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Abstract: In a typical air separation unit (ASU) utilizing either a simple gaseous oxygen (GOX) cycle or a 
pumped liquid oxygen (PLOX) cycle, the flowrate of the liquid nitrogen stream connecting the high- and 
low-pressure columns has a major impact on the total oxygen yield. It is shown that this yield reaches a 
maximum at a certain optimal flowrate of LN2 stream, creating a challenging feedback controller design 
problem. To dynamically maximize the oxygen yield while the ASU undergoes a load-change and/or a 
process disturbance, a multiple model predictive control (MMPC) algorithm is proposed. It is shown that 
at any operating point of the ASU, the MMPC algorithm, through model-weight calculation based on 
plant measurements, naturally and continuously selects the dominant model(s) corresponding to the 
current plant state, while making control-move decisions that approach the maximum oxygen yield point. 
This dynamically facilitates less energy consumption in form of compressed feed-air compared to a 
simple ratio control during load-swings. In addition, since a linear optimization problem is solved at each 
time step, the approach involves much less computational cost than a model predictive controller (MPC) 
based on a first-principles model. 
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1. INTRODUCTION 

Cryogenic air separation systems have the capability to 
deliver the largest capacities for products at a moderate to 
high-purity level, compared to non-cryogenic based systems 
such as pressure-swing adsorption (PSA) and membrane 
technologies, which are typically employed at the lower end 
of production scale and product purities. The elevated-
pressure cryogenic air separation units (ASU) have found 
application in integrated gasification combined cycle (IGCC) 
power plants where a typical oxygen molar-purity of 95% is 
required [1]. Furthermore, in such plants, the high oxygen 
delivery pressure (~1000 psi) required by the gasifier and the 
partial integration of an ASU with the combustion turbine, 
where GT-compressed air is available at high pressures 
(between 200–250 psi), makes the elevated pressure ASU a 
promising source of oxygen. Recently, an EP-ASU has been 
utilized as the primary oxygen source within the Advanced 
Virtual Energy Simulation Training and Research center at 
National Energy Technology Center (Morgantown) which 
features a high-fidelity, real-time dynamic simulator of an 
IGCC with CO2 capture process [1]. A typical downside of 
high-pressure operation is decreased separation efficiency, 
making the operating cost of such units escalate, in 
comparison to a low-pressure plant. This cost is by-far 
compensated with the decreased compressor work during 
oxygen and nitrogen compression.  

It has been shown in previous work [3] that the liquid 
nitrogen distillate stream from HP-column (stream ‘LN2’), 
which also serves as a liquid reflux to the LP-column, plays a 
significant role in the total oxygen yield. In another study by 
the authors, the MMPC approach was used to capture 

dynamic nonlinearities while controlling oxygen purities 
during rapid ramping operation of the ASU [4]. This 
operation was done with the abovementioned liquid nitrogen 
distillate flowrate at either a fixed ratio/feedforward to the 
oxygen demand or as an augmented feedback loop to the 
distillate stream nitrogen purity, an approach which is 
generally utilized by various industries as seen in many 
patent literatures. This approach closely approaches the 
optimal yield condition at or near steady state design 
conditions (assuming the plant is optimally designed at 
steady state) but does not guarantee an optimal oxygen yield 
at part-load conditions. 

2. STEADY-STATE DESIGN AND DYNAMIC MODEL 

The steady-state and dynamic flowsheet design including 
plant configuration, operating pressures, flowrates, 
optimization of oxygen recovery, condenser-reboiler heat-
integration, “neat” operation and many other intricacies 
involved in modeling the dynamics of ASU process have 
been provided in a recent paper by the authors [3]. In 
addition, some of the interesting problems encountered 
during operation including refrigeration imbalance and 
snowball effect within the “cold-box” have also been 
highlighted. It must be realized by the readers that EP-ASU is 
a perfect example of process complexity and serves as a good 
test-bed for various operability and controllability studies. 
Building the regulatory control layer in this process is, in 
itself, a daunting task. In fact, numerous patents have been 
claimed which are centered at developing lower-level 
controllers in addition to those at PID-based supervisory level 
control for meeting the stringent load-following requirements 
posed at deployed sites. Many sources also highlight the 
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inclusion of a liquid oxygen storage tank for fast load-
changes, especially during ramp-up conditions, although 

maintaining such a large volumetric space at cryogenic 
conditions is challenging and capital-cost intensive. 

