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Abstract: This paper focuses on the problem of handling sensor faults in controlled particulate
processes with multi-rate sampled-data measurements. The problem is addressed on the basis of
an approximate finite-dimensional system that captures the dominant dynamics of the infinite-
dimensional particulate process system. An observer-based output feedback controller with an
inter-sample model predictor is initially designed. The inter-sample model predictor provides
the observer with estimates of the unavailable outputs, and its predictions are corrected each
time that a measurement becomes available. Owing to the different sampling rates of the
measurement sensors, the model update is performed using different outputs, or combinations
of outputs, at each update time. The combined discrete-continuous closed-loop system is
analyzed, and an explicit characterization of the feasible combinations of output sampling
rates, model uncertainty, as well as controller and observer design parameters is obtained. This
characterization is used as the basis for the development of both passive and active fault-tolerant
control strategies that preserve closed-loop stability in the presence of sensor faults. The results
are illustrated using a simulated model of a non-isothermal continuous crystallizer.

Keywords: Sampled-data control, sensor faults, passive fault-tolerance, sensor reconfiguration,
particulate processes

1. INTRODUCTION

Fault-tolerant control of particulate processes is a funda-
mental problem in agricultural, chemical, food, mineral,
and pharmaceutical industries. This problem is significant
since malfunctions in the control system components or
process equipment can negatively impact the particle size
distribution and thus harm the end product quality. This
problem has received limited attention compared to the
significant body of research work on the synthesis and
implementation of feedback control systems on particulate
processes (e.g., see Semino and Ray (1995); Hu et al.
(2005); Christofides (2002); Doyle et al. (2003); Larsen
et al. (2006); Du and Ydstie (2012) for some results and
references in this area).

Major bottlenecks in the design of model-based fault-
tolerant control systems for particulate processes include
the infinite-dimensional nature of the process model as
well as the complex and uncertain dynamics of particulate
processes. An effort to address these problems was initi-
ated in El-Farra and Giridhar (2008) where a methodology
for the detection and handling of control actuator faults
was developed based on low-order models that capture the
dominant process dynamics. The results were generalized
in Giridhar and El-Farra (2009) to address the problems
of fault isolation and robustness to model uncertainty.

Various implementation issues arise in the design of any
fault-tolerant control system. These include discrete and
multi-rate sampling of the output measurements, as well
as the possibility of sensor faults. Measurement availability

is constrained by inherent limitations on data collection,
processing and transmission capabilities of the measure-
ment sensors. In particulate processes, sensor measure-
ments of the dispersed and the continuous phase vari-
ables are typically available at discrete times. The control
system may also make use of multiple outputs subject
to different sampling rates. For instance, the dispersed
phase properties may be collected using light scattering
techniques whereas properties of the solute concentration
in the continuous phase may be obtained from a refrac-
tometer. Ignoring these factors in process monitoring and
controller design may erode the performance of the fault-
tolerant control system. Hence, it is crucial that these be
explicitly accounted for in designing the monitoring and
control systems.

Furthermore, fault-tolerant control systems need to con-
sider the type of fault that occurs to ensure proper han-
dling. Faults are classified as sensor, actuator, or com-
ponent faults depending on where they appear in the
system. While existing fault-tolerant control methods for
distributed parameter systems have focused largely on
actuator and component fault diagnosis and compensa-
tion (e.g., see El-Farra and Ghantasala (2007); Armaou
and Demetriou (2008); Ghantasala and El-Farra (2009);
Mahmood and Mhaskar (2010); Napasindayao and El-
Farra (2012)), sensor faults are commonly encountered
in practice and need to be accounted for. This can be
achieved through either passive or active fault-tolerant
control techniques, as opposed to component faults which
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are typically handled via fault accommodation (Napasin-
dayao and El-Farra (2012)).

