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Abstract: A robust model predictive control (RMPC) using polyhedral invariant sets for linear
parameter varying (LPV) systems is presented in this work. A sequence of state feedback gains
associated with a sequence of nested polyhedral invariant sets is constructed off-line in order
to reduce the computational burdens. At each control iteration, when the measured state
lies between any two adjacent polyhedral invariant sets constructed, a state feedback gain
is determined by interpolation of two pre-computed state feedback gains incorporated with
scheduling parameters. Three interpolation algorithms are proposed. In the first algorithm,
the real-time state feedback gain is determined by maximizing the state feedback gain with
subjected to a set of constraints associated with current invariant set. In the second algorithm,
the real-time state feedback gain is calculated by minimizing the violation of the constraints of
the adjacent inner invariant set with subjected to a set of constraints associated with current
invariant set. In the last algorithm, the real-time state feedback gain is obtaned by minimizing
the upper bound of infinite horizon worst case performance cost, which is estimated by Lyapunov
function at current state, with subjected to a set of constraints associated with current invariant
set. The controller design is illustrated with a case study of nonlinear two-tank system. The
simulation results showed that the proposed RMPC with interpolation provides a better control
performance while on-line computation is still tractable as compared to previously reported
algorithms.

Keywords: linear parameter varying system; polyhedral invariant set; model predictive control;
robust stability; stabilizable region.

1. INTRODUCTION

Model predictive control (MPC) is known as an effective
control algorithm to deal with multiple input-multiple
output processes. At each control iteration, MPC uses an
explicit model to solve an optimal control problem, and
implements the first element of the optimal input sequence
computed. However, conventional MPC based on a linear
model is often unsuitable for controlling nonlinear systems.
The performance of linear MPC will deteriorate as the
discrepancy between the real process and the model used
increases (Morari and Lee, 1999).

Though, the behaviour of a nonlinear system is preferably
captured by a nonlinear process model, MPC based on
nonlinear model is computationally prohibitive in practi-
cal situations. To overcome the excessive computational
cost of MPC application for large-scale nonlinear systems,
representing the process model in a form of Linear Param-
eter Varying (LPV) systems has been recieving increasing
attention(Paijmans et al., 2008). Thus, the synthesis of
MPC for LPV system has been motivated(Lu and Arkun,
2000).

An on-line RMPC for LPV systems using parameter-
dependent Lyapunov function was introduced by Wada
et al. (2006). At each control iteration, the ellipsoidal
invariant set containing the measured state is constructed
in order to guarantee robust stability. However, the asso-
ciated optimization problem must be solved on-line, the
algorithm requires a relatively high computational effort.

Bumroongsri and Kheawhom (2012a) introduced an off-
line RMPC for LPV systems. The sequences of state feed-
back gains corresponding to the sequences of ellipsoidal
invariant sets are pre-computed off-line. At each control
iteration, the smallest ellipsoid containing the state mea-
sured is determined. The corresponding real-time state
feedback gain is obtained by linear interpolation between
the pre-computed state feedback gains. The ellipsoidal
invariant set computed at each control iteration is only an
approximation. Thus, the algorithm trades off optimality
in order to reduce on-line computational time.

Though the polyhedral invariant set has some advantages
over the ellipsoidal invariant set such as better handling
of asymmetric constraints and enlargement of stabilizable
region (Pluymers et al., 2005), the ellipsoidal invariant set
is usually used in robust model predictive control(RMPC)
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formulation due to its relatively low on-line computational
complexity. In recent years, an off-line RMPC algorithm
based on polyhedral invariant set has been developed
by Bumroongsri and Kheawhom (2012b). A sequence of
polyhedral invariant sets corresponding to a sequence of
pre-computed state feedback gains is constructed off-line.
At each control iteration, the smallest polyhedral invari-
ant set containing the measured state is determined. The
corresponding state feedback gain is then implemented
to the process without interpolation of the pre-computed
state feedback gains. Unfortunately, the conservativeness
is obtained because the control law implemented at each
control iteration is an approximation of the optimal con-
trol law. Moreover, the input discontinuities caused by
a switching between state feedback control laws are oc-
curred. Therefore, the algorithm requires constructing a
large number of polyhedral invariant sets, hence large data
storage, in order to improve the control performance and
reduce the input discontinuities. Later, an interpolation
technique for polyhedral invariant sets was introduced to
off-line RMPC for polytopic uncertain systems in order to
reduce conservativeness and improve the control perfor-
mances (Kheawhom and Bumroongsri, 2013; Bumroongsri
and Kheawhom, 2013).

