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Abstract: We address in this paper the application of a recently proposed MPC performance monitoring
method to a rigorously simulated industrial process. The methodology aims at detecting possible sources
of suboptimal performance of linear offset-free MPC algorithms by analysis of the prediction error
sequence, discriminating between the presence of plant/model mismatch and incorrect disturbance/state
estimation, and proposing for each scenario an appropriate corrective action. We focus on the applicabil-
ity of the method to large-scale industrial systems, which typically comprise a block structure, devising
efficient and scalable diagnosis and correction procedures. We also discuss and support the application of
this method when the controlled plant shows a mild nonlinear behavior mainly associated with operating
point changes. A high-fidelity dynamic simulation model of a crude distillation unit was developed in
UniSimr Design and used as representative test bench. Results show the efficacy of the method and
indicate possible research directions for further improvements.
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1. INTRODUCTION

Model Predictive Control (MPC) received tremendous attention
in the last decades both from academic and industrial commu-
nities due to the unique ability of handling multivariable con-
strained processes and achieving optimization goals (Rawlings
and Mayne, 2009; Qin and Badgwell, 2003). In most continu-
ous industrial processes a linear model is employed within the
MPC algorithm (Qin and Badgwell, 2003), and such a model is
typically obtained from plant data using systems identification
methods (Zhu, 2001). Due to the fact that, in general, the actual
process displays some nonlinear behavior (often mild around
a given operating point) an effective system identification is
a crucial step for the success of an MPC system (Qin and
Badgwell, 2003; Darby and Nikolaou, 2012).

In order to cope with some unavoidable plant/model mismatch
and/or the presence of unmeasured nonzero mean disturbances,
all industrial MPC algorithms have some form of offset-free
strategy. Most industrial implementations of such offset-free
strategies can be cast within the framework of disturbance
models (Muske and Badgwell, 2002; Pannocchia and Rawlings,
2003), in which the input-to-output model is augmented with
(fictitious) integrating states referred to as disturbances, whose
value is estimated from the output measurements and taken into
account by the MPC in its predictions. This approach represents
a simple form of model adaptation, which proves effective to
remove steady-state offset under suitable conditions (Muske
and Badgwell, 2002; Pannocchia and Rawlings, 2003), but the
choice of disturbance model (i.e. model matrices and observer
gain) is nonunique and can lead to significantly different closed-
loop responses even for linear processes (Muske and Badgwell,
2002; Pannocchia, 2003; Pannocchia and Rawlings, 2003; Ra-
jamani et al., 2009).

While many theoretical aspects of MPC (such as nominal sta-
bility, recursive feasibility, constraint satisfaction, etc.) can be
regarded as relatively mature (Rawlings and Mayne, 2009),
one of the aspects that currently draw the attention of both
researchers and industrial practitioners is associated to devising
effective control performance monitoring tools for MPC sys-
tems (Darby and Nikolaou, 2012; Shardt et al., 2012). While
benchmarking of conventional (PID) controllers is purely
“data-driven”, the availability of a process model as in MPC
allows for different opportunities. Many performance monitor-
ing methods consider the prediction error, i.e. the difference
between the actual process output and the model prediction, as
a key performance indicator for MPC (Kesavan and Lee, 2001;
Harrison and Qin, 2009; Zhao et al., 2010; Sun et al., 2013).

A common industrial situation arises when the MPC linear
model no longer matches adequately the actual plant behavior
due to a relevant change in plant operating conditions. This
change is often determined by the MPC itself, which tends to
drive the controlled plant around a new (typically more prof-
itable) steady state. Other common sources of model incorrect-
ness are associated to changes in raw materials, e.g. the crude
oil in a topping distillation process, and unmeasured nonzero
mean disturbances, e.g. changes in utilities conditions and other
interacting variables. Because a new model identification step
is costly, i.e. time consuming and production invasive (Qin and
Badgwell, 2003), it is crucial to elaborate efficient and reliable
methods for detecting plant/model mismatch and quantifying
its influence onto the controller performance (Badwe et al.,
2010; Jia et al., 2012). In this work we explore the potentials
of the method recently proposed in (Pannocchia and De Luca,
2012; Pannocchia et al., 2013) within the context of a large-
scale rigorously simulated industrial process, namely a crude
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distillation unit (CDU). Due to the large number of inputs and
outputs, the block structured nature of the process (i.e. blocks
of outputs are affected by blocks of inputs, instead of all out-
puts being affected by all inputs), and the nonlinearity which
mainly depends on changes of operating point, this represents a
challenging and significant test of applicability.

