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Abstract: Unscented Kalman Filter (UKF) is a popular method for state and parameter
estimation of nonlinear dynamic systems. An attractive feature of UKF is that it utilizes
deterministically chosen points (called sigma points), and the number of such points depends
linearly on the dimension of the state space. However, an implicit assumption in UKF is that
the underlying probability densities are Gaussian. To mitigate the Gaussianity assumption,
Gaussian Sum-UKF has been proposed in literature that approximates all underlying densities
using a sum of Gaussians. For accurate approximation, the number of sigma points required
in this approach is significantly higher than UKF, thereby making the Gaussian Sum-UKF
computationally intensive. In this work, we propose an alternate approach labeled unscented
Gaussian Sum Filter (UGSF) that leverages the ability of Sum of Gaussians to approximate an
arbitrary density, while using the same number of sigma points as in UKF. This is achieved by
making suitable design choices of the various parameters in the Gaussian Sum representation.
Thus, our approach requires similar computational effort as in UKF and hence does not suffer
from the curse of dimensionality. We implement the proposed approach on a nonlinear state
estimation case study and demonstrate its superior performance over UKF.

Keywords: Sum of Gaussians, Bayesian estimation, unscented Kalman filter, nonlinear state
estimation

1. INTRODUCTION

Recursive Bayesian estimation has been widely used for
state and parameter estimation of dynamic systems.
Bayesian estimation techniques make use of prior knowl-
edge, typically in the form of a mathematical model of
the system, and available measurements to obtain the
probability density function of the estimate (Jazwinski,
1970). It can be shown that the conditional posterior mean
of the density minimizes the mean square error of the
estimator (Mendel, 1995). For linear dynamic systems with
linear measurement functions and Gaussian uncertainties
in the states and measurements, the posterior density
turns out to be Gaussian (Maybeck, 1979). The mean and
the covariance of the estimates then correspond to the well-
known Kalman filtering linear update equations.

The Kalman filter (KF) for the linear Gaussian system
consists of two distinct steps: (i) prediction step: deter-
mination of the moments (mean, covariance) of the prior
density by propagating through the process model, and
(ii) update step: computation of the mean and covariance
of the posterior density using a linear update equation
(Kalman, 1960).

For nonlinear dynamical systems, analytical solutions to
the Bayesian estimation problem are generally not avail-
able. Several extensions of the basic Kalman filter have
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been proposed in literature to address such cases (Pat-
wardhan et al., 2012). Extended Kalman filter (EKF)
(Soderstrom, 2003), is one of the most popular exten-
sion. The prediction step in EKF involves linearization
of system dynamics, thereby leading to a Gaussian prior.
Similar to the KF, the update step in EKF is also a linear
update step involving linearization of the nonlinear mea-
surement equation. In the last decade, Unscented Kalman
filter (UKF) (Julier and Uhlmann, 2004) has emerged as
a popular alternate solution to EKF for state estimation
of nonlinear dynamical systems (Romanenko and Castro,
2004; Qu and Hahn, 2009; Jacob and Dhib, 2011). It
is based on the premise that “approximating a density
function is easier than approximating a function” (Julier
et al., 1995). Similar to EKF, UKF also implicitly assumes
the prior density to be Gaussian. However, the mean and
covariance of this density are obtained by propagating a
set of deterministically chosen points (called sigma points)
through the nonlinear process model. This results in better
accuracy in the moments of the resulting prior and also
avoids numerical issues related to the linearization step
of EKF. However, as in EKF, the update equation in
UKF is linear with the Kalman gain computed using the
predicted sigma points instead of explicit linearization.
A key implicit assumption in UKF is that the prior and
posterior densities are Gaussian.

