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Abstract: The main objective of this work is to develop computationally efficient Global
linearization based control (GLC) schemes, which are suitable for control of nonlinear processes
with fast dynamics. Models used for the controller synthesis are discrete time block oriented
nonlinear black box state space models identified directly from the input-output perturbation
data. The chosen model structures facilitate construction of closed form solutions to the
unconstrained GLC formulations. The efficacy of the proposed control formulations is evaluated
by conducting simulation studies on a benchmark continuously stirred tank reactor (CSTR)
system which exhibits input multiplicity behavior. Analysis of the simulation results reveals
that the proposed GLC formulations are able to achieve a significant reduction in the average
computation time without compromising on the closed loop performance.
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1. INTRODUCTION

In recent years, nonlinear model based control schemes
are increasingly being used in the industrial applications.
Nonlinear MPC is the most popular member of this
class. NMPC is an optimization-based control methodol-
ogy which, in general, does not lead to a closed form con-
trol law. Incorporation of nonlinear dynamic models into
the MPC formulation requires that a nonconvex nonlinear
programming problem be solved at each sampling instant.
This can prove to be a formidable task while controlling
systems with fast dynamics.

In the process control literature, global linearization has
emerged as another effective tool for design of nonlinear
model based controllers. From the viewpoint of controlling
systems with fast dynamics, the methods based on global
input-output linearization arising from geometric consid-
erations appear to be attractive. If the model has input
affine structure and constraints on the manipulated inputs
are ignored, then a closed form control law can be derived
under the GLC framework. Thus, the computational load
associated with a GLC scheme is relatively less. Henson
and Seborg (1997) provide an excellent review of the
feedback linearizing control for continuous time systems.
In practice, however, model based controllers are im-
plemented through microprocessors or digital computers.
Since the discrete time systems require different consider-
ations at the design stage, Soroush and Kravaris (1996)
have developed multivariable nonlinear control schemes
based on the feedback linearization of nonlinear discrete
time models. They demonstrate applicability of their GLC

schemes using discrete time representation of mechanistic
models. In the discrete domain, however, the discrete GLC
control problem often has to be solved on-line numerically
using iterative methods. This is because, even when a con-
tinuous time mechanistic model has input affine structure,
the sampled data representation of the mechanistic model
is, in general, not affine in the manipulated inputs.

Thus, to enhance the computational benefits of GLC, it
is necessary to develop efficient approaches for solving
the discrete GLC problem. Also, in practice, a reliable
mechanistic dynamic model may not be available for
the system under consideration. This difficulty can be
alleviated if a nonlinear black box model is developed
from the input-output perturbation data and the model
structures is chosen such that it is amenable to the
analytical treatment.

The main objective of this work is to develop computation-
ally efficient GLC schemes, which are suitable for control of
nonlinear processes with fast dynamics. Among the various
model forms available in the literature, we choose to work
with discrete time block oriented nonlinear state space
models developed by Srinivasrao et al. (2005) and Srini-
vasrao et al. (2007) for the following reasons: a)The dy-
namic component of these models is parameterized using
generalized orthonormal basis filters (OBF), which results
in significant reduction in the number of parameters to
be estimated and in relatively low dimensional state space
representations b) the static nonlinear part is parametrized
using quadratic polynomials. As a consequence, the re-
sulting model structure facilitates construction of closed
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form solutions to the unconstrained GLC formulation.
Moreover, these models are capable of capturing dynamics
of systems exhibiting both input multiplicities as well as
output multiplicities (Srinivasrao et al. (2005, 2007)).
The effectiveness of the proposed control formulations is
evaluated by conducting simulation studies on a bench-
mark continuously stirred tank reactor (CSTR) system
in which a reversible exothermic reaction is carried out
(Li and Biegler (1988)). This system is highly nonlinear
and exhibit input multiplicity in the neighborhood of the
desired optimum (singular) operating point.

This paper is organized in five sections. The next sec-
tion introduces block oriented NOE and NARX models,
which are later used in the GLC controller synthesis.
The proposed GLC formulations based on these black box
models are developed in Section 3. The simulation results
are presented in section 4. The last section presents the
major conclusions reached from the analysis of simulation
studies.