2. MPC DESIGN AND PERFORMANCE MONITORING

We review the foundations of the performance monitoring
strategy proposed in (Pannocchia et al., 2013), and support its
extension to the context of the present application.

2.1 Linear offset-free MPC algorithm

The considered linear offset-free MPC algorithm has three main
modules: an observer of the augmented state, a steady-state
target calculator, and a dynamic optimizer. Due to space lim-
itations, we only describe the observer because its variables di-
rectly appear in the performance monitoring method. The other
two modules are described elsewhere [see e.g. (Pannocchia and
Rawlings, 2003; Rawlings and Mayne, 2009)].

Starting from a discrete-time linear time-invariant model of
the controlled system, described in state-space form by the
triple (Â, B̂,Ĉ), the design of an offset-free MPC algorithm is
based on the following augmented system [see e.g. (Muske and
Badgwell, 2002; Pannocchia and Rawlings, 2003)]:[

x̂
d̂

]+
=

[
Â B̂d
0 I

][
x̂
d̂

]
+

[
B̂
0

]
u (1a)

ŷ =
[
Ĉ Ĉd

][x̂
d̂

]
, (1b)

in which x̂ ∈ Rn̂ is the model state, d̂ ∈ Rp is the (stepwise)
model disturbance, u ∈ Rm is the (manipulated) input, ŷ ∈ Rp

is the model output. We make the following assumptions.
Assumption 1. The plant output, y ∈ Rp, is measured at each
sampling time k ∈ I≥0. The pair (Â, B̂) is stabilizable, the pair
(Â,Ĉ) is detectable, and rank

([
Â−I B̂d

Ĉ Ĉd

])
= n̂+ p.

Given plant and model outputs, the prediction error is: e , y−
ŷ = y− (Ĉx̂+ Ĉd d̂), where we used (1b). Given the prediction
error e, we obtain a filtered estimate of the augmented state as:[

x̂∗
d̂∗

]
,

[
x̂
d̂

]
+

[
L̂x
L̂d

]
e, (2)

where L̂x ∈ Rn̂×p, L̂d ∈ Rp×p. We remark that
[

x̂(k)
d̂(k)

]
is pre-

dicted at time k−1 using (1a), whereas
[

x̂∗(k)
d̂∗(k)

]
is computed at

time k from (2), i.e. using y(k).

2.2 Performance monitoring method: a basic review

We can combine prediction (1a) and filtering (2) steps into:
x̂+a = Âax̂a + B̂au+ K̂ae

y = Ĉax̂a + e,
(3)

known as predictor form, in which

x̂a ,
[

x̂
d̂

]
, Âa ,

[
Â B̂d
0 I

]
, B̂a ,

[
B̂
0

]
, Ĉa , [Ĉ Ĉd ] ,

K̂a ,
[

K̂x
K̂d

]
=
[

Â B̂d
0 I

][
L̂x
L̂d

]
=
[

ÂL̂x+B̂d L̂d
L̂d

]
. (4)

We recall the following well-known result of systems theory.

Definition 2. A system in the form (3) is algebraically equiv-
alent (AE) to a system in the same form with matrices
(Aa,Ba,Ca,Ka) if there exists an invertible matrix T such that:

Aa = T ÂaT−1, Ba = T B̂a, Ca = ĈaT−1, Ka = T K̂a. (5)

We remark that if two systems in form (3) are AE, they
generate identical sequences of prediction error given the same
sequences of inputs and outputs.