In this paper, we present a robust model predictive con-
trol (RMPC) based on polyhedral invariant sets for LPV
systems. The algorithm constructs off-line a sequence of
nested polyhedral invariant sets corresponding to a se-
quence of state feedback gains. At each control iteration,
when the state measured lies between any two adjacent
polyhedral invariant sets constructed, a real-time state
feedback gain is determined by interpolation of two pre-
computed state feedback gains incorporated with schedul-
ing parameters. Three interpolation algorithms are pro-
posed. The algorithm proposed requires very small com-
putation complexity. The paper is organized as follows. In
section 2, the problem description is presented. In section
3, the RMPC with interpolation algorthms proposed are
presented. In section 4, we illustrate the implementation of
the algorithms proposed. Finally, in section 5, we conclude
the paper.

Notation: For a matrix A, AT denotes its transpose, A−1

denotes its inverse. I denotes the identity matrix. For
a vector x, x(k/k) denotes the state measured at real
time k, x(k + i/k) denotes the state at prediction time
k + i predicted at real time k. The symbol ∗ denotes
the corresponding transpose of the lower block part of
symmetric matrices.

2. PROBLEM DESCRIPTION

In this work, the discrete-time LPV system as shown in
Eq. 1 is taken into accounted.

x(k + 1) = A(p(k))x(k) +B(p(k))u(k),

y(k) = Cx(k), (1)

where x(k) ∈ Rnx is the state of the plant and u(k) ∈ Rnu

is the control input. The scheduling parameter p(k) is
assumed to be on-line measurable at each control iteration
k. In addition, the system matrix A(p(k)) and the control
matrix B(p(k)) are assumed to be within a polytope Ω,

Ω = Co{[A1, B1], [A2, B2], ..., [AL, BL]}. (2)

Co denotes convex hull. [Aj , Bj ] is the vertex of the convex
hull. Any [A(p(k)), B(p(k))] being inside the polytope Ω
is a convex combination of all vertices such that

[A(p(k)), B(p(k))] =

L∑
j=1

pj(k)[Aj , Bj ], (3)

L∑
j=1

pj(k) = 1, 0 ≤ pj(k) ≤ 1. (4)

The objective is to find a state feedback control law

u(k + i/k) = Kx(k + i/k), (5)

that stabilises the LPV system and achieves the minimum
worst case performance cost.

min
u(k+i/k)

max
[A,B]∈Ω

∞∑
i=0

[ x(k+i/k)
u(k+i/k)

]T [Θ 0
0 R ][ x(k+i/k)

u(k+i/k)
], (6)

s.t.|uh(k + i/k)| ≤ uh,max, h = 1, 2, ..., nu, (7)

|yr(k + i/k)| ≤ yr,max, r = 1, 2, ..., ny. (8)

3. THE PROPOSED ALGORITHM

In this section, the RMPC based on polyhedral invariant
set with interpolation algorithms proposed are described.
The on-line computational time is reduced by solving off-
line the optimization problem shown in Eqs. 9-12 in order
to find a sequence of state feedback gains Ki, i = 1, 2, ..., N
associated with a sequence of polyhedral invariant sets.
An approach to construct the polyhedral invariant set
proposed by (Pluymers et al., 2005) is adopted here. At
each control iteration, when the measured state lies be-
tween two adjacent polyhedral invariant sets, the real-time
state feedback gain is calculated by solving optimization
problem based on linear interpolation between two pre-
computed state feedback gains.