2. NONLINEAR BLACK BOX STATE SPACE
MODELS

Nonlinear black box state space models with NOE (Srini-
vasrao et al. (2007)) and NARX (Srinivasrao et al. (2005))
structures are briefly described in this section.

2.1 OBF-NOE Model with Wiener Structure

Consider a Wiener type MISO state space model of the
form Srinivasrao et al. (2007)

x(i)(k + 1) =Φ(i)x(i)(k) + Γ(i)u(k) (1)

yi(k) =Ω
(i)
h
x(i)(k)

i
+ vi(k) (2)

for the i’th output. Here, x(i)(k) ∈ Rni represents the
associated state vector, u(k) ∈ Rm represents vector of
manipulated inputs, yi(k) represents i’th component of
the vector of measured / controlled outputs y(k) ∈ Rr

and Ω(i) [.] represents some nonlinear static map relating
states with the outputs for the ith MISO model. It may
be noted that u(k) and y(k) are defined as perturbation
variables in the neighborhood of some desired steady state
operating point. Matrices (Φ(i),Γ(i)) are parameterized
using OBF (Patwardhan and Shah (2005)), which repre-
sent an orthonormal basis for the set of strictly proper
stable transfer functions (denoted as H2). Ninness and
Gustafson Ninness and Gustafsson (1997) have shown that
a complete orthogonal set in H2 can be constructed as
follows

Fk(z, ξ) =

q
(1− |ξk|2)
(z − ξk)

k−1Y
i=1

(1− ξ∗i z)
(z − ξi)

(3)

where {ξk : k = 1, 2, ...} is an arbitrary sequence of poles
inside the unit circle appearing in complex conjugate
pairs. The nonlinear state output map Ω(i)[.] : Rni →
R is chosen to be simple multi-dimensional quadratic
polynomial functions of the form

Ωi [.] = C
(i) x(i)(k)+

³
x(i)(k)

´T
D(i)

³
x(i)(k)

´
(4)

Here, C(i) represents a (1×ni) vector and D(i) represents
a ni×ni symmetric matrix. The model (equations 1-2) can

be looked upon as a truncated second order Volterra series
model. The estimation of OBF poles and the parameters
of state-output map can be carried out using a nested
optimization approach as proposed by Srinivasrao et al.
(2007).

Such r MISO models are stacked to formulate a MIMO
OBF-Wiener model as follows

x(k + 1) =Φx(k) + Γu(k) (5)

y(k) =Ω [x(k)] + v(k) (6)

Ω [x(k)] =C x(k) +

⎡⎢⎢⎣
x(1)(k)T D(1) x(1)(k)

x(2)(k) TD(2) x(2)(k)
..

x(r)(k)T D(r) x(r)(k)

⎤⎥⎥⎦ (7)

=Cx(k) + {D } (x(k),x(k)) (8)

where

x(k) =

∙ ³
x(1)(k)

´T ³
x(2)(k)

´T
...
³
x(r)(k)

´T ¸T
(9)

Φ= block diag
£
Φ(1) Φ(2) ... Φ(r)

¤
n×n (10)

Γ=
h
Γ(1)

T

Γ(2)
T

... Γ(r)
T
iT
n×m

(11)

C= block diag
£
C(1) C(2) ... C(r)

¤
r×n (12)

{D} =

⎡⎢⎣
£
D(1) [0] ... [0]

¤
...........£

[0] [0] ... D(r)
¤
⎤⎥⎦
r×n×n

(13)

and n =
rP

i=1
ni. Note that {D } is a (r × n × n) bilinear

matrix representation of a three dimensional array of the
form (see Appendix A for details of the bilinear matrix
representation).

2.2 OBF-NARX Model

A model belonging to this class can be constructed by
modifying equation (1) as proposed by Srinivasrao et al.
(2005). Thus, a MISO OBF-NARX type observer can be
represented as follows

x(i)(k + 1)=Φ(i)x(i)(k) + Γ(i)u(k) + L(i)yi(k) (14)

yi(k) =Ω
(i)
h
x(i)(k)

i
+ ei(k) (15)

where x(i)(k) ∈ Rni represents the associated state vector.
Here, {ei(k) : k = 1, 2, ....} represents a zero mean white
noise sequence. Similar to the OBF-NOE case, the ma-
trices (Φ(i),Γ(i),L(i)) appearing in the state dynamics are
parameterized using OBF. The nonlinear state output map
Ω(i)[.] : Rni → R is chosen to be simple multi-dimensional
quadratic polynomial functions of the form given by equa-
tion (4). The estimation of OBF poles and the parameters
of state-output map can be carried out using a nested
optimization approach as proposed by Srinivasrao et al.
(2005).