Several modifications have been proposed in literature to
account for the non-Gaussianity of the various densities.
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These include Gaussian Sum Filter (GSF) (Sorenson and
Alspach, 1971; Soderstrom, 2003), Gaussian Sum UKF
(Straka et al., 2011) and Sigma point Gaussian sum fil-
ter (Šimandl, 2005). These approaches are based on the
result that a Gaussian sum can approximate any arbitrary
density to any degree of accuracy (Sorenson and Alspach,
1971). Thus, the initial (k = 0) posterior is represented
as a sum of Gaussians. The prediction and update steps
are applied individually to the moments of each Gaussian.
At any given instant, the resulting overall prior or pos-
terior density is a weighted sum of the individual Gaus-
sian densities. These weights remain unchanged during
the prediction step but are corrected during the update
step. The weight-update relies on the innovations and is
nonlinear in the measurements. In GSF, the individual
prediction and update steps are same as those in EKF
(Soderstrom, 2003) and hence suffer from similar issues
as in EKF. On the other hand, in Gaussian Sum UKF
(GS-UKF) the individual prediction and update steps are
same as those in UKF, thereby offering similar advantages
as in UKF. An issue in the Gaussian Sum approaches is
the appropriate selection of the number of Gaussians to
be used. Since the GS-UKF uses the UKF steps to obtain
moments separately for each of the individual Gaussians,
the total number of sigma points required can be exces-
sively large, thereby leading to a significant computational
burden. Moreover, some of the updated weights may be-
come negligible, resulting in a degenerate representation of
the prior. Here, only those Gaussians with non-negligible
weights contribute to the overall moments. The class of
particle filters represents another approach, which does not
assume any parameterization of the underlying densities
and overcome the issue of degeneracy by an additional
resampling step (Arulampalam et al., 2002; Kotecha and
Djuric, 2003). However, since these are completely sample
based, they require large number of samples and hence are
computationally intensive. A detailed survey on nonlinear
state estimation techniques can be found in Patwardhan
et al. (2012).

In this work, we propose a computationally efficient algo-
rithm for state estimation of nonlinear dynamic systems.
The proposed approach utilizes the sigma point concept
as used in UKF in the propagation step to obtain the
prior density. Subsequently, the propagated sigma points
are used to approximate the prior by a sum of Gaussians.
The update step is similar to Gaussian Sum filter where
the weights are updated nonlinearly with respect to in-
novations. The proposed approach thus leverages on the
computational benefits of UKF and also has the ability to
handle non-Gaussian densities as in Gaussian Sum filter.
In particular, the prior used in the Bayes’ rule is modeled
as sum of Gaussians that is obtained based on propagated
sigma points chosen deterministically as in UKF. We thus
label our approach as Unscented Gaussian Sum Filter
(UGSF).

The number of Gaussians in the Gaussian Sum represen-
tation of the prior is chosen to be same as the number
of sigma points used in the basic UKF. Additionally, the
moments of these individual Gaussians in the Gaussian
sum representation are chosen such that the moments of
the overall density match the UKF moments. These design
choices ensure that the computational requirements of our

approach are same as UKF while relaxing the implicit
assumption inherent in UKF that the prior density is a
Gaussian density.

The rest of the paper is organized as follows: The problem
statement and the proposed UGSF approach are presented
in Section 2. Since, our approach utilizes deterministically
chosen sigma points as in UKF, we also briefly summarize
UKF and compare our approach with it in Section 2.
Section 3 presents a nonlinear state estimation case study
to demonstrate the utility of our approach. The paper is
then concluded in Section 4.

2. PROBLEM STATEMENT

Consider a discrete-time process and measurement model
as,

xk+1 = f(xk, uk) + wk wk ∼ N (0, Q) (1)

yk = Hxk + vk vk ∼ N (0, R) (2)

where f(· ) is the state dynamics and H is the linear
dynamics for observation. x ∈ Rn, y ∈ Rm, u ∈ Rp,
w ∈ Rn, v ∈ Rm represent the states, observations, inputs,
state noise, and measurement noise, respectively. Qn×n
and Rm×m represent the covariance matrices associated
with state and measurement noises, respectively. Note that
a linear observation transformation is assumed in Eq (2).
This assumption results in a Gaussian likelihood and is
made to simplify the posterior density in the proposed
UGSF approach. We now summarize the widely used UKF
approach for nonlinear state estimation.