The method proposed in (Pannocchia et al., 2013) assumes that
the actual plant evolves as follows:[

x
d

]+
=

[
A Bd
0 I

][
x
d

]
+

[
B
0

]
u+
[

Kx
Kd

]
v (6a)

y = [C Cd ]

[
x
d

]
+ v, (6b)

in which x ∈ Rn is the plant state, d ∈ Rp is the plant
disturbance, and v ∈ Rp is a zero-mean white noise. Let
xa , [ x

d ] and let (Aa,Ba,Ca,Ka) be defined as in (4) with
(Â, B̂,Ĉ, B̂d ,Ĉd , K̂x, K̂d) replaced by (A,B,C,Bd ,Cd ,Kx,Kd). We
can combine the plant (6) and the MPC model (3) to obtain a
description of the closed-loop (plant and model) system:[ xa

x̂a

]+
=
[

Aa 0
K̂aCa Âa−K̂aĈa

]
︸ ︷︷ ︸

A

[ xa
x̂a

]
+
[

Ba
B̂a

]
︸︷︷︸

B

u+
[

Ka
K̂a

]
︸︷︷︸

K

v

e = [Ca −Ĉa ]︸ ︷︷ ︸
C

[
xa
x̂a

]
+ v,

(7)

in which the prediction error is regarded as the output. For
convenience of exposition, the closed-loop system (7) can be
written in (discrete) transfer function form as (ẽ(z), ũ(z), ṽ(z)
are, respectively, the Z -transforms of {e(k)},{u(k)},{v(k)}):

ẽ(z) = Ĝu(z)ũ(z)+ Ĝv(z)ṽ(z), (8)

in which Ĝu(z),C(zI−A)−1B and Ĝv(z),C(zI−A)−1K+I.

As shown in (Pannocchia et al., 2013) the orders of minimal
realizations of Ĝu(z) and Ĝv(z) (denoted by Nu and Nv, re-
spectively) change in different scenarios of suboptimal perfor-
mance (e.g. plant/model mismatch and incorrect disturbance
model/observer). The three different scenarios of interest, notic-
ing that the plant (6) is also in form (3), are:

S1. Correct model and disturbance model/observer. Plant (6)
and model (3) are AE.

S2. Correct model, incorrect disturbance model/observer.
Matrices (A,B,C) and (Â, B̂,Ĉ) are identical (up to a sim-
ilarity transformation) but plant (6) and model (3) are not
AE due to incorrect disturbance model/observer.

S3. Incorrect model. Plant matrices (A,B,C) and model matri-
ces (Â, B̂,Ĉ) are not identical (up to any similarity trans-
formation). Thus, plant (6) and model (3) are not AE.

Notice that when the model matrices (Â, B̂,Ĉ) are incorrect, it
is irrelevant to discuss whether the disturbance model/observer
is correct or not because (3) cannot be AE to (6). The method is
based on the following results (Pannocchia et al., 2013): (i) In
S1 the prediction error is white noise. (ii) In S2 the prediction
error is not white noise and Nu = 0. (iii) In S3 the prediction
error is not white noise and Nu > 0.

From a diagnosis perspective the method requires a whiteness
test, to be applied to each component of the prediction error. To
this aim we use the well-known test of Ljung and Box (1978),
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which computes a statistic from an estimate of the autocorrela-
tion function and a threshold value (depending on the number
of lags considered in the autocorrelation and on the confidence
level). When this statistic is below the threshold value, i.e.
the whiteness ratio is less than 1, the tested sequence can be
regarded as white noise; otherwise it is regarded as nonwhite
noise. The second diagnosis tool is a Subspace IDentification
(SID) method applied to {u(k)} as input and {e(k)} as output
to determine the order of a minimal realization of Ĝu(z). It
is important to observe that the input u is correlated with the
output e of the system (7), and therefore a SID method with
proven closed-loop consistency should be used. Secondly, it is
not necessary to compute Nu exactly but simply to detect if
Nu = 0 or Nu > 0. In this work we use the PARSIM-K method
(Pannocchia and Calosi, 2010), and devise a specific rule to
establish if Nu = 0 or Nu > 0 from the ratio of the largest and
smallest singular values of an appropriate SVD (Pannocchia
and Calosi, 2010, Eq. 13).