In this work, we develop a model-based framework for
fault-tolerant control of multi-rate sampled-data partic-
ulate processes with sensor faults based on a finite-
dimensional approximation of the infinite-dimensional sys-
tem. The model is used in designing a stabilizing observer-
based output feedback controller with an inter-sample
model predictor that compensates for the discrete avail-
ability of multi-rate measurements. A closed-loop stability
analysis is conducted leading to an explicit characteriza-
tion of the interdependencies linking the stabilizing sensor
sampling rates to the size of the model uncertainty, the
controller and observer design parameters, and the choice
of the control configuration. The stability conditions are
used to obtain, for each control configuration, a region
of stability in terms of the feasible sampling periods.
This is then used to predict the behavior of the sampled-
data closed-loop system under a certain set of operating
conditions. A passive or active sensor fault compensa-
tion scheme is then selected and devised accordingly. The
proposed fault-tolerant control framework is illustrated
using a simulated model of a non-isothermal continuous
crystallizer.

2. MOTIVATING EXAMPLE

As a representative example of particulate processes, we
introduce in this section a well-mixed non-isothermal con-
tinuous crystallizer which will be used throughout the
paper to illustrate the design and implementation of the
model-based fault detection and accommodation schemes.
Particulate processes are characterized by the co-presence
of a continuous and dispersed phase. The dispersed phase
is described by a particle size distribution whose shape
influences the product properties and ease of product sepa-
ration. Hence, a population balance on the dispersed phase
coupled with mass and energy balances for the continuous
phase are necessary to accurately describe, analyze and
control particulate processes. Under the assumptions of
spatial homogeneity, constant volume, mixed suspension,
nucleation of crystals of infinitesimal size, mixed product
removal, and a single internal particle coordinate–the par-
ticle size (r); a dynamic crystallizer model can be derived:

∂n

∂t
= k̄1(cs − c)
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where n(r, t) is the number of crystals of radius r ∈ [0,∞)
at time t per unit volume of suspension; τr is the residence
time; c is the solute concentration in the crystallizer; ρ
is the particle density; ϵ̄ = 1 −

∫∞
0

n(r, t)π 4
3r

3dr is the
volume of liquid per unit volume of suspension; cs =
−3T̄ 2 + 38T̄ + 964.9 is the concentration of the solute
at saturation computed using T̄ = T−273

333−273 ; c0 is the

concentration of solute entering the crystallizer; k̄1, k̄2
and k̄3 are constants; and δ(r − 0) is the standard Dirac
function. The term containing the Dirac function accounts
for the nucleation of crystals of infinitesimal size while the

first term in the population balance represents the particle
growth rate. For typical values of the process parameters,
the crystallizer exhibits highly oscillatory behavior due to
the relative nonlinearity of the nucleation rate compared
to the growth rate. This results in process dynamics that
are characterized by an unstable steady-state surrounded
by a stable periodic orbit. Thus, the control objective
is to suppress the oscillatory behavior of the crystallizer
in the presence of sensor faults. This is carried out by
stabilizing the system at the open-loop unstable steady-
state that corresponds to a desired crystal size distribution
by manipulating one of the three available manipulated
inputs: the solute feed concentration (c0), the residence
time (τr), or the coolant temperature (Tc). Measurements
of the solute concentration (c) and the temperature (T )
in the continuous crystallizer are collected discretely at
different sampling times and sent to the controller where
the control action is calculated and then sent to the
actuator to effect the desired change in the process state.

Through method of moments, a sixth-order ordinary dif-
ferential equation system can be derived to describe the
temporal evolution of the first four moments of the crystal
size distribution, the solute concentration, and the tem-
perature. The reduced-order model can be cast in the
following form:
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The global phase portrait of the system of (2) has a unique
unstable equilibrium point surrounded by a stable limit
cycle at xs = [µs

0 µs
1 µs

2 µs
3 cs T s]T =

[0.0047 0.0020 0.0017 0.0022 992.95 298.31]T .
Multi-rate sampled measurements of the solute concen-
tration (c) and temperature (T ) are used to control the
process. For simplicity, we consider the problem on the
basis of the linearization of the process around the desired
steady state. The linearized process model takes the form:

ẋ(t) = Ax(t) +Blul(t), y(t) = Cx(t) (3)

where x(t) = [x1(t) x2(t)]
T is the vector of state

variables; x2(t) := y(t) is the measured output vec-
tor; ul, l ∈ {1, 2, 3}, is the active control configura-
tion (manipulated input). The state vector is in devi-
ation variable form, x(t) = χ(t) − xs, where χ(t) =
[µ0(t) µ1(t) µ2(t) µ3(t) c(t) T (t)]T ; and
A, Bl, and C are constant matrices given by:

A=
∂f

∂x

∣∣∣∣
(xs,us)

=

[
A11 A12

A21 A22

]
, Bl=

∂f

∂ul

∣∣∣∣
(xs,us)

=[BT
l,1 BT

l,2]
T ,

and C =

[
0 0 0 0 1 0
0 0 0 0 0 1

]
,

where us denotes the steady state values for the available
manipulated inputs. Over the next two sections, we de-
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scribe how the control strategy is tailored to explicitly ac-
count for the effects of multi-rate measurement sampling.

3. MULTI-RATE SAMPLING MECHANISM

Before designing and analyzing the control system with
multiple measurement sampling rates, the time units (or
intervals) in the multi-rate sampling mechanism are rede-
fined to simplify the presentation and analysis of the re-
sults. We first define the sampling periods for the different
sensors as ∆1 = δ1τ , · · · ; ∆m = δmτ , where δ1, · · · , δm are
some positive integers. The following time units can then
be obtained:

• Shortest time unit (STU): τs = gcd(δ1, δ2, · · · , δm)τ ,
where gcd(·) represents the greatest common divisor.

• Basic time unit (BTU): τB = lcm(δ1, δ2, · · · , δm)τ ,
where lcm(·) represents the least common multiple.

Using these two time units to analyze the multi-rate
measurement sampling logic, output measurements may
be collected and transmitted at a certain τkj = (kM+j)τs,
where τj is a possible sampling time (PST), k ∈ {0, 1, · · · },
j ∈ {0, 1, · · · ,M − 1}, and M = τB/τs. This order of
sensor transmissions is repeated in a periodic fashion for
each τB wherein all sensors are activated in the same
patten in each t ∈ [τkj , τ

k+1
j ). Specifically, only at any

τk0 , k ∈ {0, 1, 2, · · · }, will all the sensors be activated
concurrently. It should also be noted that the sensors can
measure the outputs only at a PST; however, for some τkj ,
not all the sensors are necessarily active. To indicate the
sensor sampling status, we define a binary function ς(i, j)
to show whether the i-th sensor is active or dormant at
each PST τkj :

ς(i, j) =

{
1, if j is divisible by δi
0, otherwise

(4)

where ς(i, j) = 1 if the i-th sensor transmits a measure-
ment, while ς(i, j) = 0 if the i-th sensor is dormant.
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Fig. 1. Sampling schedule of two sensors with different
sampling rates.

To illustrate the utility of this time unit system, consider
a simple example involving two sensors with different
sampling periods, ∆1 = 0.2 and ∆2 = 0.3. Based on
the time unit notions introduced above, δ1 = 2, δ2 = 3,
τ = 0.1, and thus the STU is τs = 0.1 while the BTU
is τB = 0.6. Based on this, the PSTs are τkj = 0.1(6k +
j) = 0.1ϑ, for j ∈ {0, 1, · · · , 5}, k ∈ {0, 1, · · · }, ϑ = 6k+ j.
Comparing this result with the actual sampling times, it
can be seen that the set of actual sampling times is a subset
of the set of PSTs. This is concluded after investigating
the sampling status at the first six PSTs in Fig.1. At
t = 0, both sensors transmit their measurements to the
controller; at t = 0.1 and t = 0.5, neither is active. Then
at t = 0.2 and t = 0.4, only the first sensor is active; and at
t = 0.3, sensor 2 is the only one that transmits the output
measurement. This sampling pattern will be repeated over

each τB = 0.6 for all future times. This is only a specific
example. Since the magnitude of the time units depends
on the sampling periods of the sensors, each process will
have a unique transmission schedule.