2.1 UKF Algorithm (Julier et al., 1995)

At (k − 1)th time instant, the sigma points are generated
from the given posterior mean x̂k−1|k−1 and covariance
Pk−1|k−1.

χ
(i)
k−1|k−1 = x̂k−1|k−1, i = 0

χ
(i)
k−1|k−1 = x̂k−1|k−1 +

[√
(n+ κ)Pk−1|k−1

]
i

, i = 1 . . . n

χ
(i+n)
k−1|k−1 = x̂k−1|k−1 −

[√
(n+ κ)Pk−1|k−1

]
i

, i = 1 . . . n

(3)

w(i) =


κ

n+ κ
, i = 0

1

2(n+ κ)
, i = 1 . . . 2n

(4)

In the above, χ
(i)
k−1|k−1 ∈ Rn is ith sigma point, w(i) is the

weight associated with ith sigma point and κ is a tuning
parameter usually chosen as n+ κ = 3.

Prediction Step

These sigma points χ
(i)
k−1|k−1 are propagated through the

process model (Eq (1)) to obtain the predicted sigma

points χ
(i)
k|k−1. The predicted sigma points are subse-

quently used to construct the prior, which is implicitly
assumed to be Gaussian with mean,

x̂k|k−1 =

2n∑
i=0

w(i)χ
(i)
k|k−1 (5)
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and covariance,

Pk|k−1 =

2n∑
i=0

w(i)[χ
(i)
k|k−1 − x̂k|k−1][χ

(i)
k|k−1 − x̂k|k−1]T +Q

(6)
The following quantities are then computed to evaluate
the Kalman gain,

η
(i)
k|k−1 = Hχ

(i)
k|k−1 (7)

η̂k|k−1 =

2n∑
i=0

w(i)η
(i)
k|k−1 (8)

Pxy =

2n∑
i=0

w(i)[χ
(i)
k|k−1 − x̂k|k−1][η

(i)
k|k−1 − η̂k|k−1]T

+QHT

(9)

Pyy =

2n∑
i=0

w(i)[η
(i)
k|k−1 − η̂k|k−1][η

(i)
k|k−1 − η̂k|k−1]T

+HQHT +R

(10)

Kk = PxyPyy
−1 (11)

In Eqs (7) to (11), η
(i)
k|k−1, η̂k|k−1 ∈ Rm, Pxy ∈ Rn×m,

Pyy ∈ Rm×m and Kk ∈ Rn×m represent transformed
sigma points (in measurement space), weighted mean of
the transformed sigma points, cross covariance of state
estimation error and innovation, innovation covariance,
and Kalman Gain, respectively.

Linear Update Step
Moments associated with x̂k|k−1 and Pk|k−1 are then
updated linearly as,

x̂k|k = x̂k|k−1 +Kk(yk − η̂k|k−1) (12)

Pk|k = Pk|k−1 −KkPk|k−1K
T
k (13)

Here, x̂k|k, Pk|k are updated mean and updated covariance
respectively. This completes one cycle of UKF. Next we
present the proposed UGSF approach.

2.2 The Unscented Gaussian Sum Filter- Proposed approach

A nonlinear transformation does not preserve Gaussianity
in general (Sorenson and Alspach, 1971). UKF overlooks
this underlying fact as given in Eqs (5) and (6). To over-
come this problem, the prior density can be approximated
as a sum of Gaussians as discussed in Section 1. We now
discuss our proposed approach for obtaining this prior
approximation followed by a discussion of the update step
to obtain the posterior.

(i) Prior Approximation with sum of Gaussians
We now approximate the prior with sum of Gaussians as,

pxk|Yk−1
(ξk|Yk−1) =

N∑
i=1

∝(i) p(i)(ξk) (14)

p(i) ∼ N (µ
(i)
k|k−1,Σ

(i)
k|k−1), i = 1, 2, . . . N (15)

In Eqs (14) and (15), pxk|Yk−1
(ξk|Yk−1) is prior density

of the states, ξk ∈ Rn is the dummy variable associated
with the state xk, and Yk−1 is a set of all previous
observations i.e {y1, y2 . . . yk−1}. p(i) is a Gaussian density

with mean µ
(i)
k|k−1 and covariance Σ

(i)
k|k−1, and ∝(i) is

the non-negative weight associated with p(i) such that

0 <∝(i)< 1 and
N∑
i=1

∝(i)= 1. Further, N is the number of

individual Gaussians in the Gaussian sum representation.