 

 

Fig. 1. ASU process flowsheet as seen in Aspen Plus® 

 

Fig. 2. EP-ASU flowsheet in Aspen Plus Dynamics® showing regulatory controllers and various IO variables exposed for 
supervisory control layer 

A schematic of steady-state flowsheet modeled in Aspen 
Plus® V7.3 is given in Fig. 1. The dynamic flowsheet 
modeled in Aspen Plus Dynamics® V7.3 has been shown in 
Fig. 2. Majority of the steady-state and dynamic flowsheet 
configurations used in the current study are identical to the 
previous work by the authors [3]. The only exceptions to 
such configurations are the absence of supervisory 
composition control loops in the current design. Instead the 
input blocks marked by ‘SPAir’, ‘SPLN2’ and ‘SPOX’ are 
left open. These blocks receive input “setpoint” signals via 
the Simulink-APD bridge from the MATLAB environment 
where the supervisory control calculations are being done. 

Similarly output signals from the delay blocks (‘DelayZO2’ 
and ‘DelayHPN2’) are being sent to MATLAB as 
“measured” variables (commonly also known as control 
variables, CV or process variables, PV). 

3. PROBLEM DEFINITION 

In general, an efficient plant design takes into account 
various optimization calculations at the design stage and tries 
to attain the plant objective in the most effective way. In 
purview of the EP-ASU for IGCC, the ultimate design 
objective is to minimize the operating cost of the cold-box. 
Predominant factors that contribute to the operating cost are 

GN2

O2

O2RICH

LN2

FEED

KA

BA

GN2-1

LP-N2

LP-N2-1

O2-3

O2-4

LP-N2-2

LP

HP
VFEED

VO2XPNDR

FEEDSPLT

VN2XPNDR

SCLR

MHX VO2

CMP-O2

CMP-LPN2

VGN2

PMPO2

BAC

CLRBAC

VBA

GOX

HTR-BA

HTR-KA

HTR-LN2

HTR-O2

BAC

CLRBAC

CMP-LPN2

CMP-O2

FEEDSPLT

HP

LCHPTop

HTR-BA

HTR-KA

HTR-LN2

HTR-O2

LP

PCLP

MHX

PMPO2

SCLR

VBA

VFEED

VGN2

VN2XPNDR

VO2

VO2XPNDR

LCHPBot

LCLPBot

FCBA

FCOX

FCFeed

FCLN2

TCBAC

�

BA/O2

�

SPLN2

�

SPAir

PCBAC

∆Τ

DelayZO2

∆Τ

DelayZHPN2

�

SPOX

PCPMPO2

BA

FEED

GN2GOX

KA

LN2

LP-N2

LP-N2-2

O2

O2RICH

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

197



 
 

     

 

the compression cost of main air compressors (MAC), 
oxygen and nitrogen compressors. For a given oxygen 
demand, purity and delivery pressures the operating costs 
involved in the product-side are do not fluctuate significantly, 
whereas those on the feed-side i.e. total flowrate of feed-air 
(and hence the energy consumed in MAC) serves as a good 
candidate for optimization. 

During steady state optimization, rather than minimizing the 
feed-flow at fixed oxygen purity, an alternate yet equivalent 
approach is adapted for maximizing the oxygen yield (and 
hence minimizing the operating costs). This is achieved by 
maximizing the oxygen purity at a fixed feed-flow. It was 
identified that liquid-nitrogen stream (Stream ‘LN2’ in Fig. 

1) connecting HP and LP columns, which serves as a 
distillate for the HP-column and a liquid reflux to the LP-
column, has a significant effect on oxygen yield. This has 
been shown in Fig. 3 (see black curve marked with circles), 
where a clear maxima is observed at a certain liquid-nitrogen 
flowrate (~27100 lbmol/hr). On the left hand side (LHS) of 
this maximum, the oxygen purity gets degraded due to low 
LP-column reflux leading to lost oxygen in the waste 
nitrogen stream (Stream ‘GN2’) whereas on the right hand 
side (RHS), due to high HP-column distillate extraction, the 
purification within the HP-column is negatively affected 
which gets transferred to the overall oxygen separation. 

