
     

Input-output linearizing control of a thermal cracking furnace  
described by a coupled PDE-ODE system 

 
A. Tawai and C. Panjapornpon* 

 
Center of Excellence on Petrochemicals and Material Technology,                                                                                         

Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 
Bangkok 10900, Thailand ( *corresponding author: e-mail: fengcnp@ku.ac.th) 

Abstract: This research presents a control scheme for a gas-fired ethylene dichloride (EDC) cracking 
furnace to handle a cracked gas temperature at the coil outlet.  Input-output (I/O) linearizing control 
scheme is applied to the furnace model of which interaction between a lumped temperature of gas-fire 
radiating wall and spatially distributed dynamics of cracking coil is considered.  In the proposed method, 
the feedback I/O linearizing controller for coupled PDE-ODE system is applied to force the cracked gas 
temperature to follow a desired trajectory by manipulation of a fuel gas flow rate. Simulation results 
showed that the proposed controller successfully forced the controlled output to a desired setpoint 
without off-set. 
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1. INTRODUCTION 

A gas-fired furnace is an important unit which is 
basically used in a thermal cracking of hydrocarbons in 
petrochemical industries.  For a practical cracking furnace, 
the cracking coil behavior which is placed between radiating 
walls inside gas-fire furnace is varies along the spatial 
coordinate together with time.  The typically proportional-
integral-derivative (PID) control applied to the cracking 
furnace may be insufficient to maintain the controlled output 
within the desired condition because of interacting dynamics 
between the cracking coil and radiating wall  

There are many research works proposed advance 
control techniques taking into account the spatial effect of 
process variables. For example, as pointed out in Shang et al. 
(2005) and Hoo and Zheng (2001), method of characteristics 
and Galerkin method were applied to a tubular reactor model 
governed by a hyperbolic partial differential equation (PDE) 
system for a simplification of  controller formulation. 
However, the above methods cannot be applied directly to the 
cracking furnace that the interacting dynamics should be 
taken into account.  For the cracking furnace, the cracking 
coil dynamics can be described by partial differential 
equation (PDE) while the furnace wall dynamic can be 
modeled by ordinary differential equation (ODE).   There are 
a few works mentioned on a controller development for 
coupled PDE-ODE systems.  Moghadam, et al. (2010) 
presented an application of linear quadratic regulator (LQR) 
controller for handling a continuous stirred tank reactor-plug 
flow reactor (CSTR-PFR) system. Panjapornpon et al. (2012) 
proposed the control method for a thermal ethylene 
dichloride (EDC) cracking furnace that the interactions 
between process dynamics were addressed. The lumped 
dynamics of tube wall and furnace wall are assumed in the 

developed method. The control objective is to handle both 
tube wall temperature and mass production rate of vinyl 
chloride monomer (VCM).  

This work proposed an extended study of a control 
method for a thermal EDC cracking furnace described by 
coupled PDE-ODE system.  The lumped dynamics of furnace 
wall and the spatially distributed dynamics of cracked gas 
and tube wall conduction are currently considered.  The 
objective is to control the average cracked gas temperature in 
the coil by fuel gas flow rate regulation.  The proposed 
controller is developed based on input-output (I/O) 
linearizing control which is applied to the coupled PDE-ODE 
system. 

The paper is structured as follows.  In Section 2, 
preliminaries of mathematical model and input-output 
linearization technique are explained.  In Section 3, the 
mathematical model of an EDC cracking furnace is 
described.  Section 4 presented the formulation of the control 
system and applied to the process model.  In Section 5, the 
simulated closed-loop responses of the process are illustrated. 

 
 

2. PRELIMINARIES 

2.1  Formulation of the problem 

Consider the mathematical model of the distributed 
parameter system described in Eq. (1).  The model is a 
coupling of PDE and ODE with the controlled output (y) and 
manipulated input (u) 
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where xp(z,t) denote the state variables which depend on the 
spatial coordinate and time, xo(t) denote the state variables 
which depend on the time,  y denote the output variable, 
z∈[0, L] is the spatial coordinate, t∈[0,∞] is the time, u(t) are 
the manipulated variables and A, B are constant matrices. 