With appropriate choice of parameters N , ∝(i), µ
(i)
k|k−1 and

Σ
(i)
k|k−1 any prior density can be approximated by Eq (14)

to an arbitrary degree of accuracy. A logical question that
arises is how to select the number of Gaussians as well
as the parameters in this Gaussian sum representation.
In this work, we use the unscented transformation idea
as practiced in UKF to achieve this representation. In
particular, we make the following design choices for these
parameters,

• N = 2n+ 1; number of Gaussians is same as number
of sigma points,

• µ(i)
k|k−1 = χ

(i)
k|k−1, i = 1 . . . N ; each ith Gaussian is

assigned ith propagated sigma point as its mean,
• ∝(i)= w(i); each ith Gaussian is assigned the weight

corresponding to the ith sigma point,

• Σ
(i)
k|k−1 = Q; the covariance of each individual Gaus-

sian is the same as the covariance of process noise.

To be consistent with the UKF notation, the individual
Gaussians are numbered from 0 to N − 1 i.e from 0 to 2n.
The above choice of the parameters ensures that the mean
and covariance of proposed sum of Gaussian prior matches
with the single Gaussian prior implicitly assumed in UKF
as shown below.

Prior Mean
For a density represented as a sum of Gaussians as in Eq
(14), the first moment can be obtained as,

E[xk|Yk−1]≡
∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

ξkpxk|Yk−1
(ξk|Yk−1)dξk

=

∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

ξk

N∑
i=1

∝(i) p(i)(ξk)dξk (16)

Using the design choices outlined above, the first moment
in the proposed approach turns out to be,

E[xk|Yk−1] =

2n∑
i=0

w(i)χ
(i)
k|k−1 = x̂k|k−1 (17)

Prior Covariance
The covariance of the Gaussian sum prior can be expressed
in terms of the moments of the individual Gaussians
(Soderstrom, 2003),

Pk|k−1 =

N∑
i=1

α(i)[Σ
(i)
k|k−1 + {· }{· }T ] (18)

where, {· } = [µ
(i)
k|k−1 − E[xk|Yk−1]] (19)

Upon implementing the design choices discussed above,
the covariance simplifies to,

Pk|k−1 =

2n∑
i=0

w(i)[χ
(i)
k|k−1 − x̂k|k−1][χ

(i)
k|k−1 − x̂k|k−1]T +Q

(20)

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

174



which is identical to the prior covariance obtained in the
UKF approach (Eq (6)). Thus, the Gaussian sum prior
density used in UGSF and represented in Eq (14) becomes,

pxk|Yk−1
(ξk|Yk−1) =

2n∑
i=0

w(i) 1

(2π)n/2|Q|1/2
exp {· }

(21)

where, {· } =

{
−1

2
[ξk − χ(i)

k|k−1]TQ−1[ξk − χ(i)
k|k−1]

}
(22)

(ii) Update of the Gaussian sum prior
The Bayes’ rule for obtaining the posterior density from
the prior is given as (Maybeck, 1979),

pxk|Yk
(ξk|Yk) =

pxk|Yk−1
(ξk|Yk−1)pyk|xk,Yk−1

(ζk|ξk, Yk−1)

pyk|Yk−1
(ζk|Yk−1)

(23)
In Eq (23), the prior density is pxk|Yk−1

(ξk|Yk−1) described
in Eq (21). Further, the likelihood density in Eq (23)
pyk|xk,Yk−1