Similar to the NOE case, r MISO OBF-NARX models can
be stacked to form a MIMO OBF-NARX model as follows
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x(k + 1)=Φx(k) + Γu(k) + Ly(k) (16)

y(k) =Ω [x(k)] + e(k) (17)

Ω [x(k)] = Cx(k) + {D } (x(k),x(k)) (18)
where x(k),Φ,Γ and{D} are constructed in a similar
manner to equations (10)-(13) presented in the previous
sub-section and

L =
h
L(1)

T

L(2)
T

... L(r)
T
iT
n×m

At the model identification stage, the representation given
by equations (16) has an advantage that the state dy-
namics is linear function of u(k) and y(k). However, the
representation given by equations (16-17) is not convenient
when it is desired to carry out GLC controller design.
Thus, the OBF-NARX model is further rearranged as
follows

x(k + 1) =z [x(k)] + Γu(k) + Le(k) (19)

y(k) =Ω [x(k)] + e(k) (20)

z [x(k)] =Φx(k) + LΩ [x(k)] (21)

The following observations can be made based on this
rearranged form:

• Unlike the NOE model with Weiner structure, the
state dynamics (19) is a nonlinear function of x(k)

• The state dynamics is driven by manipulated inputs
and the zero mean white noise sequence {e(k)} ,
which facilitates modeling of the effects of unmea-
sured disturbances on the measured outputs.

3. CONTROLLER DEVELOPMENT UNDER GLC
FRAMEWORK

In this section, closed form control laws are developed
using NOE and NARX models under the globally lineariz-
ing discrete control framework developed by Soroush and
Kravaris (1996). It is assumed that following assumptions:

• The plant to be controlled is internally asymptotically
stable in the neighborhood of the desired operating
point.

• System under consideration is square, i.e. number
of inputs are equal to the number of outputs (i.e.
m = r).

3.1 Globally Linearizing Control Law

Consider a discrete nonlinear model of the form

x(k + 1) = χ [x(k),u(k)] (22)

y(k) =Ω [x(k)] (23)

Let us further assume that the manipulated input u(k)
directly affects the output y(k+1) (Soroush and Kravaris
(1996))

y(k + 1) = Ω [χ [x(k),u(k)]] (24)
and the characteristic matrix satisfies the following rank
condition

rank

∙∙
∂Ω

∂χ

¸ ∙
∂χ

∂u

¸¸
= m

i.e. the discrete system of equation (22)-(23) has relative
order one. Let r(k) ∈ Rr denote the desired setpoint and

let ε(k) ∈ Rr denote a signal that contains information
about the model plant mismatch and / or unmodelled dis-
turbances. Then, following Soroush and Kravaris (1996),
a GLC law, that achieves a servo response equivalent to a
first order reference model of the form

y(k + 1) = Ay(k) + (I−A) [r(k)− ε(k)] (25)

between the controlled output and the mismatch adjusted
setpoint [r(k)− ε(k)] can be derived by finding manipu-
lated input, u(k), that solves the following set of nonlinear
equations at each sampling time

Ω [χ [x(k),u(k)]] = Ay(k) + (I−A) [r(k)− ε(k)] (26)

The unity gain reference model is selected such that eigen
values of A are at desired location inside the unit circle.
A simple way to parameterize matrix A is to choose it to
be diagonal, i.e.

A =diag [ α1 α2 ... αm ] ; with 0 ≤ αi < 1

If additional degree of freedom are introduced by using
filtered residuals and filtered setpoint, then the control law
is further modified as follows

Ω [χ [x(k),u(k)]] = Ay(k) + (I−A) [rf (k)− εf (k)] (27)
where filtered mismatch, εf (k), and filtered setpoint are
computed using a unity gain filter as follows

εf (k) = Aeεf (k − 1) + [I−Ae] ε(k) (28)

rf (k) = Arrf (k − 1) + [I−Ar] r(k) (29)
Here, Ae and Ar are diagonal matrices similar to A and
are treated as tuning parameters.