 

 
Fig. 3. Sensitivity plots showing effect of liquid-nitrogen reflux ‘LN2’ flowrate towards oxygen product purity, liquid nitrogen 
‘LN2’ purity and gaseous nitrogen ‘GN2’ purity at fixed oxygen withdrawal rate (14511.1 lbmol/hr) and total feed air flowrate 
(69000 lbmol/hr)  

In terms of process dynamics, when the system is operated 
around the optimal flowrate, an input-multiplicity behavior is 
observed. This is clearly visible in Fig. 4 where 5% step 
increase and decrease in the ‘LN2’ flowrate is simulated. 
Both the open-loop transients settle down to lower oxygen 
purity values from nominal purity of 0.955. This gives both a 
negative and positive process gain around the steady-state 
operating point depending on which direction the process 
moves. This poses a challenging control problem wherein 
closed-loop process stability cannot be ensured using a single 
model / single controller-gain for all possible uncertainties or 
operating regimes around the nominal operating point. 

It can also be seen from Fig. 3 that purity of the 
abovementioned liquid nitrogen stream denoted by ‘ZLN2’ 
monotonically decreases with increasing flowrate (‘F_LN2’) 
of the same stream. This is fairly intuitive since with increase 
in HP-column distillate flowrate, the reflux to this column 
decreases, leading to a decrease in nitrogen (component 
having the least molecular wt.) purity. Dynamically this 
implies that F_LN2 is a strong candidate for controlling 
ZLN2. This approach has been used by the authors in their 
previous studies where for a multiloop PID based control, 
ZLN2 has indeed been tied with F_LN2; and oxygen purity 
(‘ZO2’) has been controlled using the total feed air 
(‘F_airASU’). In context of an IGCC power plant, the waste 
‘gaseous’ nitrogen is generally utilized as a gas turbine 
diluents or as a purge gas during system startup. Hence, 
meeting the nitrogen purity levels up to a considerable 

accuracy is not a strict system requirement. Therefore, 
various other configurations for multiloop control, where 
ZLN2 is not actively controlled, were also investigated in 
search of a control design which would promote faster load-
following and/or disturbance rejection. It must be emphasized 
that in this study the objective is not to control the oxygen 
and nitrogen purities at nominal values but to dynamically 
maximize the oxygen yield at the face of a fixed given feed-
air flowrate (F_airASU) and oxygen demand (F_O2). As 
mentioned earlier, this is conceptually equivalent to the case 
where oxygen purity and demand are kept fixed whereas the 
feed-air flowrate is minimized (leading to a significant 
decrease in MAC compression cost). From a problem 
formulation and implementation perspective, these two cases 
are dissimilar and scope has been limited to the former in this 
paper. The following section discusses the multiple model 
predictive control (MMPC) formulation used for such 
dynamic maximization of oxygen purity solely based on 
linear models. 

4. MMPPC FORMULATION 

The multiple model predictive control strategy [5] is based on 
the use of n models in the model bank that have the general 
state-space form given in Eq. (1). 
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Fig. 4. Transient responses for 5% STEP changes in liquid nitrogen flowrate (F_LN2) for oxygen demand of 14511.1 lbmol/hr 
and nominal value of F_O2/F_airASU. 

where, given the current time step k, the following notations 
are used: 

1ku −  : input (calculated by the controller) between time-
step k-1 and k 

1kl −  : measured and modeled disturbance between time-
step k-1 and k 

1 1
ˆ

k kd − −

 

: unmeasured (estimated) but modeled disturbance  
between time-step k-1 and k for model i 

1
ˆ

k kx −

 

: process states at time-step k given the plant 
measurements at time-step k-1(predicted) for model 
i 

ˆ
k kx  : process states at time-step k given the plant 

measurements at time-step k (corrected) for model i 

1
ˆ

k ky −

 

: measured outputs at time-step k given the plant 
measurements at time-step k-1 (predicted) for model 
i 

