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Abstract 
Performance of any clustering algorithm depends critically on the number of clusters that are initialized. A 

practitioner might not know, a priori, the number of partitions into which his data should be divided; to address 

this issue many cluster validity indices have been proposed for finding the optimal number of partitions. In this 

paper, we propose a new “Graded Distance index” (GD_index) for computing optimal number of fuzzy clusters 

for a given data set. The efficiency of this index is compared with well-known existing indices and tested on 

several data sets. It is observed that the “GD_index” is able to correctly compute the optimal number of 

partitions in most of the data sets that are tested. 
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1. Introduction 

Clustering is an unsupervised learning approach for 

classifying data into groups such that points in the 

same group have higher resemblance to each other 

than to those of the other groups [8].Clustering is 

one of the important data mining techniques that 
enable the discovery of hidden relationships from 

data. Clustering finds its application in diverse 

areas such as computer science (image processing), 

business and marketing (recommending products to 

customers) and pattern recognition. One of the 

major problems in clustering algorithms is that one 

has to specify the number of clusters c, a-priori, so 

that the algorithm can partition the data into � 
clusters. The quality of the classification and 

separation of data into partitions depends on the 

value of the parameter c that is provided to the 
algorithm. For 2-dimensional data, it may be 

possible to guess the correct number of clusters (by 

plotting it); but, specifying the number of clusters 

is a difficult task for higher dimensional data. 

The number of cluster partitions that are obtained 

are the same as the number of cluster centers c that 

is provided as input to the clustering algorithm[12]. 

As a result, if a smaller value of c than the optimal 
cluster number is initialized, the data will get 

under-classified (less groups than optimal), 

whereas, if a larger value of c than the optimal 

cluster number is used then the data will get over-

classified (more number of groups than optimal). 

The identification of the optimal number of clusters 

is an important problem with relevance in several 

application areas. Without the correct number of 

cluster centers, obtaining accurate final 

outcomes/results, particularly for higher 

dimensional data is difficult. Further, with no 

further knowledge, extensive tests (numerical or 

otherwise) might have to be conducted to 

determine if the results are dependable. Therefore, 

an accurate value of parameter c is extremely 

significant in order to maximize the benefits out of 

clustering algorithms. 

In order to overcome the above mentioned 

problem, several authors have proposed indices 

which reach an optimal value at the natural 

partitions of the data. For computing the value of 

these indices, the clustering algorithm is executed 

multiple times by varying the parameter c (number 

of clusters)and then one selects that cluster number 

which satisfies certain predefined criteria. Many 

indices have been proposed based on this principle 

for determining the optimal number of clusters. 
The compactness (of a cluster) and separation 

(between any two clusters) are the two major 

characteristic for cluster validity. If all the data 

points in a cluster are very close to each other, then 

one can say that that cluster is highly compact, 

whereas if the distance between two cluster centers 

is high, then those clusters are considered to be 

well separated.  

2. Fuzzy C- Means (FCM) Clustering  

Clustering can be divided into hard clustering and 

soft clustering. In hard clustering, clusters are 

separated by sharp boundaries; whereas in soft 

clustering there is overlap between clusters. 

Fuzzy clustering is a soft clustering technique for 

classifying data into groups. In fuzzy clustering 
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each data point belongs to all the clusters with 

varying memberships and these membership values 

range between zero and one. For each data point�� , 
its membership value ���  represents how strongly it 

belongs to �th cluster. Therefore the farther a data 

point ��  is from the cluster �when compared with 

the distances between that point to remaining 

clusters, closer is its membership value ���  to zero. 

The sum of membership values of a data point to 

all the clusters will be equal to one.  