3.2 OBF-NOE Model

Since the OBF NOE model has a fading memory, this
model can be used to construct an open loop state observer
of the form bx(k) = Φbx(k − 1) + Γu(k − 1)
The state estimate, bx(k), can be used to compute the
model residual signal as follows

ε(k) = y(k)− Ω [bx(k)]
The residual signal contains information on the model-
plant mismatch and the unmeasured disturbances affecting
the plant. The estimate bx(k) can be further used for
computing the one step output prediction as followsby(k + 1) = Ω [bx(k + 1)] = Ω [Φbx(k) + Γu(k)] (30)

Defining bilinear matrix {Ψ}, matrixΛ(k) and vector y(k)
as

{Ψ}= {{D} ◦ Γ • Γ}
Λ(k) =CΓ+ 2 {{D} ◦Φ • Γ} bx(k)

y(k) = CΦbx(k) + {{D} ◦Φ •Φ} (bx(k), bx(k))
equation (30) can be rearranged as follows

Ω [χ [bx(k),u(k)]] = {Ψ} (u(k),u(k)) + [Λ(k)]u(k) + y(k)
(31)

Here, operators [.] • {.} , {.} ◦ [.] and {.} • [.] represents
left dot product, circle product and right dot product,
respectively, between a matrix [.] and a bilinear matrix
{.}. (Refer to Appendix for details).

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

223



3.3 OBF-NARX Model

At each sampling instant, the internal NARX MIMO
model can be used to estimate the current state, bx(k),
and the model residual, ε(k), as follows

bx(k) =Φbx(k − 1) + Γu(k − 1) + Ly(k − 1) (32)

ε(k) = y(k)−Ω [bx(k)] (33)

To arrive at the control law, consider the one step ahead
prediction at instant k

bx(k + 1)=z [ bx(k)] + Γu(k) + Lεf (k) (34)

z [ bx(k)] =Φ bx(k) + LΩ [bx(k)] (35)by(k + 1) = Ω [bx(k + 1)] (36)
where εf (k) represent the filtered model residuals as given
by equation (28). Defining ey(k) = Ω [bx(k|k − 1)] + εf (k),
equation (36) can be rearranged in the form given by
equation (31) by defining the bilinear matrix {Ψ} and
matrix Λ(k) as follows

{Ψ}= {{D} ◦ Γ • Γ}
Λ(k) =CΓ+ 2 {{D} ◦Φ • Γ} bx(k)

+2 {{D} ◦ L • Γ} ey(k)
Vector y(k) appearing in equation (31) is defined as

y(k) = {{D} ◦ L • L} (ey(k), ey(k))
+ [CL+ 2 {{D} ◦Φ • L} (bx(k))] ey(k)
+CΦbx(k) + {{D} ◦Φ •Φ} (bx(k), bx(k))

3.4 Closed Form Controller Synthesis

To arrive at a closed form control law, consider one step
ahead prediction equation (31) combined with the GLC
control law (27). The resulting controller design equation
can be further rearranged as follows
Q [u(k)] = {Ψ} (u(k),u(k))+[Λ(k)]u(k)+ρ(k) = 0 (37)
where

ρk = [y(k)− (Aby(k) + (I−A) [rf (k)− εf (k)])]
Here, Q [.] : Rm → Rm is the multi-dimensional quadratic
operator and 0 represents m × 1 null vector. A multi-
dimensional quadratic equation of the form (37) can be
solved analytically using method developed by Rall (1961)
as follows:

u(k) = u(k)−
∙
1

2

n
I + (∆(k))

1
2

o¸−1 eρ(k) (38)

∆(k) =
³
I− 4

neΨ(k)o (eρ(k))´
Q [u(k − 1)] = {Ψ} (u(k − 1), (k − 1))