(ζk|ξk, Yk−1) takes into account the stochastic
component associated with the observation model in Eq
(2), which is assumed to be Gaussian and thus turns out
to be (Maybeck, 1979),

pyk|xk,Yk−1
(ζk|ξk, Yk−1) =

1

(2π)m/2|R|1/2
exp {· } (24)

where, {· } =

{
−1

2
[yk −Hξk]TR−1[yk −Hξk]

}
(25)

pyk|Yk−1
(ζk|Yk−1) is a normalization factor called evidence

and is defined as (Maybeck, 1979),

pyk|Yk−1
(ζk|Yk−1) =

∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

p(ξk)dξk (26)

where,

p(ξk) = pxk|Yk−1
(ξk|Yk−1)pyk|xk,Yk−1

(ζk|ξk, Yk−1) (27)

Substituting Eqs (21) and (24) into (26) and integrating
yields,

pyk|Yk−1
(ζk|Yk−1) =∝ (2π)n/2|Ξ|1/2

2n∑
i=0

w(i) exp(−1

2
ε
(i)
k )

(28)
where,

∝ =
1

((2π)(m+n)|Q||R|)1/2
(29)

Ξ = [Q−1 +HTR−1H]−1 (30)

ε
(i)
k = (yk −Hχ(i)

k|k−1)T [HQHT +R]−1(yk −Hχ(i)
k|k−1)

(31)

In Eqs (24) and (28), the dummy variable ζk on the right
hand side is substituted by its realization namely, yk. The
analytical solution for the posterior density can now be
obtained by substituting Eqs (21), (24) and (28) in Eq
(23). This results in the following posterior density,

pxk|Yk
(ξk|Yk) =

2n∑
i=0

δ
(i)
k

(2π)n/2|Ξ|1/2
exp {· } (32)

where,

{· } =

{
−1

2
(ξk − χ(i)

k|k)TΞ−1(ξk − χ(i)
k|k)

}
(33)

χ
(i)
k|k = Ξ[Q−1χ

(i)
k|k−1 +HTR−1yk] (34)

δ
(i)
k =

w̃
(i)
k

2n∑
j=0

w̃
(j)
k

(35)

In Eq (32), the posterior density is a sum of Gaussians

with each Gaussian being centered around the mean χ
(i)
k|k,

covariance Ξ and weighted with δ
(i)
k . These weights are

nonlinear in the individual innovations and are identical
to those obtained in Gaussian Sum filters (Soderstrom,
2003). The updated mean and updated covariance can now
be obtained from the posterior density analytically. The
posterior mean turns out to be,

x̂k|k =

∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

ξkpxk|Yk
(ξk|Yk)dξk =

2n∑
i=0

δ
(i)
k χ

(i)
k|k

(36)
The posterior covariance turns out to be,

Pk|k =

∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

(ξk − x̂k|k)(ξk − x̂k|k)T

pxk|yk(ξk|Yk)dξk (37)

= Ξ +

2n∑
i=0

δ
(i)
k [χ

(i)
k|k − x̂k|k][χ

(i)
k|k − x̂k|k]T (38)

In our proposed approach, the sigma points at instant k
required for the next cycle are obtained from a Gaussian
with the mean and covariance being the same as that of
the Gaussian Sum posterior given above (Eqs (36) and
(38)). We now summarize the proposed UGSF approach
as an online state estimator.

UGSF Summary

Step 1: Generate 2n + 1 deterministic samples χ
(i)
k−1|k−1

and their corresponding weights w(i) from the initial
prior density N (x̂k−1|k−1, Pk−1|k−1) using Eq (3).

Step 2: Propagate each sigma point, χ
(i)
k−1|k−1 through

nonlinear process dynamics (Eq (1)) to obtain the

predicted sigma points χ
(i)
k|k−1.

Step 3: Use the analytical expressions from Eqs (36)
and (37), to evaluate mean and covariance of posterior
density at kth instant.

Step 4: One cycle is completed now. Go to Step (1) with
k = k + 1.

We now discuss the key differences between the proposed
approach and the existing GS-UKF (Straka et al., 2011).