In S2 and S3 different corrections are appropriate. In S2 it
is necessary to recompute the filter gain matrices (L̂x, L̂d) or
equivalently (K̂x, K̂d). In fact, as proved by Rajamani et al.
(2009), when two offset-free MPC models have the same
matrices (Â, B̂,Ĉ) but different disturbance model matrices
(B̂d1,Ĉd1) and (B̂d2,Ĉd2), respectively, a model as in (3) with
matrices (Â, B̂,Ĉ, B̂d2,Ĉd2, K̂x2, K̂d2) can be made AE to a model
as in (3) with matrices (Â, B̂,Ĉ, B̂d1,Ĉd1, K̂x1, K̂d1) by appro-
priate choices of (K̂x2, K̂d2). That is, in S2 for any choice of
disturbance model matrices (B̂d ,Ĉd) respecting Assumption 1
there exists a pair (K̂x, K̂d) that makes the MPC model (3) AE to
the actual plant (6). In order to compute a suitable observer gain
matrices (K̂x, K̂d) we use the following approach. Given input
and output sequences, {u(k)} and {y(k)}, recalling (3) and (4),
we solve the following nonlinear optimization problem:

min
K̂a,x̂a(0)

∑
k
‖y(k)−Ĉax̂a(k)‖2 s.t. (3). (9)

The nonlinear optimization problem (9) is nonconvex; thus,
in general, only a suboptimal solution can be obtained nu-
merically. However, most Sequential Quadratic Programming
(SQP) algorithms can guarantee that the obtained solution has
a cost no larger than that of the initial guess. Therefore, if
we initialize the SQP algorithm with the current augmented
observer matrix K̂a we obtain a new observer that generates a
prediction error sequence with no larger norm. In S3, instead,
the model matrices (Â, B̂,Ĉ) should be re-identified from in-
put/output data collected, in general, by a specific identification
campaign (Zhu, 2001). After the new matrices (Â, B̂,Ĉ) are
identified, the appropriate observer gain is computed from (9).

We observe that in S3 even the simpler choice of recomput-
ing the observer gain can improve the MPC robustness to
plant/model mismatch as discussed e.g. in (Pannocchia and
Rawlings, 2003; Pannocchia, 2003), although it cannot make
the MPC model (3) AE to the actual plant (6). The basic perfor-
mance monitoring algorithm is described in Algorithm 1.

Algorithm 1. Require: Input, output and prediction error se-
quences {u(k)}, {y(k)}, {e(k)} over a considered time
period. MPC matrices (Â, B̂,Ĉ, B̂d ,Ĉd , K̂x, K̂d).

1: For each component of {e(k)}, perform whiteness test
2: if {e(k)} is “white” then {Optimal performance}
3: No changes are necessary.
4: else {Suboptimal performance}

5: Evaluate Nu
6: if Nu = 0 then {(Â, B̂,Ĉ) are correct.}
7: Evaluate K̂a from (9).
8: else {(Â, B̂,Ĉ) are incorrect.}
9: Re-identify (Â, B̂,Ĉ). Choose (B̂d ,Ĉd) satisfying As-

sumption 1. Compute K̂a from (9).
10: end if
11: end if

2.3 Performance monitoring method: extensions

Large-scale multivariable systems, as the example considered
in this paper, are usually identified in a block form, i.e. from a
subset of inputs to a subset of outputs. The i-th sub-model is:[

x̂i
d̂i

]+
=
[

Âi B̂di
0 I

][
x̂i
d̂i

]
+
[

B̂i
0

]
u+
[

K̂xi
K̂di

]
ei

yi = [Ĉi Ĉdi ]
[

x̂i
d̂i

]
+ ei,

(10)

in which x̂i ∈ Rn̂i , yi ∈ Rpi , d̂i ∈ Rpi , and ∑
P
i=1 pi = p. Notice

that B̂i may have some zero columns because not all compo-
nents of the input vector u affect the subset of outputs yi. The
overall matrices (Â, B̂,Ĉ, B̂d ,Ĉd , K̂x, K̂d) can be obtained by:

Â , diag{Âi}, B̂ ,

 B̂1
...

