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Abstract: Industrial applications of model predictive control rely mostly on linear empirical
models obtained by employing time series analysis approaches. These models can quickly become
obsolete and require maintenance when the operating conditions become significantly different
from the design conditions. The need to generate good predictions in the face of changing
operating conditions and / or plant characteristics can be fulfilled through updating the linear
model parameters online. This work is aimed at the development of adaptive MPC (AMPC)
scheme based on ARX models, which are parameterized using generalized orthonormal basis
filters (GOBF). The proposed model structure, in addition to capturing the dynamics with
respect to the manipulated inputs, facilitates modeling of stationary as well as non-stationary
components of the unmeasured disturbances. The feasibility of using the proposed AMPC
scheme is established by conducting experimental studies on a benchmark Heater-Mixer setup.
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1. INTRODUCTION

Model predictive control (MPC) has been used for many
years to control the complex process units in chemical pro-
cess industries. The key component of any MPC scheme
is the dynamic model used for carrying out on-line pre-
dictions. Development and maintenance of the dynamic
model is of paramount importance for achieving good
closed loop performance. Qin and Badgwell (2003) in
their review paper observed that industrial applications
of model predictive control rely mostly on linear empir-
ical models obtained by employing time series analysis
approaches. These models can quickly become obsolete
and require maintenance when the operating conditions
become significantly different from the design conditions.
The need to generate good predictions in the face of chang-
ing operating conditions and / or plant characteristics can
be fulfilled through updating the linear model parameters
online. This approach, however, has received relatively less
attention in the industrial applications of MPC. Qin and
Badgwell (2003), in their review of industrial MPC algo-
rithms, point out that only two adaptive MPC (AMPC)
algorithms have reached the market place despite strong
market incentive for self-tuning MPC. The observed lack
of interest in implementing these AMPC on industrial
systems may be attributed to the reliability of poor on-line
parameter schemes, which forms the core of any AMPC
strategy.

In the review of adaptive control presented at CPC-V,
Ydsti (1997) identifies the admissibility problem as one
of the key issues that must be addressed in certainty

equivalence control to achieve bounded input bounded
output (BIBO) stability and robustness with respect to
unmodelled dynamics and disturbances. This implies that
the estimated model must be well behaved (controllable or
stabilizable). Further, Ydsti (1997) identifies the instability
of the parameter estimator or the parameter drift as an-
other important issue that must be addressed while devel-
oping an adaptive control scheme. When the conventional
model parameterization is used, the parameter drift can
be avoided either by adding a deliberate perturbation to
the set point or manipulated inputs or by using parameter
projection to ensure that parameters do not go outside
a bounded region. An alternate approach suggested by
Ydsti (1997) to deal with both the difficulties is to use
orthonomal basis filter (OBF) based model parameteriza-
tion, such as Laguerre or Kautz filter based models, which
guarantees that the identified model is well behaved. In
the literature, however, OBF based models with output
error structure have mostly been employed, which do not
model the effect of unmeasured disturbances. Inclusion
of the unmeasured disturbance models in model predic-
tions, on the other hand, can significantly improve regula-
tory performance of an MPC scheme (Patwardhan et al.
(2006)). Recently, Muddu et al. (2010) have shown that
models with ARX structure can be parameterized using
Orthonormal Basis Filters (OBF). These models explicitly
capture the dynamics of the unmeasured disturbances and
are parsimonious in parameters, which make them ideal
candidates for the development of adaptive MPC schemes
with better disturbance rejection abilities.
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This work is aimed at the development of adaptive MPC
scheme based on ARX models, which are parameterized
using generalized orthonormal basis filters (GOBF) (Nin-
ness and Gustafsson (1997)). The proposed model struc-
ture, in addition to capturing the dynamics with respect to
the manipulated inputs, facilitates modeling of stationary
as well as non-stationary components of the unmeasured
disturbances. The feasibility of using the proposed AMPC
scheme is established by conducting experimental stud-
ies on a benchmark Heater-Mixer setup (Thornhill et al.
(2008)).

The latter part of the paper is organized in the following
sequence. Section 2 presents rationale behind the proposed
model parameterization and the model parameter esti-
mation schemes. Sections 3 presents the adaptive frame
work for the Model Predictive Control. The experimental
evaluation of the proposed AMPC schemes are presented
in section 4. The main conclusions reached through the
analysis of these results are presented in the last section.