4. FINITE-DIMENSIONAL MULTI-RATE
SAMPLED-DATA CONTROL SYSTEM DESIGN

4.1 Output feedback controller synthesis

The control system design involves first synthesizing
an output feedback controller that stabilizes the finite-
dimensional system when the sensors continuously trans-
mit data to the controller. We consider an observer-based
feedback controller of the form:

ul(t) = Kη(t)

η̇(t) = Âη(t) + B̂lul(t) + L(y(t)− Cη(t))
(5)

where η denotes the estimate of x, and Â =

[
Â11 Â12

Â21 Â22

]
and B̂l = [B̂T

l,1 B̂T
l,2]

T are approximate models of A

and Bl. Note that, in general, Â ̸= A and B̂l ̸= Bl

to allow for possible model uncertainty. The controller
(K) and observer gains (L) are chosen to ensure that the

eigenvalues of Â + B̂lK and Â − LC lie in the open left
half of the complex plane.

4.2 Controller implementation under multi-rate sampling

The implementation of the controller of (5) requires con-
tinuous availability of all the measured outputs (y) from
the sensors. The observer cannot be directly implemented
since the output measurements are only partly available
at discrete time instances due to multi-rate sampling. To
compensate for the unavailability of continuous measure-
ments, a low-order model of the system is included in
the controller to provide the observer with estimates of
the measured outputs when they are unavailable. In this
case, however, not all the sensors send their measurements
at a given time; instead, different sensors may transmit
their data at different rates. When one or more sensors
are active at a possible sampling time, the corresponding
values of the measured outputs are assumed to be instan-
taneously transmitted to the controller and are used to
update the corresponding model outputs and the model
states. The model-based output feedback controller is then
implemented as follows:

ul(t) = Kη(t), t ∈ [τkj , τ
k
j+1)

ω̇(t) = Âω(t) + B̂lul(t), ŷ(t) = Cω(t)

η̇(t) = Âη(t) + B̂lul(t) + L(ŷ(t)− Cη(t))
ŷi(τkj ) = yi(τkj ), ∀ ς(i, j) = 1

i ∈ {1, 2, · · · ,m}, j ∈ {0, 1, · · · ,M − 1}

(6)

where ω = [ω1(t) ω2(t)]
T is the vector of model states

which provides an estimate of x, ω2(t) := ŷ is the model
output which provides an estimate of y, ŷi denotes the i-th
element of ŷ and yi represents the actual measured output
of the i-th sensor.

4.3 Closed-loop stability analysis

To investigate the stability properties of the finite-
dimensional sampled-data closed-loop system, we first de-
fine the model estimation error as ei(t) = ŷi(t) − yi(t),
for i ∈ {1, 2, · · · ,m}, where ei represents the difference

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

381



between the i-th model output given in (6) and the actual
measured i-th output. Then, introducing the error vector
e(t) = [e1(t) e2(t) · · · em(t)]T and defining the aug-
mented state vector ξ(t) = [x(t) η(t) ω1(t) e(t)]T , the
finite-dimensional sampled-data closed-loop system can be
formulated as a switched system and written in the form:

ξ̇(t) = Fξ(t), t ∈ [τkj , τ
k
j+1)

ei(τkj ) = 0, ∀ ς(i, j) = 1
i ∈ {1, 2, · · · ,m}, j ∈ {0, 1, · · · ,M − 1}

(7)

where F is a matrix defined as

F =


A BlK O O
LC D O L

Â12C B̂l,1K Â11 Â12

Ã22C −A21Î O Â21 Â22

 , (8)

D = Â + B̂K − LC, Ã22 = Â22 − A22, and Î = [I O]

such that x1 = Îx where I is the identity matrix. It
can be shown that the augmented closed-loop system
described by (7)-(8), subject to the initial condition ξ(0) =
[x(τ00 ) η(τ00 ) ω1(τ