Let � ∈ 	
 denote the multi-dimensional data, 
then the FCM clustering algorithm [13,14] 

partitions the data set into � fuzzy groups. For the 

number of clusters (�) given by user, the objective 

is to obtain ‘c’ fuzzy partitions that minimize the 

sum of membership weighted intra-cluster variance 

among the partitions. The fuzzy partitions are 

obtained by minimizing the cost function�� 


�������			����, �� =�������
���



��� ���� − ���� �1� 

where N is the number of data points, � and " are 

the indices used to represent the cluster centres and 

data points respectively, and # is termed as 

fuzzifier [In all of our simulations, the value of 

fuzzifier is taken as 2]. The effect of the fuzzifier 

on the resulting cluster partition is described in 

[10]. # greater than one controls the overlap in the 
cluster regions. The value of q close to one results 

in hard clustering and if # → ∞, clustering 

becomes totally fuzzy. ||�� − ��||is the Euclidean 

distance of the data object ��  to the cluster centre ��. The solution to this optimization problem in Eq. 

(1) is obtained by iteratively updating the cluster 
centres and the respective membership functions 

through the following equations: 

�� = ∑ ���� ��
���∑ ����
��� , 1 ≤ � ≤ �							�2� 
��� = 1

∑ *+,-+.-/
0123
4��
,											1 ≤ � ≤ �, 1 ≤ " ≤ 5		�3�	 

Here,7��  is the Euclidean distance of "th data point 

to �th cluster. Eq.2 and Eq. 3 help in iteratively 

improving clusters until the improvement in U 

(Membership matrix)is less than a specified 

tolerance value. The execution of FMC clustering 
algorithm is summarized in Table 1 [12]. 

 

 

 

Table 1 Fuzzy c-means algorithm 

a)Fix number of clusters (�) and tolerance value(89:) 
b) Generate initial membership matrix of the data with 
‘c’ clusters 
c) Let ; be the iteration index. ; = 1,2, 3, … 

d) Update cluster centres (��and then membership values 

(��by using 

��= = ∑ �����=>������
���∑ �����=>����
���  

���= = 1
∑ *+,-+.-/

0123
4��
 

e) Repeat the above step till ||�= − ��=>��|| ≥ 89: 
 

3. Cluster Validity indices 

The problem of finding optimal number of clusters 

is addressed by several cluster validity indices. 

Wang et al. [1] have classified cluster validity 

algorithms into two types of categories where the 
first category of algorithms use only the 

membership matrix and the second category uses 

cluster centers and data points along with the 

membership matrix.  In section 3.1.1, we will 

discuss the first category of algorithms and in 3.1.2 

we will discuss the second category of algorithms. 

3.1.1 Indices using only Membership Values: 

1. Bezdek indices: 

Bezdek proposed two cluster validity indices: a) 

Partition Coefficient (@A)[2]and b) Partition 

Entropy (@B) [3]. Bezdek suggested that the 
optimal number of partitions are obtained by 

minimizing the overall content of pairwise fuzzy 

intersection in the membership matrix (U). As the 

number of clusters is increased from 2 to n-1,the 

optimal number of clusters will be obtained at the 

maximum value of@A or at the minimum value 

of@B.  

@A =	1������C�
���

�
���  

@B =	−1������ ∗	 logH ����
���

�
���  

Here���represents the membership of "th data point 

towards �th cluster,	� – number of data points and	�- 
number of clusters. 
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2.Dave index (DI): 

In order to overcome the monotonic tendency of 
Bezdek’s PC with number of clusters c, Dave 

proposed [4] a modified index as 

I = 1 − J �� − 1 ∗	 �1− @A�K 

where@A is Partition coefficient and	� is number of 

clusters 

3.1.2 Indices using membership values, cluster 
centers and data 

1. Kwon index (KI): 

Kwon proposed an index, represented by L, [6] as 

an extension to Xie and Bini’s (�M) index [5] to 

overcome the monotonically decreasing nature of �Mas the number of cluster points approach the 

number of data points. Compared to �M index, 

Kwon index contains a penalizing function for 

higher number of clusters in the numerator, 

whereas the denominator represents the separation 

measure between clusters. A low value of L 
indicates high compactness and more separation 

between the clusters. 

L =	∑ ∑ ���C ∥ 	�� −	O� ∥C+	�� ∑ ∥ 	O� 	−	 O̅ ∥C������������ ����R4 ∥ 	O� − O4	 ∥C  

whereO� represents the�th  cluster center and O̅is the 

mean of cluster centers. 

