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Abstract: In this article, a novel dynamic Bayesian network based networked process monitor-
ing approach is proposed for fault detection, propagation pathway identification and root cause
diagnosis. First, process network structure is designed according to the prior process knowledge
including process flow sheets and used to characterize the causal relationships among different
measurement variables. Then, the dynamic Bayesian network model parameters including the
conditional probability density functions of different nodes are learned from historical process
data to quantify the causality among those variables. Further, the new monitoring index is
derived from the likelihoods of the entire process network for detecting abnormal operating
events. With the captured process abnormality, the novel probabilistic contribution indices
within Bayesian network are proposed to identify the major fault effect variables. Subsequently,
the fault propagation pathways from the downstream backwards to upstream process are
isolated through the variable contribution indices and hence the ending nodes of the identified
pathways are determined as the root-cause variables of the abnormal events. The proposed
approach is applied to the Tennessee Eastman Chemical process and the results show that the
presented method can accurately detect abnormal events, identify fault propagation pathways,
and diagnose the root-cause variables.

Keywords: Networked process monitoring, dynamic Bayesian network, fault detection, fault
propagation pathway identification, root cause diagnosis

1. INTRODUCTION

Process monitoring, fault detection and diagnosis are
becoming critically important in order to improve product
quality, yields, plant safety, energy efficiency and eco-
sustainability (Venkatasurbramanian et al., 2003). The
approaches fall into the two major categories, which are
the model-based and the data-driven techniques (Gertler,
1988). Performance of model-based process monitoring
methods heavily relies on the accuracy of mechanistic
models. However, the development of mechanistic models
requires in-depth process knowledge to characterize the
complex physical, chemical, and biological phenomena in
processes. In addition, it can be time-consuming to build
precise mechanistic models for complex processes.

In order to address these challenges, multivariate statisti-
cal process monitoring (MSPM) techniques have been pro-
posed by extracting latent variables and hidden features
from a large number of highly correlated process variables
and the corresponding historical data sets (Nomikos and
MacGregor, 1995). Principal components analysis (PCA)
and partial least squares (PLS) methods are widely used in
the MSPM field to build the data-driven models within the
low-dimensional subspace that retains most of variance or
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covariance structure (Qin, 2003). Statistical indices such
as T 2 and SPE are then developed to detect abnormal op-
erating events. Moreover, once a fault is detected, variable
contribution plots can be generated to identify the ma-
jor fault effect variables without prior process knowledge.
Nevertheless, variable contribution methods are unable to
identify the root causes of faulty operations without in-
depth process knowledge because the operational faults
can propagate throughout the process due to the intricate
variable interactions, process dynamics, closed-loop con-
trol systems, etc. Machine learning techniques including
support vector machines (SVM), artificial neural networks
(ANN) and Gaussian mixture model (GMM) methods
are successfully applied to process monitoring (Sorsa and
Koivo, 1993; Yélamos et al., 2009; Yu and Qin, 2008; Yu,
2012). However, these methods are also data-driven but ex-
clude preliminary process knowledge. Therefore, they may
not be able to identify the root-cause variables particulary
when the fault propagation pathways include sophisticated
variable interactions across different process units.

Alternately, signed directed graph (SDG) approach for
incipient fault diagnosis has been developed. SDG method
may capture the cause-effect relationship and the direction
of the fault effect (Maurya et al., 2004). Moreover, it
can be integrated with data driven approaches such as
qualitative trend analysis (QTA) in order to reduce the
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number of spurious alarms (Maurya et al., 2007). However,
the above method identifies candidate faults from the prior
fault database and thus it can be challenging to diagnose
abnormal events that the prior fault database does not
include. In addition, these methods cannot trace the fault
propagation pathways and especially the root-cause vari-
ables. A method for the fault source identification, propa-
gation analysis and time delay estimation is also developed
(Stockmann et al., 2012). Nevertheless, when the process
sampling frequency is high, the online implementation of
process monitoring becomes difficult due to its heavy com-
putational load. More recently, Granger causality methods
are proposed for diagnosing the root causes of plant oscil-
lations (Yuan and Qin, 2012). Granger causality is based
on linear prediction of time series and can extract useful
dynamic information including the cause-effect relation-
ship in processes. However, the industrial processes are
often characterized by significant nonlinearity so that this
approach may not be valid in identifying the root causes.