B̂P

 , Ĉ , diag{Ĉi}, B̂d , diag{B̂di},

Ĉd , diag{Ĉdi}, K̂x , diag{K̂xi}, K̂d , diag{K̂di}. (11)
The performance monitoring algorithm proposed in (Pannoc-
chia and De Luca, 2012) can be specialized by treating each
output and prediction error block (yi and ei), separately. In the
next algorithm, N i

u denotes the order of a minimal realization
of Ĝi

u(z), transfer function from u to ei, and:

Âai ,
[

Âi B̂di
0 I

]
, B̂ai ,

[
B̂i
0

]
, Ĉai , [Ĉi Ĉdi ] ,

K̂ai ,
[

K̂xi
K̂di

]
, x̂ai ,

[
x̂i
d̂i

]
, i = 1, . . . ,P.

Algorithm 2. Require: Input, output and prediction error se-
quences {u(k)}, {y(k)}, {e(k)} over a considered time
period. MPC matrices (Â, B̂,Ĉ, B̂d ,Ĉd , K̂x, K̂d) as in (11).

1: for i = 1→ P do
2: Perform whiteness test on each component of {ei(k)}.
3: if {ei(k)} is “white” then {Optimal performance}
4: No changes are necessary for i−th block.
5: else {Suboptimal performance in i−th block}
6: Evaluate N i

u .
7: if N i

u = 0 then {(Âi, B̂i,Ĉi) are correct.}
8: Compute K̂ai from (9) with (Âa, B̂a,Ĉa, K̂a, x̂a,y)

replaced by (Âai, B̂ai,Ĉai, K̂ai, x̂ai,yi).
9: else {(Âi, B̂i,Ĉi) are incorrect.}

10: Re-identify (Âi, B̂i,Ĉi). Choose (B̂di,Ĉdi) s.t.
rank

[
Âi−1 B̂di

Ĉi Ĉdi

]
= n̂i+ pi. Compute K̂ai as in Line 8.

11: end if
12: end if
13: end for

The second aspect that should be considered in industrial appli-
cations is that the true plant can be described by linear dynamics
as in (6) only if the operating steady state remains constant. In
general, we can write the plant dynamics as a nonlinear system:
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x+a = f (xa,u,v) (12a)
y = g(xa)+ v, (12b)

in which v ∈ Rp is a zero-mean white noise and f (·) and g(·)
are (obviously unknown) continuous nonlinear functions. For a
given operating steady state, we can rewrite (12) as:

x+a = Aaxa +Bau+Kav+ εx(xa,u,v) (13a)
y =Cxxa + v+ εy(xa), (13b)

in which
εx(xa,u,v), f (xa,u,v)−Aaxa +Bau+Kav (14a)

εy(xa), g(xa)−Cxxa. (14b)
By definition εx(·) and εy(·) vanish at the current equilibrium
and are continuous. Thus, we can assume that they are small
in a sufficiently small neighborhood of the current equilibrium.
Combining (13) and the MPC model (3) we obtain:[ xa

x̂a

]+
=
[

Aa 0
K̂aCa Âa−K̂aĈa

]
︸ ︷︷ ︸

A

[ xa
x̂a

]
+
[

Ba
B̂a

]
︸︷︷︸

B

u+
[

Ka
K̂a

]
︸︷︷︸

K

v+
[

εx(·)
K̂aεy(·)

]

e = [Ca −Ĉa ]︸ ︷︷ ︸
C

[
xa
x̂a

]
+ v+ εy(·).

Comparing the above expression with (7), it follows that the
main technical results of the proposed performance moni-
toring method discussed in Section 2.2 hold in the limit of
εx(·),εy(·)→ 0.

3. CRUDE DISTILLATION UNIT: RIGOROUS DYNAMIC
SIMULATION AND MPC DESIGN

We present in this section a simulated large-scale industrial pro-
cess, specifically a crude distillation unit (CDU), as case study
for the application of the proposed performance monitoring
method.