2. MODEL IDENTIFICATION

The identification exercise is proposed to be carried out
in two phases. The initial model identification is carried
out from the offline data obtained from the input-output
perturbation plant data. The parameters of the state to
output map are later updated on-line. In this work, it is
proposed to model an r × m MIMO system as r MISO
OBF-ARX models. However, to keep notations simple,
formulation and adaptation of a single MISO GOBF-ARX
model is described in this section.

2.1 ARX Model Parameterization using GOBF

To begin with, consider a general form of MISO time series
model

y(k) =

m∑
k=1

Gi(z, θ)ui(k) +H(z, θ)e(k) (1)

where {e(k)} is a zero mean white noise sequence and θ
∈ Rp represents model parameters. For the purpose of
parameter estimation, a one step predictor of the form

ŷ(k|k − 1) =
m∑

k=1

Wu,i(z, θ)ui(k) +Wy(z, θ)y(k) (2)

is developed where

Wu,i(z, θ) =H(q)−1Gi(z, θ)

Wy(z, θ) = (1−H(z, θ)
−1

)y(k)

Muddu et al. (2010) have proposed to parameterize
Wu,i(z, θ) and Wy(z, θ) using the generalized orthonormal
basis filters (GOBF) Ninness and Gustafsson (1997)

Fl(z, ξ) =

√
(1− |ξl |2)
(z − ξl)

l−1∏
i=1

(1− ξ∗i z)

(z − ξi)
. (3)

where {ξl : l = 1, 2, ...} is an arbitrary sequence of
poles inside the unit circle appearing in complex conjugate
pairs. These filters represent an orthonormal basis for the
set of strictly proper stable transfer functions. The main
advantage of using orthogonal basis filters is that, with a

judicious choice of the filter parameters, any strictly proper
stable transfer function, say G(z), can be approximated as

G(z) ≈
n∑

j=1

αjFu(z, ξ)

where ξ represent vector of GOBF poles. Thus, RHS of
equation (2) is parameterized using GOBF as follows

Wu,i(z, θ) =

ni∑
j=1

αijFu,j(z, ξui) (4)

Wy(z, θ) =

ny∑
j=1

βjFy,j(z, ξy) (5)

Following Patwardhan and Shah (2005), a state realiza-
tion of the MISO OBF-ARX model can be expressed as
follows

x(k + 1) =Ψx(k) + Γu(k) +Ky(k) (6)

y(k) =Cx(k) + e(k) (7)

where x(k) ∈ Rn represents the state vector, u(k) ∈ Rm

represent the vector of manipulated inputs and {e(k)} rep-
resents innovation sequence. This model representation,
referred to as predictor form of state realization in the rest
of the text, is convenient to use at the parameter identifica-
tion stage. For the purpose of controller development, this
form can later be transformed into the innovation form as
follows

x(k + 1) =Φx(k) + Γu(k) +Ke(k) (8)

y(k) =Cx(k) + e(k) (9)

where Φ = Ψ+KC.

2.2 Off-line Parameter Estimation

The model parameters identified by the prediction error
approach, i.e. by minimizing an objective function of the
form

J =
1

N

N∑
k=1

e(k)2 =
1

N

N∑
k=1

[y(k)− ŷ(k|k − 1)]
2

(10)

The key step in the development of OBF based models
is the selection of filter poles and the number of basis
filters (filter order) necessary to develop a reasonably good
approximation of the system dynamics. We choose filter
orders a priori and perform a search in the set of filter
poles as proposed by Patwardhan and Shah (2005). An
interesting feature of the predictor form of state space
realization is that matrices (Ψ,Γ,K) are functions of
{ξui : i = 1, 2, ..m} and {ξy} alone. Also, the C ma-
trix is function of only the series expansion coefficients
{αui : i = 1, 2, ..m, j = 1, 2, ...ni} and {βj : j = 1, 2, ...ni}.
This feature is exploited to arrive at a nested optmiza-
tion formulation of the parameter estimation problem as
follows: (

Ĉ, ξ̂
)

= argmin
ξ

1

N

N∑
k=1

[e(k, Ĉ(ξ)]2, (11)

subject to
|ξi| ≤ 1 for i = 1, 2, ...ni (12)
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where ξ =
[
ξTu1

ξTu2
... ξTy

]T
. Given a guess of pole vector

ξ, the parameter vector Ĉ(ξ) is estimated by solving
another optimization problem.

Ĉ = argmin
C

1

N

N∑
k=1

[e(k,C, ξ)]2. (13)

For a given GOBF poles (ξ) the parameter vector, the later
problem can be solved analytically using linear regression.
This analytical form is as follows:

ĈT (ξ) =

(
N∑

k=1

x(k)x(k)T

)−1 N∑
k=1

x(k)y(k) (14)

In the remaining part of the text, the MISO model
matrices identified from the offline parameter estimation
exercise are referred to either as (Ψ,Γ,K,C).