Dynamic Bayesian networks (DBN) are a class of graphical
models of stochastic processes for characterizing time-
varying dynamics and variable causality under system
uncertainty. DBNs and their static version, Bayesian net-
works (BN), have been successfully applied to various
fields including medical diagnostics, speech recognition,
target tracking, and reliability analysis. For instance, DBN
is applied for control loop performance diagnosis and
makes it possible to synthesize various existing monitor-
ing methods (Huang, 2008). However, each hidden node
represents a type of faults, which must be specified in
advance. In this study, a dynamic Bayesian network based
networked process monitoring and diagnosis approach is
proposed to detect the abnormal operating events, iden-
tify fault propagation pathways and capture root-cause
variables in dynamic processes without any specifications
of fault types. First, the network structure is designed from
prior process knowledge and analysis. Then, the network
parameters including the conditional probability density
functions of all nodes are estimated from process data
for quantifying the causal relationships among process
variables. Further, the likelihood based monitoring indices
are proposed for detecting faulty operations. After the
abnormal event is alarmed, the novel dynamic Bayesian
contribution indices are developed to capture the major
fault cause and effect variables. Moreover, according to the
Bayesian contribution indices and network inference rules,
the fault propagation pathways from the downstream
backward to the upstream process are traced so that the
ending nodes along the pathways can be diagnosed as the
root-cause variables resulting in process upsets.

The organization of this article is as follows. Section 2
briefly reviews the dynamic Bayesian networks. Section 3
describes the proposed dynamic Bayesian network based
process monitoring approach for fault detection and root
cause diagnosis. The presented method is applied to the
Tennessee Eastman Chemical process in Section 4. Finally,
the conclusions are drawn in Section 5.

2. PRELIMINARIES

Bayesian networks are graphical models to represent com-
plex causal relationships among a set of random variables

and their conditional dependencies. A BN is essentially
a directed acyclic graph (DAG) consisting of hidden and
observed nodes, each of which is connected to the various
nodes in the same time slice. The nodes that have arcs
directed into are termed as child nodes while the ones with
departing arcs are parent nodes. Meanwhile, the nodes
without any parent nodes are called root nodes. As a
kind of extension of BN, dynamic Bayesian networks are
designed to characterize the dynamic relationships among
variables by tracking the transitional probabilities between
the parent and child nodes across different time slices
(Murphy, 2002).

The structure of DBN can be designed from prior knowl-
edge and then the qualitative causal reasoning is con-
ducted within the network models. Further, the condi-
tional probability distributions with model parameters
θi ∈ Θ can be estimated from historical data to infer the
quantitative causal relationships among variables.

Given all the multivariate measurements Xt =
[
X1
t , X

2
t ,

. . . , XN
t

]
with Xi

t being the i-th node at time t, the
probabilistic transition model from the previous state to
the current state for all variables is expressed as

p(Xt|Xt−1) =

N∏
i=1

p(Xi
t |Pa(Xi

t)) (1)

where Pa(Xi
t) are the parent nodes of Xi

t . Thus the joint
probability density function from t = 1 to T is given by

p(X1:T ) =

T∏
t=1

N∏
i=1

p(Xi
t |Pa(Xi

t)) (2)

Once the network structure is determined, model param-
eters Θ can be identified from expectation-maximization
(EM) algorithm. The details on DBN model learning pro-
cedure can be found in literature (Murphy, 2002).

3. DYNAMIC BAYESIAN NETWORK BASED
NETWORKED PROCESS MONITORING APPROACH

FOR FAULT DETECTION AND DIAGNOSIS

As DBN is a type of graphical model to characterize
the stochastic non-steady-state processes using conditional
probability based dynamic state transition, it is possible to
determine the operational status of processes, identify the
fault propagation pathways and diagnose the root causes
of abnormal event using the time-varying transitional
probability among different variables.

Aimed at designing DBN structure, the intra-slice topol-
ogy within a time slice and the inter-slice topology between
two slices should be defined. First, the intra-slice structure
is determined from the prior process knowledge including
process flow sheets. The idea is to sort out the monitored
variables in terms of process flow order from the upstream
to the downstream process. Then cause-effect relationships
can be analyzed from process flow order as well as physical
or chemical interactions among monitored variables. In
this way, network arcs can be connected between the
parent and child nodes based on the qualitative cause-
effect relationships among process variables.
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Fig. 2. Illustrative Example of Dynamic Bayesian Network

For processes with recycle loops or feedback controllers,
DBN cannot handle directly as they are essentially acyclic
graphs. In this situation, duplicate dummy variables are
designed and added to the network structure for represent-
ing the recycle or manipulated variables. As shown in Fig.
1, a duplicate dummy node Xy for manipulated variable
is designed in the network structure to take into account
the feedback effect of a controller. Similarly, the impact
of process recycles can be captured by adding a duplicate
dummy node to represent a recycle variable.

