ≥ Πk+1 ≥ Πk ≥ 0 ∀k
Then,

lim
k→∞

Πk = Π∗. (14)

The convergence proof of the algorithm to the unique
positive definite solution, Π∗ of the GARE is provided by
[Lanzon et al. (2008)].

3. MAIN RESULTS

3.1 Solution Approach

In the two-player zero sum differential game defined
through (1) and (3), the controller and the disturbance
are two competing players. If any of the players adopts
a constant strategy, it becomes a single player optimiza-
tion problem or a single player differential game problem
(optimal control problem). In the proposed game strategy,
the controller acts as the active, optimising player and
disturbance acts a passive player, whose policy remains
constant during a time frame. With disturbance policy
remaining constant, the two-player zero sum game takes
the shape of a classical optimal control problem.

The solution approach proposed is to break down the
original two-player zero sum differential game into a se-
quence of optimal control problems. The active controller
player seeks the optimal policy which minimizes the cost
function of the associated optimal control problem. After
the controller player converges to his optimal policy, the
disturbance player updates his policy accordingly. With
the changed disturbance policy, a new optimal control
problem is constructed and the controller player then seeks
the new optimal policy.

The aim of this paper is to arrive at the saddle point so-
lution of the game with less dependency on the knowledge
of system dynamics. This objective translates to solving
each of the optimal control problem without knowledge of
A and B2 matrices. The proposed algorithm only requires
knowledge of B1 for implementation.

The game solution is achieved using two iterative steps
namely outer level iteration and the inner level iteration.

In each outer level iteration, an optimal control problem is
constructed from the underlying game problem. The inner
level iteration process is embedded within each outer level
iteration and finds the online solution of each of those
optimal control problems. It is shown that the inner level
iterations converge to the solution of the corresponding
optimal control problem and the outer level iterations
converge to the saddle point solution of the game problem.

Outer Level Iteration

The outer level iteration is motivated by [Lanzon et al.
(2008)], where an optimal control problem is constructed
considering that the disturbance player acts as a passive
player whose policy remains constant during each itera-
tion. The controller player, after considering the distur-
bance player’s policy, then minimizes the cost function by
solving the corresponding optimal control problem.

Let at the kth outer level iteration, the disturbance player
chooses the strategy, w = BT

1 Πk−1x. Considering that
the strategy of the passive disturbance player remains
constant, the game cost function (3) can be transformed
into the following optimal control form,

J(x(0), u(t)) =

1

2

∞∫
0

(xT (CTC −Πk−1B1B
T
1 Πk−1)x+ uTu)dt. (15)

subject to system dynamics given by,
.
x = (A+B1B

T
1 Πk−1)x+B2u. (16)

Lemma 2. The solution of optimal control problem de-
fined by (15) and (16) is equivalent to the iteration steps
defined by (11) and (13).

Proof. The solution of the optimal control problem de-
fined in (15) and (16) can be found by solving the ARE,

0 = (A+B1B
T
1 Πk−1)T Πk + Πk(A+B1B

T
1 Πk−1)

−ΠkB2B
T
2 Πk + (CTC −Πk−1B1B

T
1 Πk−1). (17)

In the equation (11), substituting for F (Πk−1) from (12)
and Zk from (13) result in the ARE (17), which proves the
lemma.

At the kth outer level iteration, the optimal control prob-
lem to minimize the cost function (15) will be found
subject to the modified system dynamical equation (16)
resulting in the optimal values, Πk and Kk. The controller
strategy then becomes, uk = −Kkx. The disturbance
being a passive player, adopts the policy wk = BT

1 Πkx.
With the new disturbance policy, the outer level iteration
is carried out where the optimal control problem defined by
(15) and (16) are modified and the optimal control solution
is sought again to obtain Kk+1and Πk+1.

The process is continued till convergence where ‖ Kk+1 −
Kk‖ � ε1, where ε1 is a specified threshold. At conver-
gence, the policies uk = −Kk+1x and wk = BT

1 Πk+1x con-
verge to the saddle point equilibrium values u∗ = −K∗x
and w∗ = BT

1 Π∗x, for controller and disturbance respec-
tively.
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Inner Level Iteration

The optimal control problem constructed in each outer
level iteration is solved using the inner level iteration pro-
cess. The inner level iteration is an ADP algorithm based
on the work by [Jiang and Jiang (2012)]. It comprises
of a policy evaluation stage and a policy improvement
stage. At the policy evaluation stage, the current control
policy is evaluated and the policy is updated in the policy
improvement stage.

Lemma 3. The optimal control problem defined by (15)
and (16) can be solved by sequentially using the following
Lyapunov equations [Kleinman (1968)],

(Ak
i )T Πi + ΠiA

k
i

+ CTC −Πk−1B1B
T
1 Πk−1 + (Ki)

TKi = 0. (18)

and performing policy update as,

Ki+1 = BT
2 Πi, (19)

where Ak
i = A+B1B

T
1 Πk−1−B2Ki and i is the iteration.

Then,
lim
i→∞

Ki = Kk.