2.2 Input-output linearization technique 

The dynamic behavior of xp(z,t) and xo(t) are considered 
in order to investigate the relationship between the controlled 
output y at the exit position (z = L) and the manipulated input 
u.  The compact form of system in Eq. (1) at the considered 
output can be written as  
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where [  ]T

p ox x x=  is the vector of state variables, 
/zx x z= ∂ ∂  is the first-order spatial derivatives of x, 

2 2/zzx x z= ∂ ∂  is the second-order spatial derivatives of x, u 
is the manipulated input, and ( , , , )z zzf x x x u , h(x) are the 
vectors of nonlinear function.  For the nonlinear system in 
Eq. (2), the relative order (degree) of the controlled output yL 
is denoted by r, and it is finite. The notation of the relative 
order for the partial differential equation system has the 
expressions given below. 
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3. MATHEMATICAL MODEL OF EDC CRACKING 
FURNACE 

For the EDC cracking process, the raw material, 
EDC, is cracked to mainly produce vinyl chloride monomer 
(VCM) and hydrogen chloride (HCl) inside the cracking coil.  
A typical example of the cracking furnace is shown in Fig. 1, 
the VCM production process overview can be found in 
Ullmann’s Encyclopedia (1997).  Since the EDC cracking is 
an endothermic gas-phase reaction, the heat energy is 
permitted by gas-fired inside the furnace.  The coupled PDE-
ODE system is developed under the integrated consideration 
of gas-fire radiation effect and tube wall conduction.  The 
dynamic of the EDC concentration, cracked gas temperature 
and tube wall temperature are spatially distributed along the 
coil length which can be described by PDE models while the 
lumped furnace wall temperature can be described by ODE 
model.  Additional simplified assumptions are considered in 
the one-dimensional EDC cracking furnace model: 
 
(1) The gas behavior is ideal gas. 
(2) The side reactions are neglected. 
(3) The cracked gas in the tube is in a turbulent flow regime 
and the gas flow pattern is closed to a plug flow pattern. 
(4) The properties of the cracked gas are constant. 
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Fig. 1 Scheme of the typically EDC cracking furnace. 
 
The dynamic of EDC concentration, cracked gas temperature 
and tube wall temperature of the cracking coil: 
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The dynamic of furnace wall temperature: 
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with the initial conditions of   

,0( ,0)   w wT z T=  

where [0,300]z ∈ , C denotes the EDC concentration, Tg 
denotes the cracked gas temperature, Tt denotes the tube wall 
temperature, Tw denotes the furnace wall temperature.  The 

controlled output chosen in this work is the cracked gas 
temperature, Tg, at the exit of the cracking coil while the 
manipulated input is the fuel gas flow rate, fm .  All process 
parameters descriptions and values are presented in Table 1.  
The function hg can be expressed as 
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Table 1. Parameters of the cracking furnace 

Symbol Quantity Value 

Aw Radiating area of furnace 
wall 

218 m2 

Cpt Heat capacity of cracking 
coil 

444 J/kg K 

Cpg Average heat capacity of 
cracked gas 

653.76 J/kg K 

Cpw Heat capacity of furnace 
wall 

1000 J/kg K 

Di Internal tube diameter 0.19 m 
E Activation energy 1.15×105 J/mol 

Hcom Heat of combustion 4.25×107 J/mol 
k0 Kinetic constant 1.15 × 107 
k Thermal conductivity of 

cracked gas   
2.655×10-2 W/m K 

kt Thermal conductivity of 
cracking coil 

20.5 W/m K 

L Tube Length 300 m 
mt Mass of cracking coil 7.783×103 kg 
mw Mass of furnace wall 4.191 × 105 kg 
R Gas constant 8.314 J/mol K 
Ri Internal cracking coil 

radius 
0.095 m 

Ro External cracking coil 
radius 

0.1 m 

v Feed velocity 4.855 m/s 
Vt Volume of cracking coil 8.5059 m3 
ΔH Heat of reaction 7.1 × 104 J/mol 
ρg Average density of 

cracked gas 
35.43 kg/m3 

ρt Density of cracking coil 8470 kg/m3 
fm  Fuel gas flow rate 0-0.6 kg/s 

σ  Stefan–Boltzmann 
constant 

 5.67×10-8 W/m2 K4 

μ Viscosity of cracked gas 1.695 × 10-5 kg/m s 
   
       

4. FORMULATION OF THE CONTROLLER SYSTEM 
 

The regulation of the controlled output at the exit of 
cracking coil is proposed in this work by adjusting the 
manipulated input based on input-output linearization 
technique. 
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4.1 Feedback input-output linearizing controller 

 The system in Eq. (2) is used to formulate a 
controller based on I/O linearization technique. The 
responses of the closed-loop process output, at the exit of 
tube (yL), have a linear form: 

( 1)r
L spD y y+ =β                                                        (6)      

where D is the differential operator (i.e. /D d dt ),   ysp  is 
the desired output setpoint, and β is the tuning parameter. 
The feedback controller can be recast as Eq. (7) by 
substituting Eq. (4) into Eq. (6): 
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u x x y
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To apply the feedback controller, the nonlinear 
function of time derivatives of state gradient, ε , is set to be 
zero. 