With the defined intra-slice topology, the inter-slice topol-
ogy can be determined to account for the process dynam-
ics. In this study, each node in the previous time slice
is connected to the same one in the current time slice.
Moreover, in order to take into consideration the scenario
when time-delays are present in process, each parent node
in the previous time slice is connected to it child nodes in
both the previous and current time slices. An illustrative
diagram of a simple three-node DBN is shown in Fig. 2.

After the dynamic bayesian network structure is defined,
the model parameters in terms of conditional probability
distributions of different nodes are estimated from histor-
ical process data. In this work, all monitored variables
are assumed to be continuous random variables with ap-
proximately Gaussian distributions and thus the parame-
ters of the conditional probability distributions are their
means and variances. With the DBN model obtained, the
likelihood for the new observation Xt can be derived for
fault detection and propagation pathway identification.
The conditional probability function of the i-th node at
time t is estimated as follows

p(Xi
t |Pa(Xi

t)) = N
(
Xi
t

∣∣µit, vi ) (3)

with

µit =
∑

j∈Pa(Xi
t)

wijX
j
t + bi (4)

where wij and bi are parameters governing the mean while
vi is the variance of the conditional distribution. The log
likelihood function for the new observation of the network
nodes Xt at time t is expressed as

ln p(Xt) =

N∑
i

ln p(Xi
t |Pa(Xi

t)) (5)

which represents the overall probability of all the net-
work nodes under normal operational conditions. In other
words, the smaller value the log likelihood function is, the
higher possibility that the abnormal event occurs. Thus,
the following abnormal likelihood index (ALI) is proposed

ζ(t) = −ln p(Xt) (6)

The corresponding confidence limit can be estimated from
kernel density estimation (KDE) algorithm (Bishop, 2006).
Given observations (ζ(1), ζ(2), . . . , ζ(T )) from unknown
probability distribution f , the density function can be
estimated as follows

f(ζ) =
1

TD

T∑
t=1

K

{
ζ − ζ(t)

D

}
(7)

where ζ denotes ALI under consideration, D represents
the kernel window width and K is a kernel function. The
following Gaussian kernel function is commonly used

f(ζ) =
1

T

T∑
t=1

1√
2πD

exp

{
− (ζ − ζ(t))2

2D2

}
(8)

After a probability density function is estimated, the cor-
responding point with cumulative density function value
at 1− α is the confidence limit under the confidence level
of (1− α)× 100%.

Once the abnormal operation is detected, it is needed to
identify fault propagation pathways and diagnose root-
cause variables. In this study, a dynamic Bayesian prob-
ability index (DBPI) is developed from the conditional
probability function p(x|Pa(Xi

t)) of the i-th node at time
t as follows

γi(t) =

x2
i (t)∫

x1
i
(t)

p(x|Pa(Xi
t))dx (9)

where

x1i (t) =

{
Xi
t

(
Xi
t < µit

)
2µit −Xi

t

(
Xi
t ≥ µit

) (10)

x2i (t) =

{
2µit −Xi

t

(
Xi
t < µit

)
Xi
t

(
Xi
t ≥ µit

) (11)

This time-varying index is a type of cumulative distribu-
tion function and can be used to quantify the effect of each
monitored variable on the abnormal event by its directly
connected upstream variables in a probabilistic manner.
Once a faulty event is detected, the DBPI can be averaged
as a new dynamic Bayesian contribution index (DBCI) Γi
for each variable as follows

Γi =
1

t1 + t′ − 1

t1+t
′−1∑

t=t1

γi(t) (12)
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where t1 is the time when the abnormal event is first
detected, t′ is the period used to diagnose the faulty
operation and should be specified by users. Γi is the
mean of DBPI from t1 to t1 + t′ − 1 and it represents
the likelihood of each process variable with significantly
abnormal behavior and can be utilized as an indicator
identifying the major effects given process faults.

Because of intricate variable interactions, process dynam-
ics and closed-loop control, the fault can often propagate
throughout the process from upstream to downstream
operations. Therefore, identifying the fault propagation
pathways and diagnosing the root-cause variables of ab-
normal operations are highly desirable. In our work, with
above the dynamic Bayesian contribution index, the fol-
lowing probabilistic inference rules are further designed to
identify fault propagation pathways by searching from the
downstream backwards to the upstream process within the
network.