Off-line:

(1) Choose a sequence of states xi, i = 1, 2, ..., N . For
each xi, solve the optimization problem in Eqs. 9-12
by replacing x(k/k) with xi in order to obtain the
corresponding state feedback gain Ki = YiG

−1
i ,

min
γi,Yi,Qi

γi (9)

s.t.

[
1 ∗
xi Qi

]
≥ 0, (10)

Qi ∗ ∗ ∗
AjQi +BjYi Qi ∗ ∗

Θ
1
2Qi 0γiI ∗

R
1
2Yi 0 0 γiI

 ≥ 0,

∀j = 1, 2, ..., L, (11)[
X ∗
Y T
i Qi

]
≥ 0, Xhh ≤ u2

h,max, h = 1, 2, ..., nu.

(12)

xi is chosen such that Q−1
i+1 ⊂ Q−1

i . Moreover, for
each i ̸= N , the following inequality must be satisfied
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Q−1
i − (Aj +BjKi+1)

TQ−1
i (Aj +BjKi+1) ≥ 0, ∀j =

1, 2, ..., L to assure robust stability satisfaction of a
convex combination between Ki and Ki+1. The state
feedback gains are derived based on the minimization
of upper bound of infinite horizon worst-case perfor-
mance proposed by (Kothare et al., 1996). However,
the output constraints are not taken into account
here in order to enlarge the stabilizable region. The
ouput constraints are then properly handled in the
next step.

(2) Given the state feedback gains Ki = YiQ
−1
i , i =

1, 2, ..., N previously calculated from step 1. For each
Ki, the corresponding polyhedral invariant set Si =
{x|Mix ≤ di} is constructed by following these steps:
(a) Set Mi=[CT , −CT , KT

i , −KT
i ]

T , di=[yTmax, y
T
min,

uT
max, u

T
min]

T and m = 1.
(b) Select row m from (Mi, di) and check ∀j whether

Mi,m(Aj +BjKi)x ≤ di,m by solving the follow-
ing problem 13:

max
x

Wi,m,j (13)

s.t.Wi,m,j = Mi,m(Aj +BjKi)x− di,m,
(14)

Mix ≤ di. (15)

IfWi,m,j ≥ 0, the constraintMi,m(Aj+BjKi)x ≤
di,m is non-redundant with respect to (Mi, di),
then, add non-redundant constraints to (Mi, di)
by assigning Mi = [MT

i , (Mi,m(Aj + BjKi))
T ]T

and di = [dTi , d
T
i,m]T .

(c) Let m = m + 1 and return to step (b). If m
is strictly larger than the number of rows in
(Mi, di), the algorithm is stopped.

On-line: The real-time state feedback gain is calculated
by linear interpolation between the pre-computed state
feedback gains. Three interpolation algorithms are pro-
posed.

Algorithm 1: In the first algorithm, the pre-computed
state feedback gains Ki = 1, 2, ..., N are interpolated
in order to get the largest possible state feedback gain
while robust stability is still guaranteed. At each control
iteration, when x(k) ∈ Si and x(k) /∈ Si+1, ∀i ≤ N − 1,
the real-time state feedback gain K(k) = λ(k)Ki + (1 −
λ(k))Ki+1 can be obtained by solving the problem in Eqs.
16-20.

min
λ(k)

λ(k) (16)

s.t.Mi

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di ≤ 0, (17)

|K(k)x(k)h| ≤ uh,max, h = 1, 2, ..., nu, (18)

K(k) = λ(k)Ki + (1− λ(k))Ki+1, (19)

0 ≤ λ ≤ 1. (20)

If x(k) ∈ SN , the real-time state feedback gain is KN .