3.1 Simulation model and base regulatory control details

The CDU rigorous simulation model was developed in (Bottai,
2012) using UniSimr Design, following two main steps: (i)
steady state modeling; (ii) dynamic modeling. The first one
involves building the process flow diagram (PFD) as intercon-
nection of unit operations and solving mass, energy and equilib-
rium equations without accumulation terms to obtain a steady-
state condition of the process. This is a necessary step for
the transition to a dynamic model. In UniSimr Design every
process equipment (valves, heaters, distillation columns, etc.) is
modeled as one or more pressure node. Therefore, pressure gra-
dients produce mass flows in the simulated PFD. High fidelity is
ensured by using a small integration time (0.5 seconds), as well
as considering the effect of static heads, equipment holdups,
regulatory controllers, etc.

The PFD of the simulated CDU is represented in Figure 1. The
crude fed to the plant was modeled using the Oil Characteriza-
tion environment implemented in UniSimr Design. By provid-
ing conventional petroleum assay data it generates a series of
discrete hypothetical components to represent components of a
crude oil (and the corresponding properties). The following five
products are obtained from the CDU:

• AN: naphtha, from the overhead three-phase separator;
• KERO: kerosene, from upper side stripper;
• LGO: light gas-oil, from middle side stripper;

Table 1. Quality specifications of the products.

Product ASTM-D86 95% [°C]

AN 149
KERO 241
LGO 349.4
HGO 390.9

Table 2. MPC manipulated variables.

Controller Tag Description

TIC-101 MV1 Overhead tray temperature controller SP
FIC-201 MV2 KERO flow-rate controller SP
FIC-301 MV3 LGO flow-rate controller SP
FIC-401 MV4 HGO flow-rate controller SP
TIC-001 MV5 Furnace outlet temperature controller SP
FIC-001 MV6 Crude oil flow-rate controller SP
FIC-202 MV7 KERO stripping steam flow-rate controller SP
FIC-302 MV8 LGO stripping steam flow-rate controller SP
FIC-402 MV9 HGO stripping steam flow-rate controller SP
FIC-502 MV10 Main column steam flow-rate controller SP
Q-UPA MV11 Upper pump-around duty
Q-MPA MV12 Middle pump-around duty
Q-BPA MV13 Bottom pump-around duty
PIC-101 MV14 Overhead pressure controller SP

• HGO: heavy gas-oil, from bottom side stripper;
• AR: atmospheric residue, from the bottom of the column.

For every column product we assigned values of ASTM-D86
95% vol. as quality specification (see Table 1). Base regulatory
controllers were included in the UniSimr Design dynamic
model, and they are represented in Figure 1.

3.2 MPC objectives and design

The first step in an MPC design is the choice of the manipulated
(MV) and controlled (CV) variables. As in most industrial ap-
plications, the MPC manipulates set-points of base controllers.
With reference to Figure 1, set-points of the control loops
highlighted in red were chosen as manipulated variables in the
MPC design. In our case study we chose the 14 MVs listed in
Table 2 because of their well known influence and relevance in
a topping process. We chose 25 CVs divided into three main
categories:

• 4 CVs (AN, KERO, LGO, HGO qualities, expressed in
terms of ASTM-D86 95%) have set-points;

• 5 CVs (flow ratios) have ranges to respect;
• 16 CVs (valve openings) have saturation constraints.

In order to apply the MPC algorithm developed in MATLAB
to the rigorously simulated CDU model in UniSimr Design
environment, it was necessary to create a connection interface
for the data exchange between the two software environments.
At each sampling time (1 minute), the MPC algorithm in
MATLAB reads the CVs from UniSimr Design model and
computes the MVs which are passed to the UniSimr Design
model as set-points. Then MATLAB sends a command to
UniSimr Design to integrate the model for 1 minute. Using the
connection interface it was also possible to collect plant data for
systems identification.

Due to the large number of CVs and MVs, it was useful to
identify and arrange the state-space matrices (Â, B̂,Ĉ) in blocks,
each describing the dynamic response of a group of CVs for
variations of a group of MVs as discussed in Section 2.3.
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Fig. 1. Flow sheet of the rigorously simulated CDU.

Fig. 2. Identified steady-state matrix.