2.3 On-line Model Parameter Estimation

It may be noted that the identified model is valid in the
neighborhood of the operating point where initial pertur-
bation data is generated. To accurately predict the plant
behavior under changing circumstances, it becomes neces-
sary to update the model parameters on-line. To adapt the
model to changing operating conditions, we exploit the fact
that the state to output map is linear in parameters and
amenable to on-line recursive parameter estimation. It is
proposed to model changing operating conditions through
modification of the measurement equation as follows

y(k) = y(k) + C(k)x(k) + e(k) (15)

The term y(k) is introduced to model the effects of time
varying unmeasured disturbances in the output as an
additive drift. The parameters of the modified state to
output map, i.e.y(k) and C(k), are updated online using
recursive least square (RLS) estimation approach. Defining
parameter vector and regressor vector for the MISO model
as

θ(k)T =
[
y(k) (C(k))

T
]

(16)

φ(k)T =
[
1 (x̂(k|k − 1))

T
]

(17)

where x̂(k) represents estimate of x(k), the parameter
vector can be updated using the conventional RLS as
follows

θ̂(k) = θ̂(k − 1) + L(k)e(k) (18)

e(k) = y(k)− [φ(k)]
T
θ̂(k − 1) (19)

L(k) = P(k − 1)φ(k)[λ+ φ(k)
T
P(k − 1)φ(k)

T
]−1 (20)

P(k) = [I− L(k)φ(k)
T
]P(k − 1)/λ (21)

where L represents Kalman gain matrix and P represents
the covariance matrix of the estimation error. The param-
eter vector is initialized as follows

θ(0)T=
[
0
(
C
)T ]T

and P(0) is initialized using results of the off-line parame-
ter exercise. The λ represents the forgetting factor 0.95 ≤
λ ≤ 1. Thus, at any instant k, the online parameter
estimation involves

• Computation of regressor vector using the predictor
form

x̂(k) = Ψx̂(k−1)+Γu(k−1)+K [y(k − 1)− y(k − 1)]

• Estimation of (d(k), C(k)) using the recursive least
squares approach

The innovation form representation of the MISO model
with the proposed parameter adaptation assumes following
form

x̂(k + 1|k) = Φ(k)x̂(k|k − 1) + Γu(k) +Ke(k) (22)

e(k) = [y(k)− y(k)]− C(k)x̂(k|k − 1) (23)

where Φ(k) =Ψ+KC(k). Thus, the poles of the model
used for controller development are varying with time.

3. ADAPTIVE MPC FORMULATION

In this section, adaptive MPC (AMPC) formulation is
developed based on GOBF ARX models identified on-
line. Since we have r outputs, r such MISO parameter
estimators are used in parallel. Thus, at k’th sampling
instant, we have r innovation form of models

x(i)(k + 1) =Φ(i)(k)x(i)(k) + Γ
(i)
u(k) +K

(i)
ei(k)(24)

yi(k) = yi(k) + C(i)(k)x(i)(k) + ei(k) (25)

where i = 1, 2, ...r available for carrying out predictions.
For a r × m multi-input/multi-output (MIMO) process,
defining a combined state vector

X(k) =
[
x(1)(k)T x(2)(k)T .... x(r)(k)T

]T
(26)

r such MISO models can be stacked into one MIMO model
as

X(k + 1) =Φ(k)X(k) + Γu(k) +Ke(k) (27)

y(k) = y(k) +C(k)x(k) + e(k) (28)

where (Φ(k),Γ,K,C(k)) are constructed by appropriately
stacking {

Φ(i)(k),Γ
(i)
,K

(i)
,C(i)(k) : i = 1, 2, ., r

}
3.1 Future Trajectory Predictions

Given a guess of the future manipulated inputs, say
{u(k + i|k) : i = 0, 1, 2, ...p− 1} , the model can be used to
generate predictions over future time window [k+1, k+p]
as follows

X̂(k + i+ 1|k) = Φ(k)X̂(k + i|k) + Γu(k + i|k) +Kef (k)
(29)

y(k + i|k) = y(k) +C(k)X̂(k + i|k) + ef (k) (30)

ef (k + 1) = αef (k) + (1− α)e(k) (31)

e(k) = y(k)−
[
y(k) +C(k)X̂(k|k − 1)

]
(32)

where 0 ≤ α < 1 is a tuning parameter used to attenuate
the effect of high frequency noise on the future predictions.
The initial state at the beginning of the prediction horizon
is estimated as follows