Proof. The proof is provided by [Kleinman (1968)].

The Kleinman’s algorithm guarantees the convergence of
Ki to the optimal value of kth outer level iteration, Kk.
With an intention to arrive at the solution of optimal
control problem without knowledge on system matrices A
and B2, the equation (16) is reformulated as [Jiang and
Jiang (2012)],

.
x = Ak

i x+B2(u+Kix), (20)

where Ak
i = A + B1B

T
1 Πk−1 − B2Ki, k is the outer level

iteration stage and i is the current inner level iteration
stage. With quadratic parametrization, the infinite horizon
cost (15) at ith inner level iteration of kth outer level
iteration can be written as,

Ji(x(t)) = x(t)T Πix(t)

where Πi is a positive definite symmetric matrix.

Then using (18), (19) and (20),

dJi
dt

= ẋ(t)T Πix(t) + x(t)T Πiẋ(t)

= (Ak
i x+B2(u+Kix))T Πix(t)

+ x(t)T Πi(A
k
i x+B2(u+Kix))

= x(t)T ((Ak
i )T Πi + ΠiA

k
i )x(t) + 2(u+Kix)TBT

2 Πix(t)

= −x(t)T (CTC −Πk−1B1B
T
1 Πk−1 +Ki

TKi)x(t)

+ 2(u+Kix)TBT
2 Πix(t) (21)

Then using Ki+1 = BT
2 Πi from (19), it follows from (21)

that,

x(t)T Πix(t)− x(t+ T )T Πix(t+ T )

=

∫ t+T

t

xT (CTC −Πk−1B1B
T
1 Πk−1 +Ki

TKi)dτ

− 2

∫ t+T

t

(u+Kix)TKi+1xdτ, (22)

where i is the inner iteration stage.

The LHS of the equation (22) can be reformulated as

x(t)T Πix(t)−x(t+T )T Πix(t+T ) = (x̄(t)−x̄(t+T ))T Π̂i.

(23)

where x̄(t) is a modified Kronecker product vector with

elements {xp(t)xq(t)}p=1:n;q=1:n and Π̂i is a vector formed
by stacking the diagonal and upper triangular part of a
symmetric matrix into a vector whose off diagonal terms
are multiplied by two.

The integrand in the second part of RHS can then be
modified as

(u+Kix)TKi+1x =

[(xT ⊗ uT ) + (xT ⊗ xT )(In ⊗ (Ki)
T )]K̂i+1. (24)

where ⊗ denotes Kronecker product and K̂i+1 is the vector
form of matrix Ki+1 stacking columns one over another.

Now using (23) and (24), the entire equation (22) can be
rewritten as,

(x̄(t)− x̄(t+ T ))T Π̂i

+ 2[(xT ⊗ uT ) + (xT ⊗ xT )(In ⊗KT
i )]K̂i+1

=

∫ t+T

t

xT (CTC −Πk−1B1B
T
1 Πk−1 + (Ki)

TKi)dτ.

(25)

The equation (25) can be transformed into linear regres-
sion form given by

Xθ = Y (26)

where

X = [(x̄(t)−x̄(t+T ))T 2((xT⊗uT )+(xT⊗xT )(In⊗KT
i ))],

the regression vector

θ = [(̂Πi)
T (K̂i+1)T ]T ,

and

Y =

∫ t+T

t

xT (CTC −Πk−1B1B
T
1 Πk−1 + (Ki)

TKi)dτ.

Assuming C and B1 are known, the cost X can be
measured along the state trajectory. After getting enough
measurements in Y and X, θ can be obtained as a least
square estimate without knowledge of A and B2.

θ̂ = (XTX)−1XTY. (27)

The above estimation stage is the policy evaluation stage
of ADP, where Πi and Ki+1 are estimated from measure-
ments of the system states. These measurements can be
considered as reinforcements from the system, analogous
to the one described in the theoretical framework of re-
inforcement learning. The minimum number of measure-
ments required for the solution of the least square problem
(27) equals the number of unknowns in the regression vec-
tor, θ. After the policy evaluation stage, policy updation
stage is performed where the current policy is improved as
ui+1 = −Ki+1x+ e, where e is the exploration signal.

Remark 4. The algorithm which is based on the ADP
concepts of policy evaluation and policy updation requires
persistence of excitation (PE) so that (27) is a well posed
least square problem. In cases wherein the system states
reach a stationary phase, persistence of excitation condi-
tion fails and it may affect the numerical stability [Lee
et al. (2012)] of the algorithm. Hence, exploration signals
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are added to the control input as it ensures that system
states never become stationary and hence satisfy the PE
condition. Any sufficiently exciting signal like random
noise or sinusoidal signal can be used as exploration signal.

The inner level iteration defined by (26) is done again with
measurements obtained with new controller policy, ui+1

and the process is continued till convergence. A threshold
ε2 is specified and in each outer level iteration, the inner
level iterations are carried out till ‖ Ki+1 − Ki‖ � ε2.
The optimal control problem specified by (15) and (16) is
solved once inner level iteration is completed . The optimal
values K∗i and Π∗i are then be passed on for updation in
next outer level iteration as Kk and Πk.