(1) Approximation of Prior: In the proposed approach,
the number of Gaussians in the Gaussian sum repre-
sentation of the prior density at any time instant k
is chosen as 2n+ 1, which is the same as the number
of sigma points typically generated in UKF. In the
GS-UKF approach on the other hand, the number
of Gaussians in the initial posterior representation
(at k = 0) is a user-specified parameter, typically
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chosen to be large to obtain a good approximation.
Another difference in the two approaches is in the
computation of the mean and covariance of the indi-
vidual Gaussians in the Gaussian sum representation.
In the proposed UGSF approach, covariance of each
individual Gaussian is chosen to be Q while its mean
is simply the propagated value of the corresponding
sigma point. These choices ensure that the overall
mean and covariance of the Gaussian sum represen-
tation is the same as the mean and covariance that
would be obtained if basic UKF had been used. On
the other hand, in the existing GS-UKF approach,
the mean and covariance of an individual Gaussian
is obtained by propagating sigma points generated
locally for each Gaussian (Straka et al., 2011). Hence,
the GS-UKF prior mean and covariance do not match
with the UKF moments.

(2) Approximation of Posterior: As seen in Section 2.2
earlier, the posterior obtained by Bayes’ rule turns
out to be a sum of Gaussians (Eq (32)) when the prior
is represented as a sum of Gaussians. In the proposed
UGSF approach, this posterior is reapproximated as
a single Gaussian having same mean and covariance
as the sum of Gaussians (Eqs (36) and (38)). In the
existing GS-UKF approach, this re-approximation is
not performed and hence can lead to an increase
in the number of Gaussians in subsequent steps.
Pruning strategies have to be used to limit this
number to an acceptable value. Further, absence of re-
approximation can potentially lead to the degeneracy
issues in GS-UKF as discussed previously.

(3) Computational Issues: In the state-estimation filters
relying on Unscented Transformation, such as UKF,
GS-UKF, UGSF, the main computational effort is in
propagating the sigma points through the nonlinear
process model. Since, the number of sigma points in
our proposed UGSF approach are same as that in
UKF, we expect the computational requirements of
the two to be similar. The existing GS-UKF approach
requires propagation of N(2n+1) sigma points where
N is the number of individual Gaussians in the poste-
rior representation, typically larger than 2n+ 1. This
has the potential to obtain a better representation
of the underlying densities than UGSF, but at a
significantly higher computational cost.

3. RESULTS AND DISCUSSIONS

The proposed UGSF and UKF are now implemented on
a two state non-isothermal CSTR problem (Bruns and
Bailey, 1977). The average performances of both UKF
and UGSF filters are compared for 100 different noise
realizations over 1000 time instants, each, for different
values of Q and R.

3.1 Non-Isothermal CSTR

Dynamics of the CSTR in dimensionless form is given as
(Bruns and Bailey, 1977),

dx1
dt

= 1− x1 −Dax1eγ(1−
1
x2

) + w1

dx2
dt

= 1− x2 +Daβx1e
γ(1− 1

x2
) + ϑ(u− x2) + w2

y = x2 + v

(39)
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Fig. 1. States tracking of UKF and UGSF for x1

where, x1, x2, u and t are the dimensionless reactant con-
centration, reactor temperature, coolant temperature, and
time, respectively. w1, w2 are the process noises with co-
variance Q and v is the measurement noise with covariance
R. Base values of state and measurement noise standard
deviations correspond to 1% of the corresponding steady
state values. Further the process input u is perturbed as a
PRBS signal (MATLABr) around the steady state value
us with standard deviation being 2.5% of us. The various
process parameters are listed in Table 1. Performance of

Table 1. Process parameters for CSTR case
study (Bruns and Bailey, 1977)

Da = 0.0637 xss = [0.94500 0.9976]T (steady state)
β = 0.167 x0|0 = [0.95445 1.0075]T