2.Zhang index (ZI): 

Zhang computes the variation and separation 

measure between clusters and once both of these 

measures are computed for a range of clusters from 

2to�STU, these measures are normalized 

individually. The optimal number of clusters 
corresponds to a minimum value of Zhang index 

(V�W, ��) [7]. 

Variation measure, Var(U,V): 

WX;���, W� = Y�����7CZ��, [�\����
�
���

�
��� ] ∗ *� + 1� − 1/

30
 

����represents the number of samples in �th cluster.  

7��, ^�is defined as 

7��, ^� = [	1 − exp�−c ∥ � − ^ ∥C�]� Ce  

Here	c	represents the inverse of the sample 

covariance of data. 

Separation measure, Sep(c,U): 

)],min(max[max - 1  U)Sep(c,
ji

jkik
Xx

uu
k ∈≠

=  

Zhang’s final validity index, V��W, ��, is computed 

as  

V��W, �� =	WX;
,��W, ��f�g
��, ��  

Where WX;
,��W,�� and f�g
��, �� represent the 

normalized variation and separation measures for 

‘c’ clusters that are computed by dividing with 

their respective maximum values. 

WX;
,��W, �� =	WX;��W, ��WX;STU 		; 
WX;STU = maxZWX;��W, ��\, ∀	� = 2	89	�STU  

3.2 Motivation: 

When all the points similar to each other are 

grouped towards one cluster and points which are 

dissimilar to each other are separated into different 

clusters, then one can say that the data has been 

divided into optimal number of partitions. When 
points similar to each other are grouped in one 

cluster, then the average distance between that 

cluster center and the data points is likely to be low 

and such clusters are referred as compact clusters. 

Xie and Bini [5] defined compactness of a fuzzy 

cluster as the weighted summation of distance 

between all the data points to that cluster center 

with weights being their membership values raised 

to fuzzifier power. With an increase in the number 

of clusters, it can be observed that the average 

distance between the cluster centers and the data 
points will decrease and in this process, the 

separation between cluster centers will also 

decrease. With the increase in the number of 

clusters, along with the compactness of fuzzy 

clusters the overlap between them will also 

increase. Thus, both compactness (high 

compactness) and overlap (low overlap) between 

cluster groups are two important qualities that are 

to be considered for optimal classification of data.  

In FCM clustering, the association of a point 

towards various clusters can be compared by using 

the membership values of that point with respect to 

those clusters. Among all these membership values, 

the cluster (say A) which has the highest 

membership value can be chosen as the cluster that 

strongly possesses the data point. This maximum 

membership value can be used for interpreting the 

strength of association of the data point towards the 

cluster. Similarly, the second maximum 
membership value of the data point will indicate 

the strength of association to its next nearest cluster 

(say B). This second maximum membership value 

can be used to judge the strength of overlap 
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between these clusters (A and B) over this data 

point. 

In general, before reaching the optimal number of 

clusters, the process of increasing the number of 

clusters will result in the splitting of big clusters. 

Consider a fuzzy cluster, say D, which is split into 

two smaller clusters, say E and F, when the number 

of clusters is increased by1.Now, consider the 

points which share their maximum membership 

value with the fuzzy cluster D. A majority of these 

points are likely to be closer to their cluster centers 

(E and F) when compared with their distance to the 

earlier cluster D. In most cases, if the number of 

clusters is less than the optimal number, splitting of 
clusters is likely to result in an increase in the 

strength of association of these data points towards 

fuzzy clusters E and F and this will be reflected in 

an increase in the maximum membership value for 

most of these points. Once the number of clusters 

exceeds the optimal number, an increase in the 

number of clusters will result in fuzzy clusters 

competing with each other on their strength of 

association over the data points.  This will lead to 

an increase in the overlap of new fuzzy clusters. 