0
0 ) e(τ00 )]

T := ξ0, has the following
response:

ξ(t) = eF (t−τk
j )RjNkξ0 (9)

for t ∈ [τkj , τ
k
j+1), ∀ j ∈ {0, · · · ,M − 1}, k ∈ {0, 1, · · · },

where

Rj = Πj
µ=1I

j−µ+1
s eFτs , for j ≥ 1

R0 = diag{I, I, I}
Ijs = diag{I, I, I − Sj}
Sj = diag{ς(1, j), ς(2, j), · · · , ς(m, j)},

(10)

and N is given by:

N = I0s e
FτsRM−1 (11)

The expressions in (9)-(11) characterize the multi-rate
sampled-data closed-loop system behavior (in the absence
of faults) in terms of the different sampling rates, the
controller and observer design parameters, and the model
uncertainty and the choice of control configuration. Based
on (9)-(11), a necessary and sufficient condition for the
stability of the sampled-data closed-loop system can be
obtained. Specifically, by taking the norms of both sides
of (9) and analyzing each term, it can be shown that the
zero solution, ξ = [x η e]T = [0 0 0]T , is exponentially
stable if and only if the spectral radius of the matrix N
is strictly less than one, i.e., r(N(∆1, · · · ,∆m)) < 1. This
requirement ensures stability by limiting the growth of the
closed-loop state within each basic time unit of size τB as
the sampling pattern is repeatedly executed over time.

An examination of the structure ofN in (11) indicates that
its spectral radius is dependent on the sampling periods,
∆j , j ∈ {1, · · · , m}, and F (which, in turn, depends
on the choice of the model, the controller and observer
gains, as well as the choice of manipulated input). All these
factors are tied together through the stability condition
which can, therefore, be used to examine and quantify the
various interdependencies between them. For instance, if
the sampling rate of a particular sensor is fixed by some
performance requirement, one can determine the minimum
allowable sampling rates of the other sensors. One can also
use the result to characterize the robustness of a given
sensor or actuator configuration to model uncertainty by
identifying the range of model parameters that meet the
stability criterion.

5. PASSIVE AND ACTIVE SENSOR
FAULT-TOLERANT CONTROL STRATEGIES

In this section, we illustrate how the stability condition
obtained in the previous section can be used to devise both
passive and active sensor fault-tolerant control strategies.
We focus on faults that degrade the sampling rate of the
sensor and thus influence the rate at which the measure-
ments are available to the controller. To this end, we
revisit the non-isothermal continuous crystallizer example
introduced in Section 2 where discrete measurements of
the concentration (c) and temperature (T ), which are
available at different sampling rates, are used to control
the system. The inter-sample model predictor is used to
estimate values of the states as well as the outputs when
the sensor measurements are unavailable. To account for
plant-model mismatch, the model is designed with an
uncertainty of δu = 0.2 for the parameters kw, w = 1, 2, 3

where k̂w = kw(1 + δu) is the approximate value used in
the model.

The controller gain (K) is calculated by assigning the poles

of Â + B̂lK at [−1 − 2 − 3 − 4 − 5 − 6], while the

observer gain (L) is chosen to place the poles of Â+LC at
[−10 −11 −12 −13 −14 −15]. The system was controlled
using one of three possible manipulated inputs: inlet solute
concentration (c0), coolant temperature (Tc), or residence
time (τr). The stability regions were obtained for all pos-
sible manipulated variables using the stability condition
λmax(N) < 1 (where λmax(N) is the maximum eigenvalue
magnitude of N), which was derived from the closed-loop
stability analysis of the test matrix N in (11) (see Fig.
2). These regions, plotted as a function of the sampling
periods for concentration (c) and temperature (T ), differ
significantly depending on the selected manipulated input.
The green area enclosed by the unit contour line in each
plot shows the region where the sampled-data closed-loop
system is stable since λmax(N) < 1, while the yellow area
depicts the region of instability. This characterization of
the stability regions is useful in predicting the behavior of
the process and in selecting an appropriate manipulated
variable when the model uncertainty and sampling periods
for the outputs are known (note that a plot of the stability
region, while useful for visualization, is not necessary to
make this determination since all that is needed to deter-
mine stability is to check the magnitude of the spectral
radius of N for the given operating conditions).