The proposed search for fault propagation pathways starts
from all the leaf nodes that do not have any child nodes.
First, among all the leaf nodes within the network, the ones
satisfying the following criteria are selected as the nodes at
which the fault propagation pathway S = [η1, η2, . . . , ηM ]
starts

η1 = argη∈ZL
{Γη ≥ ε} (13)

where η1 is the starting nodes in the fault propagation
pathway, ZL represents the sets of leaf nodes in the
network, Γη is the dynamic Bayesian contribution index of
the node η, ε is the threshold value that should be set at the
confidence level (1 − α)100%, and M is the total number
of nodes within the identified fault propagation pathway.
With the starting node identified, the fault propagation
pathway can be determined gradually. The node ηj(j ≥ 2)
in the propagation pathway is inferred from the previous
node ηj−1 along the reversed arc. The ones whose dynamic
Bayesian contribution index values are no less than the
threshold ε are selected in the fault propagation pathway
as follows

ηj = argη∈Pa(Xj−1) {Γη ≥ ε} (14)

where ηj denotes the j-th node in the fault propagation
pathway and Pa(Xj−1) represents all the parents nodes of
the previous node ηj−1. If the DBCI values of all the parent
nodes are less than the threshold, the one that has the
largest DBCI value among all the parent nodes is selected
in the fault propagation pathway

ηj = arg maxη∈Pa(Xj−1)Γη (15)

The above search for the fault propagation pathway con-
tinues until there are no remaining nodes whose DBCI
values are no less than the threshold vaue. Otherwise, the
pathway search does not terminate until it reaches one of
the root nodes that do not have any parent nodes. The
ending node in the identified fault propagation pathway
is thus determined as the root-cause variables leading to
process upsets.

The proposed DBN based networked process monitoring
and diagnosis approach is illustrated in Fig .3. Moreover,
the step-by-step procedure of the presented method is
listed below

Time

Variable

Process Knowledge Process Operation Data

1

2 3

4

5 6

7

8

1

2 3

4

5 6

7

8

Structure Definition Parameter Learning

Dynamic Bayesian Network

Previous time slice Current time slice

Fig. 3. An Illustration of Networked Process Monitoring

(1) Determine the intra-slice topology of the dynamic
Bayesian network based on prior process knowledge
and process flow sheets with the network nodes repre-
senting process variables and arcs denoting the causal
relationships.

(2) Add duplicate dummy nodes representing manipu-
lated variables of controllers or recycled variables in
the network structure.

(3) Connect each node in the previous time slice to the
same one in the current time slice.

(4) Connect each parent nodes in the previous time slice
to all its child nodes in the current time slice.

(5) Learn the network model parameters in terms of
conditional probability density functions of all nodes
from the historical process data.

(6) Compute the abnormal likelihood index values of
training data and determine its confidence limit using
kernel density estimation.

(7) Calculate the values of ALI for new process data and
detect abnormal operations with ALI values above
the confidence limit.

(8) Calculate the dynamic Bayesian contribution index
values of the detected faulty samples for all network
nodes and generate the corresponding DBCI contri-
bution plots.

(9) Search for the fault propagation pathway using the
proposed DBCI and statistical inference rules.

(10) Identify the ending nodes in the propagation path-
ways as the root-cause variables responsible for the
abnormal events.

4. CASE STUDY

In this work, the Tennessee Eastman Chemical process is
utilized to examine the performance of the DBN based
networked process monitoring approach. The diagram of
the Tennessee Eastman Chemical process is shown in Fig.
4 and this process has five major units including a exother-
mic 2-phase reactor, a product condenser, a vapor-liquid
separator, a recycle compressor and a product stripper
(Downs and Vogel, 1993). The process has total 41 mea-
surement variables and 12 manipulated variables. The pro-
cess involves a plant-wide decentralized control implemen-
tation with different feedback control loops. For process
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Fig. 4. Process Flow Diagram of the Tennessee Eastman
Chemical Process

monitoring purpose, 22 continuous variables among the
41 measurement variables are selected, as shown in Table
1. The variable symbols shown in the table are used later
in this section. The sampling time of this process is set
to 3 min. The training data set consisting of 500 samples
is generated under normal operations for network model
parameter learning. Furthermore, a test case is designed to
evaluate the effectiveness of the networked process mon-
itoring and diagnosis method. In the test scenario, the
process begins with normal operating conditions from the
first through the 50-th samples and then is followed by
the process fault of increased random variations in D feed
temperature for the remaining 30 samples.