+[Λ(k − 1)]u(k − 1) + ρ(k)neΨ(k)o= (∇U [Q (u(k − 1))])−1 • {Ψ}eρ(k) = (∇U [Q (u(k − 1))])−1 [Q (u(k − 1))]
In general, a matrix has multiple square roots and conse-
quently different values of u(k) will be obtained for every

choice of the square root of matrix ∆(k). From the control
view point, it is desirable to find the set of solutions for
which the sensitivity q u(k) − u(k − 1) q / q ρ(k) q
is minimum. Patwardhan and Madhavan (1998), have
shown that this set corresponds to choosing (∆(k))1/2 such
that its eigen values have non-negative real parts. Also,
the matrix square root can have complex elements, and,
consequently the resulting u(k) can be complex. Patward-
han and Madhavan (1998), have suggested that real part
of complex solution vector can be used for manipulation
when the solution vector becomes complex. Thus, incorpo-
rating the above suggestions, the generic quadratic GLC
becomes

u(k) = u(k − 1)−REAL

(∙
1

2

n
I+ (∆(k))

1
2

o¸−1 eρ(k))
(39)

The control law (equation 39) is an unconstrained formu-
lation. In the rest of the text, GLC formulation developed
using OBF-NOE model is referred to as NOE-GLC and
GLC formulation developed using OBF-NARX model is
referred to as NARX-GLC.

4. SIMULATION STUDIES

The efficacy of the proposed control schemes is demon-
strated by carrying out simulation studies on a CSTR
system, which exhibits input multiplicity and change in
the sign of the steady state gain in the desired operating
region. Moreover, the desired optimum operating point
happens to be a singular point where the steady state
gain is reduced to zero and the invertibility is lost. Thus,
controlling the CSTR at the optimum point poses a chal-
lenging control problem.

4.1 Continuous Stirred Tank Reactor

The process under consideration is a benchmark CSTR in
which a non-isothermal, reversible first order reaction of

type A
K1⇔
K2

B is carried out. The dynamics of this system

can be represented by the following set of ODEs (Li and
Biegler (1988))

dCA

dt
=

Fi(CAi − CA)

h Ac
−K1CA +K2CB

dCB

dt
= − FiCB

h Ac
+K1CA −K2CB

dT

dt
=

Fi(Ti − T )

h Ac
+
− Hr

ρ Cp
(K1CA −K2CB)

dh

dt
=

1

Ac
(Fi − k

√
h)

K1 = k01 exp

µ− E1
T

¶
; K2 = k02 exp

µ− E2
T

¶
The reactor system has four state variables, namely con-
centration of A (CA), concentration of B (CB), tempera-
ture (T ) and level (h). The inlet flow (Fi) and inlet tem-
perature (Ti) are treated as the manipulated inputs while
the inlet concentration (CAi) is treated as the unmeasured
disturbance. The nominal parameters and the operating
steady states used in the simulation studies are given in Li
and Biegler (1988). Out of the four states, concentration
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of B, CB, and the reactor level, h, are assumed to be
measured and controlled outputs. Details of the black box
model identification exercises can be found in Deshpande
(2010).

The MIMO servo control problem is formulated in such
a way that it is desired to shift the operating point from
a given suboptimal initial steady state (CB(0) = 0.4088 ,
h(0) = 0.14) to the optimum operating point (CBopt =
0.5088 , hopt = 0.16). In addition, to investigate the
regulatory behavior, 10% step change in the unmeasured
disturbance, CAi, is introduced simultaneously with the
setpoint changes. The controller performance is reported in
terms of (a) Average computation time required for com-
puting control moves (Intel(R) Core(TM) 2, Duo CPU@
2 GHz with 2 GB RAM) and (b)Integral Square Error
(ISE). In all GLC controllers, the reference model tuning
matrix A and the plant model mismatch filter matrix Ae

are selected as
A = diag [ 0.9 0.9 ] and Ae = diag [ 0.95 0.98 ]

Use of this error filter for plant model mismatch helps in
improving the robustness of the GLC controllers. For the
sake of comparison, an Ideal GLC controller is developed
directly using the mechanistic model as an open loop
observer and by following the design procedure outlined in
the beginning of Section 3.1. The tuning parameters used
for the Ideal GLC controller are identical to that of the
NOE-GLC and NARX-GLC controllers. The Ideal GLC
controller is implemented by solving the controller design
equation (27) iteratively using Newton’s method (’fsolve’
command in MATLAB).