X̂(k|k− 1) = Φ(k)X̂(k− 1|k− 2)+Γu(k− 1)+Ke(k− 1)
(33)
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3.2 AMPC Formulation with Time Varying Terminal
Weighting

The model predictive control problem at the sampling
instant k is defined as constrained optimization problem
where the set of future manipulated input moves,

Uf (k) = {u(k|k),u(k + 1|k), ...,u(k + q − 1|k)}
where q is called as control horizon, are computed by
minimizing the objective function

min

U
(k)
f

ϵ(k + p|k)TW∞(k)ϵ(k + p|k)

+

p−1∑
i=1

E(k + i|k)TwEE(k + i|k)

+

q−1∑
i=1

△u(k + i|k)Tw△Uu(k + i|k) (34)

subject to the following constraints

uL ≤ u(k + i|k) ≤ uH for i = 0, 1, .., q − 1 (35)

∆uL ≤ ∆u(k+ i|k) ≤ ∆uH for i = 0, 1, .., q− 1 (36)

where,

E(k + i|k) = r(k + i|k)− ŷ(k + i|k) (37)

ϵ(k + p|k) = X̂(k + p|k)−Xs(k)..... (38)

△u(k + i|k) = u(k + i|k)− u(k + i− 1|k) (39)

Here, WE is a symmetric positive semidefinite error
weighting matrix and W△U is symmetric positive definite
input weighting matrix. The selection of the above matrix
is based on the process economics and relative importance
of inputs and/or outputs. Matrix W∞(k) represents time
varying terminal weighting matrix, which is evaluated at
every sampling instant by solving the discrete Lyapunov
equation given as

w∞(k) = C(k)
T
wEC(k) +Φ(k)

T
w∞Φ(k) (40)

The time dependent terminal target state, xs(k), is esti-
mated as follows

Xs(k) =
[
C(k)(Φ− I)

−1
Γ
]−1

[
r(k)−

(
C(k)(I−Φ(k))

−1
K+I

)
ef (k)

]
The above optimization problem is transformed and solved
as a quadratic programming (QP) problem and only
the first move uopt(k|k) is implemented on the plant,i.e.
u(k) = uopt(k|k). The optimization problem is reformu-
lated at the next sampling instant based on the updated
information from the plant.

4. EXPERIMENTAL STUDIES ON HEATER-MIXER
SETUP

In this section, the proposed adaptive model predict con-
trol scheme is demonstrated on a benchmark heater-mixer
setup at Automation Lab, Dept. of Chemical Engineering,
IIT Bombay and more details found in Thornhill et al.
(2008). The heater-mixer setup consists of two stirred

Fig. 1. Schematic Diagram of Heater-Mixer Setup.

tanks in series as shown in Figure (1). The contents in the
tanks are well stirred by using variable speed agitators. A
cold water stream is introduced in the first tank through
CV-2. The contents of the first tank is heated using a 4
kWH heating coil. The hot water that overflows the first
tank is mixed with cold water stream entering in to the sec-
ond tank through CV-1. The contents of the second tank is
heated using another 3.5 kwh heating coil. The water from
second tank is also recycled back to the first tank. The
heat supplied to both the tanks can be varied continuously
using thyristor power controllers, which take 4-20 mA
as inputs. The cold water inlet flow to both the tanks
can be manipulated using pneumatic control valves. The
temperatures in the first tank (T1), in the second tank (T2)
and the liquid level in the second tank (H2) are measured
variables and controlled variable. The heat inputs to the
first tank (u1), to the second tank (u2) and cold water flow
to the second tank (u3) are treated as manipulated inputs.
The cold water flow to the first tank is kept constant.
The system is interfaced with a control computer using
a data acquisition system (Advantech, ADAM 5000 series
hardware) through LABVIEW-8.20 and MATLAB. The
steady state operating condition for the process is given
in Table (1). The cold water temperature (TC) changes
slowly during the experimentation and acts like a drifting
disturbance.

Table 1. Heater Mixer Setup: Operating con-
ditions

Variable Value

F1 10 mA = 79 lph
u1 12 mA = 2497.1 W
u2 12mA = 2431.2 W
u3 10mA = 89 lph
Tc 31.8 0C

Ta (ambient temperature) 30 0C
T1 58 0C
T2 52 0C
H2 38 cm

For generating data for model identification and valida-
tion, simultaneous input perturbations Pseudo Random
Binary Signal (PRBS)are introduced into the process.
Separate data sets are used for model identification and
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validation. A sampling time of 5 seconds is used while col-
lecting data. The inputs to the setup were designed using
the ’idinput’ function in System Identification toolbox in
MATLAB. The details of the construction of these signals
are provided in Table 2.