Ki+1 is always larger than Ki because input and output
constraints impose less limit on the state feedback gain
as i increases. Thus, the largest possible state feedback
gain can be obtained by minimizing λ(k), while robust
stability is still guaranteed by Eq. 17. The input constraint
is guaranteed by Eq. 18. The output constraint does not

need to be incorporated into the problem formulation
because the satisfaction of Eq. 17 also guarantees output
constraint satisfaction. The optimization problem involved
is formulated as a linear programming and the number of
constraints is independent of the number of vertices of the
polytope Ω.

Algorithm 2: The real-time state feedback gain is ob-
tained by minimizing the violation of the contraints (γ(k))
of the adjacent inner invariant sets, so the real-time state
feedback gain calculated has to regulate the state from the
current invariant set to the adjacent inner invariant set as
fast as possible. At each control iteration, when x(k) ∈ Si

and x(k) /∈ Si+1, ∀i ≤ N − 1, the real-time state feedback
gain K(k) = λ(k)Ki + (1− λ(k))Ki+1 can be obtained by
solving the optimization problem in Eqs. 21-26.

min
λ(k),γ(k)

γ(k) (21)

s.t.Mi

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di ≤ 0, (22)

Mi+1

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di+1 ≤ γ(k),

(23)

|K(k)x(k)h| ≤ uh,max, h = 1, 2, ..., nu, (24)

K(k) = λ(k)Ki + (1− λ(k))Ki+1, (25)

0 ≤ λ ≤ 1. (26)

If x(k) ∈ SN , the real-time state feedback gain is KN .

By minimizing γ(k), the real-time state feedback gain cal-
culated has to regulate the state from the current invariant
set to the adjacent inner invariant set as fast as possible.
Robust stability as well as output constraint satisfaction
are guaranteed by Eq. 22. The input constraint is guar-
anteed by Eq. 24. The optimization problem involved is
formulated as a linear programming and the number of
constraints is independent of the number of vertices of the
polytope Ω. However, the number of constraints involved
is larger than that of algorithm 1.

Algorithm 3: In the last algorithm, the real-time state
feedback gain is obtaned by minimizing the upper bound
of infinite horizon worst case performance cost, which is
estimated by Lyapunov function at current state, with
subjected to a set of constraints associated with current
invariant set. At each control iteration, when x(k) ∈ Si

and x(k) /∈ Si+1, ∀i ≤ N − 1, the real-time state feedback
gain K(k) = λ(k)Ki + (1− λ(k))Ki+1 can be obtained by
solving the optimization problem in Eqs. 27-32.

min
λ(k),γ(k)

γ(k) (27)

s.t.Mi

L∑
j=1

pj(k)(Aj +BjK(k))x(k)− di ≤ 0, (28)[
γ(k) x(k)T

x(k) Qi

]
≥ 0, (29)

|K(k)x(k)h| ≤ uh,max, h = 1, 2, ..., nu, (30)

K(k) = λ(k)Ki + (1− λ(k))Ki+1, (31)

0 ≤ λ ≤ 1. (32)

If x(k) ∈ SN , the real-time state feedback gain is KN .
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By minimizing γ(k), the real-time state feedback gain
calculated has to regulate the system by using the mini-
mum infinite horizon worst case performance cost. Robust
stability and output constraint satisfaction are guaranteed
by Eq. 28. The input constraint is guaranteed by Eq.
30. The optimization problem involved is formulated as
a convex optimization involving linear matrix inequalities
(LMIs) and the number of constraints is independent of
the number of vertices of the polytope Ω.

4. CASE STUDY

In this section, we present an example that illustrates
the implementation of the proposed robust MPC algo-
rithms. The numerical simulations have been performed
in 2.3 GHz Intel Core i-5 with 16 GB RAM, using
SDPT3(Tütüncü et al., 2003), Gurobi(Gurobi Optimiza-
tion, 2012) and YALMIP (Löfberg, 2004) within Matlab
R2011b environment. We will consider the application of
our approach to the nonlinear two-tank system (Angeli
et al., 2000), which is described by Eqs. 33-34.