Figures (1) and (2) present comparison of the controlled
outputs and manipulated inputs obtained using NOE-
GLC and NARX-GLC formulations. It may be noted that
NARX-GLC is able to achieve the desired transition at
smaller overshoot in CB and much less settling time. This
may be attributed to the fact that NARX model explicitly
models the unmeasured disturbances. As a consequence,
the resulting GLC formulation is better suited for re-
jecting unmeasured step disturbance in CAi introduced
simultaneously with the setpoint change. A comparison of
performance indices of all the GLC controllers is presented
in Table 1. It may be noted that the average computation
time for the Ideal GLC formulation is quite large. The
computation times for NARX-GLC and NOE-GLC formu-
lations, on the other hand, are significantly small (about
1/150 of Ideal GLC). Moreover, the ISE values obtained
using both the formulations are comparable to that of Ideal
GLC.

To test the performances of the proposed GLC formu-
lations in the presence of stochastic disturbances, it is
assumed that dynamics of CAi(k) is governed by the fol-
lowing stochastic process

CAi(k) = CAi +
1

1− 0.95q−1w(k)
where w(k) is a white noise sequence with standard de-
viation 0.1.In addition, the concentration and the level
measurements are assumed to be corrupted with zero mean
normally distributed random variables with standard devi-
ations equal to 0.005 and 0.0025, respectively. The result-
ing closed loop behavior is presented in Figures (3) and
(4). Both the controllers are able to achieve transition to
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the desired setpoints in the face of drifting unmeasured
disturbance. As evident from Figure 4, the input profile
generated using NOE-GLC is relatively smooth. It may
be noted that the inlet temperature settles at two different
steady states due to the input multiplicity behavior of the
CSTR system.

5. CONCLUSIONS

In this work, computationally efficient discrete GLC
schemes have been developed using discrete nonlinear
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Table 1. CSTR: servo Performance Compari-
son:With stochastic Disturbances

Controller Avg.
Comp.T im e ISE

(msec) CB Level
(×10−2) (×10−3)

Ideal GLC 187.54 7.65 9.90
NARX-GLC 1.26 5.77 8.49
NOE-GLC 1.15 6.73 8.78

black-box models with NOE and NARX structures. By ex-
ploiting structures of state realization of these models and
solution method for analytically solving multi-dimensional
quadratic equations, closed form control laws are derived.
The efficacy of the proposed GLC formulations is eval-
uated by conducting simulation studies on a benchmark
continuously stirred tank reactor (CSTR) system. The
simulation studies demonstrate that the proposed GLC
formulations are able to achieve a significant reduction in
the average computation time without compromising the
closed loop performance.
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6. BILINEAR MATRIX OPERATIONS

Definition A.1 (Bilinear Matrix): A bilinear matrix B of
dimension (r × n × m) is ordered collection of numbers
bαβγ , α = 1, 2, ...r ;β = 1, 2, ...n; γ = 1, 2, ...m. It is
highlighted by inclusion in the curly brackets as {B} or
{bαβγ} .
Definition A.2: A (r×n×m)bilinear matrix {B} operating
on a (n× 1) vector v is represented as A = {B} (v) where
A is a (r × n×m)matrix with elements

aαγ =
nX

β=1

bαβγ vβ

Definition A.3: A (r×n×m)bilinear matrix {B} operating
on a (n×1) vector v and a (m×1) vector w is represented
as z = {B} (v, w)where z is a (r×1) vector with elements

zα =
mX
γ=1

nX
β=1

bαβγ vβwγ

A (r × n × n)bilinear matrix is called symmetric if
{B} (v,w) = {B} (w, v) for every v, w ∈ Rn.

Definition A.4 (Left Dot Product): The left dot product of
a (r×n×m) bilinear matrix {B} with a (k× r)matrix A
is represented as

{D} = A • {B}
where {D}is a (k × n×m) bilinear matrix with elements

dαβγ =
rX

η=1

aαηbηβγ

Definition A.4 (Right Dot Product): The right dot product
of a (r×n×m) bilinear matrix {B} with a (m×k)matrix
A is represented as

{D} = {B} •A
where {D}is a (r × n× k) bilinear matrix with elements

dαβγ =
mX
η=1

bαβηaηγ

Definition A.4 (Circle Product): The circle product of a
(r × n×m) bilinear matrix {B} with a (n× k) matrix A
is represented as

{D} = {B} ◦A
where {D}is a (r × n× k) bilinear matrix with elements

dαβγ =
nX

η=1

bαηγaηβ
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