Several conclusions can be drawn from a close inspection
of the contour plots shown in Fig. 2. In this particular
example, comparing the stability regions for the two cases
when the inlet solute concentration (c0) and the coolant
temperature (Tc) is manipulated, it is evident that the
stability region for the latter falls within that of the for-
mer (Figs. 2a,c). For this reason, the discussion on fault-
tolerant control will focus on the use of the inlet solute
concentration (c0) and residence time (τr) as manipulated
variables. In addition, it can be observed that the contour
plots generated exhibit opposite trends when the inlet con-
centration (c0) and when the residence time (τr) are being
manipulated, wherein stability required small sampling pe-
riods for one configuration, and large sampling periods for
the other. This pattern exhibited by the different stability
regions can be utilized in devising actuator reconfiguration
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strategies wherein actuator switching is carried out to
maintain stability when a back-up actuator is unavailable.

To illustrate the sensor fault-tolerance capabilities of the
closed-loop system, we choose an initial operating point
(OP) by setting a sampling period of ∆1 = 0.002h for the
concentration sensor and ∆2 = 0.008h for the temperature
sensor, which lies within the stability regions of both the c0
and τr control configurations, and is therefore expected to
be stabilizing. This is confirmed by the simulation results
showing the evolution of the total particle size (Fig. 3a-b).

Although either control configuration may be used to
control the crystallizer, robustness to faults in the mea-
surement sensors is another criterion for selecting the best
manipulated input. For instance, a close inspection of the
two different regions of stability indicates that the process
will be more robust to faults in the concentration sensor
when the residence time (τr) is chosen as the manipulated
variable (Fig. 2a-b). This is because this configuration
has a wider range of possible sampling periods for the
concentration sensor (∆2 < 1h) that will lead to pro-
cess stability at fast sampling rates for the temperature
sensor (∆2 < 0.010h) (Fig. 2b). Hence, if faults in the
concentration sensor cause a deterioration in the sampling
rate, closed-loop stability will not be lost. In contrast,
manipulating the inlet solute concentration (c0) results
in greater tolerance for faults in the temperature sensor
resulting in larger sampling periods (Fig. 2a).

Two scenarios will be used in the discussion below to
show how fault-tolerance is achieved when the operating
point lies within the region of stability which, in turn, is
a function of the active manipulated variable, the initial
operating conditions, and the magnitude and direction of
the fault (i.e., a change in the sensor sampling period).
In these examples, the faults are modeled by introducing
a malfunction in one of the sensors resulting in a larger
sampling period in either the concentration (c) or temper-
ature (T ) sensor. Different schemes are then proposed on
how to best deal with each malfunction so as to maintain
closed-loop stability.

In the first scenario, a malfunction occurs in the temper-
ature sensor that shifts its sampling period from ∆2 =
0.008h to ∆2 = 0.012h (f1). This pushes the operating
point (OP:∆1 = 0.002h,∆2 = 0.008h) to a different loca-
tion (f1:∆1 = 0.002h,∆2 = 0.012h) in the stability regions
(Fig. 2a-b). The new point is still within the region of
stability when c0 is manipulated (Fig. 2a). This, however,
is not the case when τr is chosen as the manipulated
variable (Fig. 2b). Closed-loop simulations of the dynamics
of the system under the different manipulated inputs are
in agreement with these predictions (Fig. 3c-d). When the
process is initially operating using c0 as the manipulated
variable, the closed-loop system remains stable even after
the fault takes place. The c0 configuration is then passively
fault-tolerant to the fault in the temperature sensor. In
fact, a comparison of closed-loop state profiles shows that
the system stabilizes much faster at the new operating
point (Fig. 3a,c). This shows how carefully selecting the
manipulated input results in passive fault-tolerance. Fur-
thermore, the fault occurrence pushes the process into an
operating point that now lies within the stability region
when Tc is chosen as the manipulated input (Fig. 2c).
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Fig. 2. Region of stability varies depending on the chosen manipu-

lated input (δu = 0.2). Plots (a)-(c): Contour plots of λmax(N)
when the manipulated variable is (a) inlet solute concentration,
c0; (b) residence time, τr; and (c) coolant temperature, Tc.