Consider a fuzzy cluster G that is split into clusters 
H and J with an increase in the number of clusters 

by 1. Now, the new clusters H and J will be 

competing with each other over the data points 

which share their maximum membership value 

towards the earlier cluster G. This leads to an 

increase in the overlap between the fuzzy clusters 

and this will be evident in an increase in the second 

maximum membership value for a majority of these 

points.  

Proposed Index 

The proposed Graded Distance Index (GD_index) 

uses both the maximum and second maximum 

membership values of all data points. The optimal 

number of clusters is obtained by: i) maximizing 

the strength of association of all data points 

towards their respective maximum membership 
cluster and ii) minimizing the overlap between 

fuzzy clusters over the data points. GD_index is 

computed by using the average difference between 

the first maximum membership and second 

maximum membership of all data points. A 

negative term, proportional to number of clusters, 

is added to this average value for penalizing high 

number of clusters. Thus, GD_index for ‘c’ clusters 

is  

lI��+HU,� =	∑ ���,�mnSTU −	��,C�+STU�
���	 5 − �	�5�	 
where 

lI��+HU,� – GD_index for ‘c’ cluster partitions ��,�mnSTU – first maximum membership of ith point  

��,C�+STU – second maximum membership of ith point  

N – total number of data points  

c – number of clusters 

By varying the number of clusters ‘c’ from 2 to N, 

Graded Distance index (GD_index) is computed 

for different ‘c’ values. The number of clusters c* 

which corresponds to the maximum value of 

GD_index is regarded as the optimal number of 

clusters to which the data should be partitioned. 

Now, the variation of GD_index with an increase in 
the number of clusters will be studied for the 

sample Data set A shown in Fig 1.Fig.2represents 

the classification of clusters obtained from FCM 

clustering with cluster numbers ranging from 2 to 

5. Even though the obtained clusters are fuzzy (all 

data points belong to all clusters but with varying 

memberships), in order to visually differentiate 

them, a unique color is assigned to all those points 

which share their highest membership values 

towards a single cluster. This visual distinction 

between fuzzy clusters will be helpful in 

identifying an approximate location of cluster 
centers and also in studying the qualitative impact 

of increasing cluster numbers on membership 

values.  As the number of clusters is increased from 

2 to4, from Fig. 2, it can be observed that the top 

and bottom clusters are being split into smaller 

clusters. Further increase in the number of clusters 

from 4 to 5 leads to further splitting of top-left 

cluster. This further splitting of top left cluster 

results in an increase in the overlap measure of the 

two new fuzzy clusters. This will be reflected in an 

increase in the second maximum membership value 
of majority of the points in top left cluster. As a 

result, GD_index value will decrease as the number 

of clusters is increased from 4 to 5. Table-1 lists the 

variation in GD_index with variation in cluster 

number from 2 till 7. From Fig.3 and Table-1, the 

maximum value of GD_index is obtained at 4 

clusters which is indeed the optimal number of 

clusters for the given data. 

Table 1. GD_index for clusters ranging from 2 to 7 

Cluster 
Number 2 3 4 5 6 7 

GD 

index 0.74 0.71 0.77 0.68 0.63 0.6 

 

 

Fig. 1. Sample data set having four clusters 
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Fig. 2. FCM clustering partitions 

 

Fig. 3. GD_index variation with number of clusters 

4. Comparing efficiency of “GD_index” with 

other cluster validity indices 

For studying the validity of “GD_index” and its 

performance vis-a-vis the existing cluster validity 

indices, this index is tested with other validity 

indices on several two-dimensional data sets. The 
optimal number of clusters proposed by all these 

indices is compared with the actual number of 

clusters. Bezdek’s @A, @B, Dave, Kwon and Zhang 

indices are the other cluster validity indices that are 

compared with “GD_index”. In all these cases, it is 

found that “GD_index” is able to compute the 

optimal number of clusters (OC) correctly. A 

detailed description of the data sets and the results 

of all these cluster validity indices are described 

below. 