γ = 37.7 Qbase = diag{9.025× 10−5, 9.94× 10−5}
ϑ = 0.1356 Rbase = 9.94× 10−5

us = 1.048 Ts = 0.1t
κ = 1 P0|0 = diag{9.025× 10−3, 9.94× 10−3}

x̂0|0 = 1.01× xss

both UKF and UGSF are compared based on values of
Average Root Mean Square Error (ARMSE) defined as,

ei =
1

K

K∑
l=1

[√√√√ 1

M

M∑
j=1

[x̂
(l)
ji − x

(l)
ji ]2

]
i = 1, . . . , n (40)

where, K, M and x
(l)
ji represent number of noise real-

izations, number of time instances and the ith state at
jth time instant for lth noise realization. The results

Table 2. ARMSE values of UKF and UGSF for
CSTR case study

Mode UKF UGSF

x1 × 103 x2 × 103 x1 × 103 x2 × 103

Q1; R1 23.0169 7.66092 22.4141 7.65857
Q1; R2 22.4790 3.0144 21.8920 3.0143
Q1; R3 22.4220 0.99166 21.8390 0.99166
Q2; R1 8.9476 4.4762 7.7708 4.4684
Q2; R2 8.2880 2.4243 7.0945 2.4270
Q2; R3 8.2419 0.95325 7.0321 0.9534
Q3; R1 5.2542 1.9174 3.0993 1.9044
Q3; R2 4.9435 1.41488 3.6377 1.4437
Q3; R3 4.8257 0.76650 6.1477 0.7777

are presented in Table 2. In this Table, Q1 = Qbase,
Q2 = 0.1Qbase and Q3 = 0.01Qbase. Similarly, R1 = Rbase,
R2 = 0.1Rbase and R3 = 0.01Rbase. From the results it
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Fig. 2. States tracking of UKF and UGSF for x2

can be observed that the UGSF performance is superior
to the UKF performance for most of the cases considered.
However, out of the 9 cases, for three cases for state x2
(Q2, R2;Q2, R3;Q3, R2) and one case for state x1 (Q3, R3)
the performance of UKF was better. These cases where
the UGSF performance was inferior typically correspond
to low values of Q and R. This inferior performance may
be due to inadequate approximation of the prior with the
limited number of sigma points (5 in this case). The con-
centration estimates from UKF and UGSF along with the
true states are shown in Fig. 1 while the estimated temper-
atures (x2) along with the measurements are shown in Fig.
2. These plots correspond to (Q2, R1) combination for one
representative simulation run from amongst the 100 dif-
ferent noise realizations. While the actual simulation was
carried out for 1000 time instants, the results are shown
only up to 100 time instants for visual clarity. The above
analysis was carried out for a fixed initial condition as
reported in Table 2. To compare the performances for vary-
ing initial conditions, we performed state estimation for
two combinations of Q and R with 100 different randomly
chosen initial conditions. These two combinations were:
(1) Q1, R2; and (2) Q2, R1. The corresponding ARMSE
values (×103) for UKF and UGSF were obtained as: (1)
x1: 21.888 and 21.4583, x2: 3.0555 and 3.0555, (2) x1: 7.776
and 7.0388, x2: 4.3936 and 4.3906. These results once again
demonstrate the superior performance of UGSF compared
to UKF. Additionally, we also implemented GS-UKF with
N = 5 forQ = Q1,R = R1. The average computation time
per time instant for UKF, UGSF and GS-UKF were found
to be 0.0176, 0.0176 and 0.0879 seconds, respectively. Also,
the performance of UGSF was found superior to GS-UKF
and UKF performances (Case I, Table 2).

4. CONCLUSIONS

This work presents a computationally efficient extension of
UKF, labeled UGSF, to exploit the representation ability
of sum of Gaussians for nonlinear state estimation. In
the proposed approach, the number of Gaussians in the
Gaussian sum representation of prior is restricted to the
number of sigma points chosen in UKF, thereby ensuring
similar computational requirements as UKF. The case
study demonstrates that better estimation performance
as compared to UKF is obtained by the proposed UGSF
approach. Thus, the proposed approach represents a trade-
off for nonlinear state estimation, where underlying den-

sities tend to be non-Gaussian, between the potentially
more accurate but computationally demanding GS-UKF
as existing in literature and the relatively less accurate
UKF that requires much lower computations.
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