Systems identification was carried out in three steps: (i) Gener-
alized Binary Noise signals [GBN, see e.g. (Zhu, 2001)] were
generated in MATLAB for each MV and commanded to the
CDU model to collect CVs; (ii) from the collected MVs and
CVs data a state-space model was obtained for each block using
the PARSIM-K method (Pannocchia and Calosi, 2010); (iii) the
overall state-space model as in (4) was assembled. The steady-
state gain matrix is reported in Figure 2, in which the various
blocks (5 CV blocks and 3 MV blocks) and the overall sparsity
of the model are highlighted. The model has n̂ = 80 states, and
the MPC uses B̂d = 0, Ĉd = I, L̂x = 0, L̂d = I.

4. RESULTS AND DISCUSSION

We considered the case in which the MPC algorithm uses a
linear model that was obtained from identification around a
steady-state that is no longer up-to-date. This is a frequent
situation in industrial MPC applications because in the design
phase the MPC model is typically obtained around the current
operating point, but then after closed-loop implementation, the

MPC tends to move the plant towards a different (generally,
more profitable) steady state.

We summarize in Table 3 the most significant performance
results. In reference conditions, the performance monitoring
method detects that the prediction error is nonwhite in all vari-
ables, as highlighted in Table 3 by a whiteness ratio signifi-
cantly higher than 1 for all product quality CVs (but also for
the other CVs not shown in Table 3). The test on the order
of Ĝu(z) reveals that the model is incorrect, i.e. Nu > 0, and
recommends re-identification of the model matrices (Â, B̂,Ĉ)
followed by recalculation of the observer gain. As cheaper
and non-invasive remedy action, if we simply recompute the
observer gain from (9), we obtain an appreciable decrease of the
whiteness ratio in all product quality CVs. Most importantly,
the closed-loop cost function decreases by 36%. As ultimate
solution suggested by the proposed performance monitoring
method, we collected identification data around the new cur-
rent steady state, proceeding in a similar way as in the first
identification required for initial MPC commissioning, and ob-
tained new model matrices (Â, B̂,Ĉ) in which n̂= 72. When this
correction is implemented the whiteness ratio of each output is
reduced significantly, although it never approaches 1 because of
the unavoidable mismatch between the linear MPC model and
the actual nonlinear behavior of the plant. Most importantly,
the overall closed-loop cost function is reduced by 80% with
respect to reference conditions.

In order to appreciate the benefits of the corrective action, we
report in Figure 3 the closed-loop behavior of the four product
qualities, in reference conditions and after use of the newly
identified model and observer, during a sequence of set-point
changes in naphtha and kerosene quality specifications. We
clearly notice that the use of a new model (and observer) grants
tremendous improvements in the closed-loop behavior.
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Table 3. Whiteness ratio for the four product qual-
ities and closed-loop cost function.

Case Whiteness ratio Closed-loop
AN KERO LGO HGO cost

Reference 1087 3541 3304 3641 4.27 ·105

New observer 164.5 848.2 2187 2183 2.73 ·105

New model and
observer

577.5 1023 756.1 905.7 8.27 ·104
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Fig. 3. Behavior of AN, KERO, LGO and HGO ASTM-D86
95% in reference conditions (up to time 120 h) and after
use of the re-identified MPC model (after time 120 h)

5. CONCLUSIONS

We discussed in this paper the application of the performance
monitoring method proposed in (Pannocchia et al., 2013) for
linear offset-free MPC algorithms to a rigorously simulated
Crude Distillation Unit. Such a process was chosen due to its
high relevance within the process industries and, most impor-
tantly, because it represents a challenging test bench of a large-
scale industrial process. The required extensions to large-scale
block structured systems were discussed. Then the CDU pro-
cess was rigorously modeled using UniSimr Design, and an in-

terface between the controlled process and the MPC algorithm
developed in MATLAB was devised. The performance moni-
toring method revealed correctly the presence of plant/model
mismatch and suggested re-identification of the MPC model.
After implementation of the new model the closed-loop perfor-
mance improved by 80%. A less effective, but significantly less
invasive, corrective action is the computation of a new observer
gain, which can prove useful in all situations in which systems
identification cannot be scheduled in a reasonable timeframe,
e.g. due production constraints. Future research will be de-
voted to quantifying the tradeoff between these two correc-
tive actions, hence providing the control engineers with further
information regarding the strong or tolerable necessity of re-
identifying the MPC model.
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