Table 1. Monitored Variables of the Tennessee
Eastman Chemical Process

Variable no. Symbol Variable description

1 F1 A Feed
2 F2 D Feed
3 F3 E Feed
4 F4 Total Feed
5 F5 Recycle Flow
6 F6 Reactor Feed Rate
7 P7 Reactor Pressure
8 L8 Reactor Level
9 T9 Reactor Temperature
10 F10 Purge Rate
11 T11 Separator Temperature
12 L12 Separator Level
13 P13 Separator Pressure
14 F14 Separator Underflow
15 L15 Stripper Level
16 P16 Stripper Pressure
17 F17 Stripper Underflow
18 T18 Stripper Temperature
19 F19 Stripper Steam Flow
20 J20 Compressor Work
21 T21 Reactor Coolant Temperature
22 T22 Separator Coolant Temperature

The first task in the proposed approach is to determine the
intra-slice network structure from the prior process knowl-
edge and process flow sheet. The monitored variables can
be sorted in terms of process flow order from upstream to
downstream units and then placed into network hierarchy
as nodes without any arcs. Then the interactions among
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Fig. 5. Fault Detection Results of the DBN Based Net-
worked Process Monitoring Approach in the Ten-
nessee Eastman Chemical Process

the monitored variables are analyzed based on the prior
process knowledge and used to determine the node connec-
tions. The intra-slice network defined in this work includes
22 nodes corresponding to all the monitored variables and
one duplicate dummy node for the recycle flow that is the
only cyclic loop containing monitored variables. After the
inter-slice network is defined, the entire dynamic Bayesian
network structure is obtained. Then, the network model
parameters in terms of the conditional probability density
functions of all nodes are estimated from the training data.
With the network model constructed, the abnormal likeli-
hood index values for new process data are computed for
detecting the abnormal operation. Once the faulty event
is captured, the fault propagation pathway is searched
and the root-cause variable for process abnormality is
identified.

The trend plot of the abnormality likelihood index is
shonw in Fig. 5. It can be readily observed that the ALI
values are less than the confidence limit line during the
normal operation while exceed the confidence limit line
once the process fault of increased random variations in D
feed temperature occurs from the 51-st sample.

After the fault is detected, the dynamic Bayesian contri-
bution index values are calculated to identify the fault
cause and effect variables, as shown in Fig. 6. One can
easily see that the DBCI plot can rank the variables in
terms of the effects from the abnormal event but is unable
to point out the root-cause variables directly. With the
DBCI values and probabilistic inference rules, the fault
propagation pathways can be further identified, as shown
in Fig. 7. The determined fault propagation pathway in-
cludes reactor pressure (P7), reactor temperature (T9),
separator temperature (T11) and condenser cooling water
outlet temperature (T22). As a result of increased random
variations in D feed temperature, the reactor stream is
significantly affected so that the abnormal behavior can
be observed in reactor pressure. Subsequently, the ab-
normal variations in reactor pressure leads to abnormal
reactor temperature. Furthermore, the downstream con-
denser and separator temperature are influenced by the
upset in reactor temperature. Therefore, the identified
fault propagation pathway correctly captures the actual
fault propagations in the process and the ending node of
reactor pressure in the pathway is precisely determined as
the root-cause variable of faulty operation.
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Fig. 6. Dynamic Bayesian Contribution Plot of the Ten-
nessee Eastman Chemical Process
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Fig. 7. Fault Propagation Pathway Identification and Root
Cause Diagnosis Results of the Tennessee Eastman
Chemical Process

5. CONCLUSION

In this paper, a novel dynamic Bayesian network based
networked process monitoring approach for fault detec-
tion, fault propagation pathway identification and root
cause diagnosis is proposed. First, Bayesian network struc-
ture is defined from prior process knowledge and process
flow sheets. Then, network model parameters including
conditional probability density functions of all different
nodes are estimated from historical process data. Fur-
ther, a new abnormality likelihood index is developed to
quantify the likelihood of the whole process to be under
abnormal operating conditions. Once the fault is detected,
dynamic Bayesian contribution index is developed to iden-
tify the major faulty effect variables. With the DBCI
values and statistical inference rules, the fault propagation
pathways are identified throughout the process and the
ending nodes in the pathways are determined as the root-
cause variables responsible for process abnormalities. The

proposed approach is applied to the Tennessee Eastman
Chemical process, and the results demonstrate that it can
accurately detect faults, identify fault propagation path-
ways and ultimately diagnose root-cause variables leading
to process faults. Future work can be focused on extend-
ing the proposed method to automatic network structure
learning for more desirable utility.
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