The coolant temperature (Tc) may then be used as a
back-up actuator in case of an additional malfunction
in the actuator manipulating c0. However, to maintain
stability after the sensor fault when the residence time
(τr) is chosen as the manipulated input; the process has
to either revert to a redundant temperature sensor with
the original sampling period of ∆2 = 0.008h or switch to
an actuator that manipulates either c0 or Tc. Therefore,
active reconfiguration of either the sensor or the actuator is
necessary to maintain closed-loop stability for this control
configuration.

The second scenario involves a malfunction in the con-
centration sensor that drives its sampling period from
∆1 = 0.002h to ∆1 = 0.011h (f2). This moves the
operating point (OP:∆1 = 0.002h,∆2 = 0.008h) to a
different location (f2:∆1 = 0.011h,∆2 = 0.008h) (Fig. 2a-
b). This new point is still within the region of stability
when the crystallizer is controlled using the residence time
(τr) as the manipulated input, but outside the stability
region of the two other control configurations (Fig. 3e-
f). So, in this case, the τr control configuration is said
to be passively fault-tolerant to the concentration sensor
fault (notice that for sufficiently small fault size, the c0
configuration may also be passively fault-tolerant, but the
range of fault sizes it can tolerate is smaller than that for
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the τr configuration.) In the event of a malfunction in the
mechanism used to manipulate the residence time (τr),
there is no other option but active reconfiguration which
may be carried out by either reverting to a back-up sensor
to return to the initial operating point or switching to a
different set of outputs that will move the operating point
into a region of stability. Actuator reconfiguration may
only be carried out by switching to a redundant actuator
that manipulates the residence time (τr) since the new
operating point is within the region of instability for both
the c0 and Tc configurations.

For the case where the process is initially controlled using
c0, the fault may be dealt with a number of ways: by
switching to an actuator that manipulates the residence
time (τr), returning to the original operating point using
a redundant sensor, or using a different sensor with a
different sampling period such that operating conditions
are within a stable region. The last strategy is carried
out by either selecting a temperature sensor with a larger
sampling period or a concentration sensor with a faster
sampling rate (Fig. 2b).

The contrast between the first and second scenarios indi-
cates that a priori knowledge of the nature of future faults
provides insight as to which manipulated input will be
more robust to faults. An examination of the regions of
stability indicate that the process is more robust to faults
in the concentration sensor when the residence time (τr)
is selected as the manipulated variable. If faults in the
concentration sensor are projected to occur, then it would
be wise to control the process by varying the residence time
(τr) (Fig. 2b). If large faults in the temperature sensor are
more likely to occur, then it is better to manipulate the
inlet solute concentration (c0) to make the process more
robust to such faults (Fig. 2a). The same logic may be used
with regards to knowledge of the sensors that are available
for process monitoring. For instance, if temperature sen-
sors with fast sampling rates are available, then it is better
to manipulate the residence time (τr) while slow sampling
rates for the temperature sensor work best when the inlet
solute concentration (c0) or coolant temperature (Tc) is
manipulated.

REFERENCES

Armaou, A. and Demetriou, M. (2008). Robust detection
and accommodation of incipient component faults in
nonlinear distributed processes. AIChE J., 54, 2651–
2662.

Christofides, P.D. (2002). Model-Based Control of Partic-
ulate Processes. Kluwer Academic Publishers, Nether-
lands.

Doyle, F.J., Harrison, C.A., and Crowley, T.J. (2003).
Hybrid model-based approach to batch-to-batch control
of particle size distribution in emulsion polymerization.
Comp. & Chem. Eng., 27(8-9), 1153–1163.