Table 2. Heater Mixer Setup: Input perturba-
tion signal details

Input Frequency Band Magnitude of Inputs

Heat Input 1 (u1) [ 0 0.05] [-846W 610W]
Heat Input 2 (u2) [0 0.05] [-623W 448W]
Flow Input (u3) [ 0 0.03] [-18 lph 28 lph]

Out of the total 1600 data points that were collected, the
first 900 data points were used for model identification
(identification data set) and the remaining 700 data points
were used for model validation (validation data set).

4.1 Off-line Model Identification

Three models (two MISO and one SISO) were identified
for the above system. The models developed by choosing
two poles between each input-output pair and the resulting
optimal pole locations of the model are listed in Table 3.
It may be noted that, in this table, instead of reporting
discrete pole locations (ξi), equivalent continuous time pole
location (ai) have been reported such that

ξi = exp(−aiT ) (41)

where T represents sampling time.

Table 3. Heater - Mixer Setup: Optimum
GOBF Pole Locations for OBF-ARX model.

Input MISO−T1 MISO−T2 SISO−H2

u1 [0.197 0.2002] [0.0674 0.0674] [-]
u2 [0.0518 0.0449] [0.0242 0.0239] [-]
u3 [ 0.0417 0.0319] [0.0398 0.0398] [0.4046 0.4046]
yi [0.8543 0.0530] [0.1218 0.0123] [15.6572]

The dynamic validation (infinite horizon predictions) of
the identified model is presented in Figure 2 and corre-
sponding input moves are shown in Figure 3. It is clear
from this figure that the models are able to predict initial
output variability quite well except for the bias.

4.2 Closed Loop Performance

This section is aimed at demonstrating the efficacy of the
proposed AMPC schemes using the benchmark Heater-
Mixer experimental setup. The servo experiments involve
introducing simultaneous step changes in the temperature
and level setpoints and later bringing the system back to
the original setpoints. The manipulated input moves are
computed subject to the following move constraints

−261 W ≤∆u1(k) ≤ 234 W (42)

−262 W ≤∆u2(k) ≤ 162 W (43)

−13 lph≤∆u3(k) ≤ 17 .lph (44)

The tuning parameters used for in this study are presented
in the Table 4. The variation of controlled variable is shown
in Figure 4 and corresponding variations of manipulated
variables are shown in Figure 5. It may be noted that
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Fig. 2. Heater-Mixer Setup: Dynamic validation model-
Variations of Model output and plant data.
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Fig. 3. Heater-Mixer Setup: Dynamic validation model.-
Variations of inputs.

Table 4. Heater-Mixer Setup: AMPC Tuning
Parameters

Parameters values

Prediction Horizon 60
Control Horizon 1
Input blocking [60]

Input weighting matrix I3×3

Error weighting matrix I3×3

Filter Coefficient [0.95 0.95 0.9]

the inlet temperature of the cold water entering both the
tanks keeps drifting during these servo experiments (see
Figure 7) and acts as an unmeasured disturbance. The
model adaptation characteristics best explained through
variations of model sensitivity and these variations are
reported in terms of model sensitivity matrix (S), which is
defined as follows

S(k) = C(k)[I−Φ(k)]−1Γ (45)

and these variations of are shown in Figure 6. This figure
indicates that there is significant changes in the model as
operating conditions changes. The results clearly reflects
that the proposed AMPC strategy is able to track the
desired set point changes.
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0 50 100 150 200 250 300 350

37.5

38

38.5

39

39.5

40

40.5

In
le

t w
at

er
 T

em
p 

o  C

Sampling Instant

Fig. 7. Heater-Mixer Setup: Variations of unmeasured
disturbance (i.e inlet water temperature to Tank-1
and tank-2).

5. CONCLUSION

This work presents an adaptive MPC scheme based on
ARX models, which are parameterized using generalized
orthonormal basis filters (GOBF). The proposed model
structure facilitates modeling of stationary as well as non-
stationary components of the unmeasured disturbances.
Evaluation of the proposed AMPC scheme using experi-
mental studies on a benchmark experimental Heater-Mixer
setup demonstrates that the proposed AMPC strategy
is able to track the desired set point changes, while si-
multaneously rejecting the unmeasured disturbances. The
manipulated inputs, however, exhibit undesirable fluctua-
tions and further improvements need to be made to ensure
smoother manipulated input profiles.
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