ρs1ḣ1 = −ρa1
√
2gh1 + u, (33)

ρs2ḣ2 = ρa1
√
2gh1 − ρa2

√
2gh2. (34)

Where h1 is the water level in tank 1, h2 is the water
level in tank 2 and u is the water flowrate. The operating
parameters are shown in table 1.

Table 1. The parameters of two-tank system

Parameters Value

s1 2500 cm2

s2 1600 cm2

a1 9 cm2

a2 4 cm2

g 980 cm/s2

ρ 0.001 kg/cm3

h1,eq 14 cm
h2,eq 70 cm

Let h̄1 = h1 − h1,eq, h̄2 = h2 − h2,eq and ū = u −
ueq. Subscript eq denotes the corresponding variable at
equilibrium condition. The objective is to regulate h̄2 to
the origin by manipulating ū. The input constraint are
symmetic ū ≤ 1.5kg/s. In contrast, asymmetric output
constraints −13 ≤ h̄1 ≤ 71, and −69 ≤ h̄2 ≤ 29 are
considered.

By evaluating the Jacobian matrix of Eqs. 33 and 34 along
the vertices of the constraints set, the solutions of Eqs. 33
and 34 are also the solution of the following differential
inclusion

[
ρs1

˙̄h1

ρs2
˙̄h2

]
∈

4∑
j=1

pjAj

[
h̄1

h̄2

]
+

[
1
0

]
ū, (35)

where Aj , j = 1, ..., 4 are given by

A1 =


−ρa1

√
2g

h1,min
0

ρa1

√
2g

h1,min
−ρa2

√
2g

h2,min

 ,

A2 =


−ρa1

√
2g

h1,max
0

ρa1

√
2g

h1,max
−ρa2

√
2g

h2,min

 ,

A3 =


−ρa1

√
2g

h1,min
0

ρa1

√
2g

h1,min
−ρa2

√
2g

h2,max

 ,

A4 =


−ρa1

√
2g

h1,max
0

ρa1

√
2g

h1,max
−ρa2

√
2g

h2,max

 , (36)

and pj , j = 1, ..., 4 are given by

p1 = [

1√
h1,max

− 1√
h1

1√
h1,max

− 1√
h1,min

][

1√
h2,max

− 1√
h2

1√
h2,max

− 1√
h2,min

],

p2 = [

1√
h1

− 1√
h1,min

1√
h1,max

− 1√
h1,min

][

1√
h2,max

− 1√
h2

1√
h2,max

− 1√
h2,min

],

p3 = [

1√
h1,max

− 1√
h1

1√
h1,max

− 1√
h1,min

][

1√
h2

− 1√
h2,min

1√
h2,max

− 1√
h2,min

],

p4 = [

1√
h1

− 1√
h1,min

1√
h1,max

− 1√
h1,min

][

1√
h2

− 1√
h2,min

1√
h2,max

− 1√
h2,min

]. (37)

The discrete-time model is obtained by discretization of
Eq.35 using Euler first-order approximation with a sam-
pling period of 0.1 s and it is omitted here for brevity.
The proposed algorithm will be compared with an off-line
RMPC algorithm based on polyhedral invariant set with-
out interpolation(Bumroongsri and Kheawhom, 2012b).
The tuning parameters are Θ=[ 0 0

0 1 ] and R = 0.01.

A sequence of four polyhedral invariant sets is constructed.
Figure 1 shows the polyhedral invariant sets constructed.
As the output constraints considered in this case are not
symmetric. It affects the constructed polyhedral invariant
sets of S1 and S2. Thus, these two invariant sets are also
asymmetric.

Figure 2 shows the regulated output (h̄2). The RMPC
without interpolation gives the slowest response, because
the real-time state feedback gain used is an approximation
of optimal state feedback gain. For instance, if we start
from an initial state x(k) ∈ Si but x(k) /∈ Si+1, a state
feedback gain Ki is implemented. The system is driven to
x(k + 1), where |x(k + 1)| < |x(k)|. If x(k + 1) ∈ Si but
x(k + 1) /∈ Si+1, Ki is still used as a state feedback gain.
We see that |u(k + 1)| < |u(k)|, as |x(k + 1)| < |x(k)|. In

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

358



Fig. 1. The constructed polyhedral invariant sets.