Du, J. and Ydstie, B. (2012). Modeling and control
of particulate processes and application to poly-silicon
production. Chem. Eng. Sci., 67(1), 120– 130.

El-Farra, N.H. and Ghantasala, S. (2007). Actuator
fault isolation and reconfiguration in transport-reaction
processes. AIChE J., 53, 1518–1537.

El-Farra, N.H. and Giridhar, A. (2008). Detection and
management of actuator faults in controlled particulate

0 5 10 15 20

1.6

1.8

2

2.2

x 10
−3

Time (h)

T
o

ta
l p

a
rt

ic
le

 s
iz

e
, µ

1
 (

m
m

−
2
)

(a)
0 10 20 30 40

2

2.01

2.02

2.03

x 10
−3

Time (h)

T
o

ta
l p

a
rt

ic
le

 s
iz

e
, µ

1
 (

m
m

−
2
)

(b)

0 5 10

1.6

1.7

1.8

1.9

2

2.1
x 10

−3

Time (h)

T
o

ta
l p

a
rt

ic
le

 s
iz

e
, µ

1
 (

m
m

−
2
)

(c)
0 10 20 30 40 50

1.98

2

2.02

2.04
x 10

−3

Time (h)

T
o

ta
l p

a
rt

ic
le

 s
iz

e
, µ

1
 (

m
m

−
2
)

(d)

0 1 2 3

1

2

3

4

x 10
−3

Time (h)

T
ot

al
 p

ar
tic

le
 s

iz
e,

 µ
1 (

m
m

−
2 )

(e)
0 10 20 30

2

2.01

2.02

2.03

x 10
−3

Time (h)

T
o

ta
l p

a
rt

ic
le

 s
iz

e
, µ

1
 (

m
m

−
2
)

(f)
Fig. 3. Closed-loop state profiles depend on the selected manip-

ulated variable (δu = 0.2). Plots (a)-(b): Stability is reached
when either (a) inlet concentration, c0, or (b) residence time,
τr, is manipulated (OP :∆1 = 0.002,∆2 = 0.008). Plots (c)-
(d): System stabilizes when inlet concentration, c0 (c), and not
residence time, τr (d), is manipulated (f1:∆1 = 0.002,∆2 =
0.012). Plots (e)-(f): System becomes unstable by manipulating
either inlet concentration, c0 (e), or residence time, τr (f)
(f2:∆1 = 0.011,∆2 = 0.008).

processes using population balance models. Chem. Eng.
Sci., 63(5), 1185 – 1204.

Ghantasala, S. and El-Farra, N.H. (2009). Robust actuator
fault isolation and management in constrained uncertain
parabolic PDE systems. Automatica, 45, 2368–2373.

Giridhar, A. and El-Farra, N.H. (2009). A unified frame-
work for detection, isolation and compensation of ac-
tuator faults in uncertain particulate processes. Chem.
Eng. Sci., 64(12), 2963 – 2977.

Hu, Q., Rohani, S., Wang, D., and Jutan, A. (2005).
Optimal control of a batch cooling seeded crystallizer.
Powder Technology, 156(2-3), 170–176.

Larsen, P., Patience, D., and Rawlings, J. (2006). Indus-
trial crystallization process control. Control Systems,
IEEE, 26(4), 70–80.

Mahmood, M. and Mhaskar, P. (2010). Safe-parking
framework for fault-tolerant control of transport-
reaction processes. Ind. Eng. Chem. Res., 49(9), 4285–
4296.

Napasindayao, T. and El-Farra, N.H. (2012). Fault detec-
tion and accommodation in particulate processes with
delayed, sampled measurements. In Proceedings of the
8th IFAC Symposium on Advanced Control of Chemical
Processes, 172–177. Singapore.

Semino, D. and Ray, W.H. (1995). Control of systems
described by population balance equations-II. emulsion
polymerization with constrained control action. Chem-
ical Engineering Science, 50, 1825–1839.

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

384