ˆ
k ky  : measured outputs at time-step k given the plant 

measurements at time-step k (corrected) for model i 

, , , , , , ,u l d u l dC D D DΦ Γ Γ Γ  are various state-space 
parameters for ith model. The left superscript i denotes the 
model number, with i ranging from 1 to n models. Although 
the plant being controlled in practice is highly nonlinear (as 
demonstrated in Fig. 4), the models in Eq.(1) are all linear. 
Each linear model is chosen to represent a discrete subspace 
of the overall nonlinear operating space. When all n models 
are linearly combined, the resulting bank of linear models 
spans the entire nonlinear operating space. As Fig. 5 shows, 
the models within the model bank are updated in parallel with 
the plant. 

The state-estimation involves a correction step, which 
modifies/corrects the plant states based on plant 
measurements at current time-step. For achieving this, an 
appended state formulation is used. The following equations 
list the prediction and correction steps involved in additive-
output formulation used in this study. 
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The model residuals are calculated as given in Eq. 4 and 

thereafter the current Bayesian probability kρ  is calculated 

recursively using actual-plant output as given in Eq. (5). 
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Here, δ represents a small non-zero value used to prevent 
model-probabilities reaching zero during recursive 
calculations thereby ensuring that all models remain active 
during weight-calculations. 

The normalized probabilities (model weights) kw  are 

calculated in Eq. (6) after which the average linear model 
output vector ( y ) is computed in Eq. (7). 

1
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k ky −

ˆi
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k ky
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kr ku ky
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Fig. 5. Block diagram showing the generic multiple model predictive control (MMPC) formulation 
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Fig. 6. Schematic showing ‘insides’ of the model bank 
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This average output vector is used while formulating the 
constrained MPC objective function (J) as shown in Eq. (8). 

( ) ( )
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P MT
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 where, min maxk ju u u+≤ ≤ , min maxk ju u u+∆ ≤ ∆ ≤ ∆  and 

min maxk j ky y y+≤ ≤  are the imposed constraint conditions, kr  

is the setpoint vector at current time-step, uW  and yW  are the 

input and output weighting matrices respectively, P is the 
prediction horizon and M is the control horizon. 

5.  SYSTEM IDENTIFCATION 

As discussed earlier, flowrate of liquid nitrogen (F_LN2), 
product oxygen (F_O2) and feed air (F_airASU) play an 
important role in the oxygen purity (ZO2). Oxygen purity 
monotonically increases with feed-air flowrate (not shown) 
and inclusion of this variable in the optimization formulation 
will only lead to unrealistically high feed-air flowrate giving 
ultra-high purity oxygen (ZO2 ≈ 1). Hence, for solving the 

current dynamic maximization problem the flowrate of feed-
air needs to be fixed with respect to the oxygen flowrate. 
Here, a fixed ratio of these quantities based on steady-state 
values has been imposed as given in Eq. (9). 

F_airASU SP
4.755

F_O2 SP
=   (9)  

where, SP following the variable name denotes the setpoint 
value sent to the regulatory flow-controllers (signals from 
supervisory layer) which control the corresponding variable. 
F_airASU SP and F_O2 SP correspond to signals from 
‘SPAir’ and ‘SPOX’ (shown in Fig. 2) respectively. 

Before moving to control implementation, the model 
parameters for all the control-models in the model-bank have 
to be determined. In essence, the state-space time-invariant 

matrices , , , , , , ,u l d u l dC D D DΦ Γ Γ Γ   shown in Eq. (1) 

must be defined for each model. 

In this study, two models have been specified. One of them 
spans the left hand side (LHS) of the maximum point (Fig. 3) 
and has a positive process gain. In contrast, the other model 
captures the right hand side (RHS) dynamics and possesses a 
negative process gain. Starting from the optimal steady-state 
design conditions, the LHS-model (Model-1) is obtained by 
first moving to a new operating point on the LHS. This is 
attained by keeping the oxygen demand (F_O2 SP) 
unchanged while providing a 10% step decrease in liquid 
nitrogen (F_LN2 SP). 
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Fig. 7. System Identification results showing quality of fit for Model-1 (left) and Model-2 (right). Input excitations have been 
shown at the bottom (on each side). Plant outputs are shown in black. 