Remark 5. As Kk is directly estimated through the inner
level iteration process, the optimal control can be arrived
at with out the knowledge of A and B2 matrices.

3.2 Algorithm

The proposed algorithm consists of outer level and inner
level iterative stages detailed as follows:-

(1) Start the algorithm with an initial stabilizing policy
K0 and Π0 = 0.

(2) Let k be the current outer iteration stage with known
values for Kk−1and Πk−1. The disturbance policy is
defined as wk = B1Πk−1x.

(3) Outer level iteration :- With the disturbance policy
remaining constant, solve the corresponding optimal
control problem defined by (15) and (16) for Πk and
Kk using the following inner level iteration.

(4) Inner level iteration :-
(a) Solve online for Πi and Ki+1 from state measure-

ments where i denotes the inner level iteration
stage,

(x̄(t)− x̄(t+ T ))T Πi

+ 2[(xT ⊗ uT ) + (xT ⊗ xT )(In ⊗KT
i )]Ki+1

=

∫ t+T

t

xT (CTC−Πk−1B1B
T
1 Πk−1+KT

i Ki)dτ.

(28)

(b) Update u = −Ki+1x+ e.
(c) Continue inner level iteration till ‖ Ki+1−Ki‖ �

ε2.
(5) Set Kk = K∗i and Πk = Π∗i .
(6) Update disturbance policy as wk+1 = BT

1 Πkx. Mod-
ify the optimal control problem described by (15) and
(16) using updated disturbance policy.

(7) Continue outer level iteration(Steps (3) to (6)) till
‖ Kk −Kk−1‖ � ε1.

(8) Set saddle point policy, K∗ = Kk.

Remark 6. In the Step (1) of the algorithm, the initial
stabilizing gain K0 can be obtained by using some nominal
knowledge about the system, e.g for stable systems K0 can
be chosen.

3.3 Convergence Analysis.

Theorem 7. The proposed algorithm defined by the outer
level and inner level iterative stages (Steps (1) to (6) in
Section 3.2) converge to the saddle point solution of the

two-player zero sum game. The proposed algorithm creates
a sequence of control policies, {Kk, k= 1,2,3...} which
converges to the saddle point control policy, K∗ so that

lim
k→∞

||Kk −K∗|| = 0.

Proof.

The proposed algorithm is based on outer and inner level
iterative stages. Convergence of proposed algorithm is
proved by proving convergence of inner level and outer
level iterations. Since the inner level iteration is embedded
in the outer level iteration, the convergence of inner level
iteration is analyzed first.

The inner level iteration based on (28) is solved using least
square estimate of Ki+1 and Πi using (27). Since (28) is
derived from (18) and (19) using (20), (21), (22) and (23),
the inner level iteration stage is equivalent to Kleinman’s
iteration (18) and (19). Hence convergence of inner level
iteration is proved using Lemma 3.

The outer level iterations are based on the solution of
(15) and (16), which is equivalent to the solution of
(11) and (13) using Lemma 2. Then using [Lanzon et al.
(2008)], convergence of outer level iteration is proved.
The convergence results of inner level and the outer
level iterations guarantee convergence of the proposed
algorithm to the saddle point solution of the two-player
zero sum differential game.

Remark 8. The proposed algorithm assumes knowledge
of the disturbance input matrix while not requiring the
knowledge of drift dynamics and control input matrix.

4. SIMULATION RESULTS

The algorithm is implemented on a linearized power sys-
tem model proposed in [Wang et al. (1963)]. The system
matrices of the nominal model are

A =

−0.0665 8 0 0
0 −3.663 3.663 0

−6.86 0 −13.736 −13.736
0.6 0 0 0

 ,
B2 = [ 0 0 13.736 0 ]

T
, [B1 = [ 1 0 5 0 ]

T
,

C = I4. (29)

With complete knowledge of system dynamics, the feed-
back gain of the controller player corresponding to the
saddle point equilibrium can be calculated using the algo-
rithm put forward by [Lanzon et al. (2008)] as,

Ksaddle = [ 1.2244 2.3407 0.8455 0.6052 ] (30)

The adaptive algorithm proposed in this paper does not
require the knowledge of A and B2 and only the knowledge
of B1 is required. Using the proposed algorithm with
random noise as exploration signal, the following saddle
point policy is obtained after four outer level iterations
and eleven inner level iterations.

Kalg = [ 1.2244 2.3404 0.8455 0.6051 ] (31)
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Fig. 1. Evolution of Feedback Gain

5. CONCLUSION

An adaptive dynamic programming based algorithm for
finding an online saddle point solution of two-player zero
sum linear differential games is presented in this paper.
The proposed algorithm is capable of arriving at the saddle
point solution of the game problem with partial knowledge
of system dynamics, i.e only the knowledge of disturbance
input matrix is required. The algorithm is used to find
the optimal control policy in a power system under worst
case disturbance. Future efforts will be focussed on making
the algorithm completely model-free so that saddle point
solution can be achieved without any knowledge system
dynamics.
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