 
4.2 Control system for the cracking furnace 
 
 The cracked gas temperature evaluated at the exit in 
closed-loop system is arrange in the linear form 

, ,( 1)r
g L g spD T T+ =β                          (9)

       

where ,g LT is the gas temperature at position z = L, ,g spT  is 
the setpoint and β  is tuning parameter.  In this system, the 
relative order of the developed controller equal to 3 (r=3).  
The compact form of the feedback controller can be written 
as: 
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4.3 Finite-element based state observer design and integrator 

In this work, the finite-based, open-loop state 
observer of the process as shown in Eq. (11) is used to 
estimate the unmeasurable states, x , and the state 
derivatives. 

2
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To compensate the offset because of the model-
process mismatch and the error in the parameter estimation 
from the observer, the following error dynamics are 
introduced: 

( )T T sp L

T sp T

ε λ y y

ν y ε

= −

= −



            (12) 

where Tε is the error of the temperature, Tλ  is a positive 
parameter, and  Tν  is a new corrected setpoint. 

 The combination of the feedback I/O controller in 
Eq. (7), the finite-based state observer in Eq. (11), and the 
integrator in Eq. (12), a schematic diagram of the developed 
controller system can be formulated: see Fig. 2.  

  

5.  SIMULATION RESULTS 

In order to evaluate the performance of the control 
system, closed-loop simulations for the EDC cracking 
furnace are performed.  The gas temperature is controlled at 
the location z = 300 m in the closed-loop system.  The initial 
condition of the cracking coil is C(0,t) = 359.83 mol/l and  

 

 

 

 

 

 

 

 

 

Fig. 2 Schematic diagram of the developed control system 
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Tg(0,t) = 478 K with the setpoint, Tg,sp = 677.12 K and the 
tuning parameter β = 4.  The initial condition of the tube 
wall temperature is Tt,0 = 550 K and the furnace wall 
temperature is Tw,0 = 713 K.  Fig. 3 shows the open-loop 
profile evolution of the cracked gas temperature inside the 
cracking coil along the tube length and operating time.  The 
comparison between the cracked gas temperature of the 
developed coupled PDE-ODE system and a typically lumped 
model is illustrated in Fig. 4.  Fig. 5 is the EDC concentration 
profile at the exit of cracking coil corresponding to Fig. 3. 

The profile of the evolution of the closed-loop 
response of cracked gas temperature along the tube length 
and time under the developed controller is shown in Fig. 6. 
The comparison between the open-loop profile and the 
closed-loop response is illustrated in Fig. 7.  Fig. 8 is the 
manipulated input, fuel gas flow rate, corresponding to the 
closed-loop system.  The developed controller is also 
extended to regulate the EDC cracking furnace with other 
desired condition.  Fig. 9 shown the closed-loop response 
when the setpoint is Tg,sp = 695 K.   These simulation studies 
demonstrate that the input-output linearizing controller 
successfully forced the cracked gas temperature to achieve 
the desired setpoint asymptotically. 

 

 

 

 

Fig. 3 Evolution of open-loop profile of                        
cracked gas temperature 

 

Fig. 4 Cracked gas temperature responses: lumped model and 
coupled PDE-ODE model. 

  

Fig. 5 Open-loop profile of the EDC concentration 
corresponding to Fig. 3 

 

Fig. 6 Evolution of the closed-loop response of                   
the cracked gas temperature 
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Fig. 7 Cracked gas temperature responses: the open-loop 
profile and the closed-loop response comparison. 

 

Fig. 8 Fuel gas flow rate corresponding to                             
the closed-loop system 

 

 

Fig. 9 Closed-loop response of the cracked gas temperature 
with Tg,sp = 695 K 

6. CONCLUSIONS 

This work proposed the development of a controller 
system based on the feedback I/O linearizing control 
technique.  The developed controller is applied to the coupled 
PDE-ODE mathematical model system of an EDC cracking 
furnace in order to track the gas temperature to follow the 
desired setpoint.  Simulation results showed that the 
controller successfully forced the cracked gas temperature to 
achieve the desired setpoint asymptotically.  Furthermore, 
this proposed technique should be extended to control the 
process under condition affected by outside factors. 
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