Artificial Data sets 

1. Data Set B: 

In order to test the efficiency of the above indices 

on clusters with contrasting sizes, a dataset which 

has 3 clusters is simulated and plotted in Fig.4. The 

optimal number of clusters for this dataset is 

computed by using the above mentioned cluster 

validity indices. Only “GD_index” and “Kwon” 

indices identified 3 as the optimal number of 

clusters, whereas the remaining indices identified 2 

as the optimal number. Fig.5 represents the optimal 

cluster partitions suggested by these six 

indices.Table-2 represents the values of these 6 

indices as the number of clusters is increased from 

2 to 7. 

Table 2. Variation in cluster validity indices for dataset B 

  2 3 4 5 6 7 OC 

PC 0.79 0.75 0.63 0.59 0.57 0.54 2 

PE 0.15 0.21 0.34 0.37 0.38 0.43 2 

DI 0.79 0.75 0.58 0.58 0.57 0.54 2 

GD 0.71 0.73 0.51 0.54 0.54 0.51 3 

KI 209 105 420 228 181 161 3 

ZI 0.70 1.06 0.88 0.84 0.84 0.88 2 

 

 

Fig. 4. Synthetic data set with different cluster sizes 

 

Fig. 5. Optimal clusters suggested by various indices 

Table 3. Variation in cluster validity indices for dataset C 

  2 3 4 5 6 7 OC 

PC 0.91 0.91 0.83 0.78 0.72 0.79 3 

PE 0.06 0.08 0.15 0.19 0.24 0.19 2 

DI 0.91 0.91 0.82 0.77 0.72 0.78 3 

GD 0.84 0.86 0.74 0.65 0.67 0.65 3 

KI 5.20 5.43 47 100 121 80 2 

ZI 0.36 0.35 0.48 0.64 0.83 1.01 3 

 

2. Data Set C 

To study the effect of outliers on these indices, data 

set which has 3 clusters and some outliers is 

simulated and plotted in Fig.6. On this data set, 

except PE and Kwon index, all indices suggested 

the correct optimal number of clusters as 3. Similar 
to data set B, here also the optimal cluster 
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partitions suggested by these indices is plotted in 

Fig.7 and in Table3the value of these cluster 

validity indices with an increase in the number of 

clusters from 2 to 7 are reported. 

 

 

Fig. 6. Data set containing outliers 

 

Fig. 7. Optimal clusters suggested for dataset C 

3.Iris data set 

Table 4. Variation in cluster validity indices for Iris data  

  2 3 4 5 6 7 OC 

PC 0.89 0.78 0.68 0.62 0.61 0.55 2 

PE 0.09 0.17 0.25 0.31 0.35 0.39 2 

DI 0.89 0.78 0.68 0.62 0.60 0.55 2 

GD 0.85 0.72 0.60 0.61 0.55 0.48 2 

KI 8.39 22 104 70 55 100 2 

ZI 0.67 0.62 0.79 0.78 1.00 0.96 3 

 

In this example, the performance of these indices is 

compared on the well-known iris data set [11]. Iris-

setosa, Iris-versicolor and Iris-virginica are the 

three different classes of this data set and it 

contains information of four features namely 

a)sepal length b) sepal width c) petal length and d) 

petal width. Pal and Bezdek [9] mentioned that 

there is a significant overlap between two of these 
classes in the feature space and this has led several 

cluster validity indices to suggest 2 as the optimal 

cluster number. “GD_index” also suggests 2 as the 

optimal cluster number for this dataset. In Table 4, 

the optimal numbers of clusters suggested by the 6 

indices are reported. 

5. Conclusion 

In this paper, we presented a new cluster validity 

index for fuzzy clustering algorithms. A good 

clustering method will keep similar points in one 

group and dissimilar points in different groups. 

Here, we propose a new “Graded Distance index” 

(GD_index) which uses only the fuzzy membership 
matrix (U). As this index: a) maximizes the 

summation of strength of association of all data 

points towards their nearest cluster and b) 

minimizes the cluster overlap over all the data 

points, a maximum value of this index is obtained 

at the optimal number of clusters in all the 

examples that we studied. We also compared our 

index with other cluster validity indices in the 

literature on various data sets. 
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