Fig. 2. Regulated output of the nonlinear two-tank system.

other words, this algorithm implements the state feedback
gain Ki for the whole region x(k) ∈ Si but x(k) /∈ Si+1.

By using interpolation, we can achieve better control per-
formance. For each x(k) ∈ Si but x(k) /∈ Si+1, a state feed-
back gain K(k) obtained by solving a simple optimization
problem is implemented. We see that K(k) ̸= Ki. Thus, a
preferable control performance can be obtained.

Algorithm 1 yields the best control performance. In com-
parison, algorithms 2 and 3 give similar responses being
slower than that of algorithm 1. In algorithm 1, the pre-
computed state feedback gains are interpolated to get the
largest possible real-time state feedback gain, so algorithm
1 tends to produce fastest responses. In algorithm 2, the
violation of the contraints of the adjacent inner invariant
sets is minimized. Thus, a state feedback gain obtained
from algorithm 2 leads to the shortest path to the inner
adjacent invariant set. However, the shortest path to the
inner adjacent invariant set does not guarantee the small-
est worst case performance cost. Algorithm 3 minimizes
the upper bound of infinite horizon worst case perfor-
mance cost, which is estimated by Lyapunov function at
current state. Unfortunately, Lyapunov function at each
state is not determined on-line. Thus, Lyapunov function

Fig. 3. Control input of the nonlinear two-tank system.

Fig. 4. The cumulative cost
∑t

i=0 x(i)
TΘx(i)+u(i)TRu(i).

obtained off-line is used. That is for each x(k) ∈ Si but
x(k) /∈ Si+1, Lyapunov function Q−1

i is used for the whole
region. Therefore, algorithm 3 becomes more conservative
than algorithm 1.

Figure 3 shows the profiles of control input ū. The input
discontinuities appeared in the response of the RMPC
without interpolation are caused by the switching of feed-
back gains based on the distance between the state and
the origin. In comparison, we can overcome this issue by
using the interpolation algorithms proposed.

Figure 4 shows the cumulative performance cost. The
cumulative performance costs of RMPC with interpolation
are lower than the cumulative cost of the RMPC without
interpolation. The lowest cumulative performance cost is
obtained by using algorithm 1.

Table 2. The on-line computational burdens

Algorithm On-line CPU time(s)/step

Without interpolation < 0.0001
Algorithm 1 0.0001
Algorithm 2 0.0001
Algorithm 3 0.1800
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Fig. 5. State trajectories from initial condition of
(h̄1, h̄2) = (10,−30) to the origin.

Figure 5 shows state trajectories from initial condition of
(h̄1, h̄2) = (10,−30) to the origin. Algorithm 1 produces
the trajectory with lowest control performance cost.

The on-line computational burdens are shown in table 2.
For all algorithms, most of the computational burdens
are moved off-line so the on-line computation is tractable.
The optimization problem involved in each interpolation
algorithm is independent of the number of vertices of the
polytope Ω. Algorithms 1 and 2 use a linear programming.
The number of constraints involved in algorithm 1 is lower
than that of algorithm 2. In contrat, algorithm 3 uses a
convex optimization involving LMIs. Thus, algorithm 3
requires higher computational time compared with other
algorithms.

5. CONCLUSIONS

In this paper, we have presented an interpolation-based
RMPC algorithms using polyhedral invariant sets for LPV
systems. The proposed algorithms computes off-line a se-
quence of polyhedral invariant sets. The real-time con-
trol law is then calculated by interpolation between the
two state feedback gains corresponding to two adjacent
polyhedral invariant sets. Three interpolation algorithms
are proposed. The controller design is illustrated with a
case study of nonlinear two-tank system. The simulation
results showed that the proposed RMPC with interpola-
tion provides a better control performance while on-line
computation is still tractable.
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