The process is brought to a new steady state by simulating 
the process for a long time (10 hr). Thereafter, multiple 
simultaneous random step changes are triggered on both the 
inputs (F_LN2 SP and F_O2 SP) at regular intervals (until 
significant settling is observed). The output “plant” signals 
are fitted to a 4th order subspace-based “n4sid” model 
(termed as “control-model”) using System Identification 
Toolbox in MATLAB™. A similar approach is used to 
obtain the RHS-model (Model-2) as well by providing a 10% 
step increase in nitrogen flowrate to obtain a new steady 
state. 

Identification (model-fit) results are shown in Fig. 7 for LHS 
and RHS operating points. The resulting fits show that both 
the LHS (Model-1) and RHS (Model-2) models capture the 
plant responses with reasonable accuracy. For comparing and 
contrasting the behavior of both models, the outputs from the 
“other” model are also shown (middle plot for LHS and top 
plot for RHS). It is clearly visible that both models have 
gains (and even transients) in opposite direction. It must also 
be noted that the fixed-ratio criterion given in Eq. (9) ensures, 
to a certain extent, that for all possible combination of input 
variables the model does not crossover to the other regime. 
This is consistent with the plots. 

6. RESULTS and DISCUSSION 

A summary of simulation results obtained for the 
unconstrained MMPC control design using the two identified 
models is shown in Fig. 8. Starting with a RHS operating 

point (ZO2 = 0.95 and F_LN2 = 28260 lbmol/hr), a pseudo-
setpoint of high oxygen-purity value (0.956) is provided. This 
setpoint can take any value higher than expected maximum 
oxygen purity. The control algorithm tries to reach this SP by 
manipulating F_LN2 in a direction adherent to increase in 
purity but eventually the plant crosses-over to the other 
regime where further manipulating F_LN2 in the same 
direction starts bringing down the purity levels. The MMPC 
algorithm through weighing calculation start prioritizing the 
“other” model based on decreasing plant purity and the 
direction of F_LN2 actuation changes. This implies that the 
plant does not reach the given pseudo-setpoint value (since it 
is physically not possible to do so for given inlet flowrates), 
but operates very close to this maximum value. In Fig. 8, the 
optimal plots for F_LN2 and Z_O2 have been shown. 
Clearly, the manipulated inputs seem to converge to a point 
where minor wobbling around optimal point (red-dotted line) 
can be observed. 

7. EXTENSIONS and FUTURE WORK 

In the current study, the demand for oxygen (and hence the 
feed-air) is maintained at a fixed value. In future work, the 
use of this strategy during load changes including ramp 
operations will be investigated. It is anticipated that feed-air 
flowrate will be a better candidate for regulating oxygen 
purities during fast load changes compared liquid nitrogen 
flowrate. In addition, if model crossovers occur while the 
plant is ramping, it might lead to sudden dip in purity level 
before the MMPC algorithm switches the model.
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Fig. 8. Simulation results showing dynamic maximization of oxygen purity (Z_O2) for fixed oxygen demand (14511.1 
lbmol/hr) and feed-air flowrate (69000 lbmol/hr). Optimum operation is shown in dotted-red. Pseudo-SP for oxygen purity is 

given in dotted-black. MMPC parameters: P = 100, M = 20, 810iiλ = . 

In such situations, a two input (F_airASU, F_LN2) – two 
output (ZO2, ZLN2) single-model MPC implementation to 
meet oxygen purity during fast ramp-changes, should be 
prioritized. Once the transients settled down, the MMPC 
algorithm may be triggered for maximizing the purity around 
the new steady-state. 

Another implementation for run-time optimization of the 
ASU may be done using feed-air flowrate minimization 
approach (at constant oxygen purity) in contrast to the current 
approach. Here, constant oscillations in feed-air flowrate may 
be observed as the liquid nitrogen fluctuates to maximize 
oxygen purity. Although such dynamic oscillations may at 
first discourage the implementation of proposed algorithms, it 
must be realized that over a period of time the difference in 
required feed-air prevent huge costs involved in expensive air 
compression. 
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