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Abstract: While the notion of a hybrid fuel cell vehicles is conceptually promising, due to
an off-loading of peak power demands from the fuel cell to the storage devices, the questions
of device coordination is unsettled. Clearly the prominent role of equipment limitations, with
respect to energy storage capacity and maximum power, suggests the use of predictive control for
constraint enforcement. In this work an MPC tuning method specifically tailored to the hybrid
vehicle application is presented. The approach is based on the notion of backed-off operating
point selection and has the objective of minimizing energy losses from the storage devices. In
addition, a soft constraint formulation unique to hybrid vehicle application is proposed.

1. INTRODUCTION

The subject of control system design for hybrid vehicles
has enjoyed much attention in the recent literature (see
the overview papers Salmasi (2007); Opila et al. (2009);
Sciarretta and Guzzella (2007)). The basic idea is to use
the fuel cell as the primary source of energy. However, to
meet large power demands, the fuel cell will be hybridized
with one or more energy storage devices. Consider the case
of an acceleration event. Rather than quickly ramp up the
power output of the fuel cell - and potentially damage its
internal components - one could turn to a supercapacitor
for the short burst of power. Then, over the subsequent
time period, a smaller increase in fuel cell power output
would recharge the capacitor. This configuration will also
allow for regenerative braking.

If given such a configuration, a fundamental question con-
cerns the coordination of power output from each device.
How much power should each device provide in response to
a demand? How fast should a storage device be recharged
and to what level? If the system contains more than
one storage technology - each with unique power/energy
density characteristics - then the issue becomes even more
complicated. Central to the power coordination question
is the physical limits of each device. Clearly, a battery or
supercapacitor can hold only a finite amount of energy and
cannot output power if the reserve is fully depleted. In ad-
dition, the rate of charging and discharging of these devices
should be limited to observe heat dissipation related safety
concerns. Similarly, a fuel cell will have a maximum power
output limit and cannot accept any power. In addition,
one may wish to limit the ramp rate of fuel cell power
output, in an effort to reduce degradation rates.

Clearly, the presence of equipment limitations suggests the
use of Model Predictive Control (MPC). Unfortunately,
the tuning of such a controller is unexpectedly challenging
and non-intuitive. Thus, the objective of this paper is to
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present an MPC tuning method that not only provides the
type of response expected from a hybrid system, but also
yields minimum energy loss. The outline of the paper is
as follows. The next section provides a brief introduction
to MPC, while Section 3 presents the high level system
model of the hybrid fuel cell vehicle. Then, the method
of statistically constrained controller design is presented
as the first step of the tuning procedure. In Section 5, the
linear feedback of the statistically constrained controller is
converted to an MPC structure for enforcement of point-
wise-in-time constraints.

2. REVIEW OF MPC

The basic idea behind MPC is to utilize a dynamic model
to make predictions about performance about the future 1 .
Based on these predicted outcomes, the manipulated vari-
able at the present time will be selected. Then, in the next
time-step, new measurement information will be fed back
to the model and a new set of predicted outcomes will
be calculated. To highlight the predictive aspect of MPC,
two time indices are utilized. The index k is for predictions,
while the index i represents actual time. Specifically, the
sequence x(k∣i), k = i . . . i +N is the state prediction at
time i. Thus, a linear predictive model with horizon N can
be compactly stated as

x(k + 1∣i) = Adx(k∣i) +Bdu(k∣i) (1)

z(k∣i) =Dxx(k∣i) +Duu(k∣i) (2)

zmin ≤ z(k∣i) ≤ zmax k = i..i +N − 1 (3)

x(i∣i) = x(i) (4)

where x,u, and z are the state, manipulated and perfor-
mance vectors, zmin and zmax are the output constraints
and x(i) is the state of the actual system at time i. The
first objective of MPC is to select a sequence, u(k∣i), k =
i . . . i +N − 1, such that all of the predicted performance

1 For a detailed description of MPC please see Cutler and Ramaker
(1980); Garcia et al. (1989); Rawlings (1999, 2000); Qin and Badgwell
(2003).
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outputs satisfy the constraints zmin ≤ z(k∣i) ≤ zmax k =
i . . . , i+N−1. In most cases, there will be more than one se-
quence u(k∣i) capable of satisfying the output constraints.
To alleviate this issue the sequence selection process is
cast as an optimization problem. This optimization will
typically have a quadratic objective function

i+N−1
∑
k=i
[ x(k∣i)
u(k∣i) ]

T

[ Q M
MT R

] [ x(k∣i)
u(k∣i) ]

... + x(i +N ∣i)TPx(i +N ∣i) (5)

The weights Q,R and M are constants that must be
selected such that the compound matrix is at least positive
semidefinite (see Russell (1979) for additional restrictions)
and P is usually selected as the solution to the Ricatti
equation (Chmielewski and Manousiouthakis, 1996)

P = AT
d PAd +Q ...

−(AT
d PBd +M)(BT

d PBd +R)−1(BT
d PAd +MT ) (6)

Another important issue is the existence of a feasible
sequence u(k∣i). That is, there could be values of x(i)
such that all sequences u(k∣i) will result in some constraint
violation. In this case, all sequences will be invalid, but
the controller will still need to provide a numeric input
to the process. To address this concern, a soft constraint
formulation of MPC is usually employed (Zheng and
Morari (1995)). The basic procedure is to introduce a
vector of slack variables θ ≥ 0. Then, the original ‘hard’
constraints are replaced by the following soft constraints
zmin − θ ≤ z(k∣i) ≤ zmax + θ. Finally, a weighted sum of
the slack variables, cTθ θ, is added to the MPC objective
function. Then, if the elements of cθ are set to sufficiently
large values, the optimization will select θ ≃ 0, except for
the cases in which the hard constraints would be infeasible.
That is, the constraints of controller are relaxed, θ > 0, only
if the optimization has no other choice. In summary, the
optimization solved within a soft constrained MPC is the
following

min
x(k∣i)
u(k∣i)
z(k∣i), θ

⎧⎪⎪⎨⎪⎪⎩

i+N−1
∑
k=i

[ x(k∣i)
u(k∣i) ]

T

[ Q M
MT R

] [ x(k∣i)
u(k∣i) ]

... + x(i +N ∣i)TPx(i +N ∣i) + cTθ θ

⎫⎪⎪⎬⎪⎪⎭

s.t. x(k + 1∣i) = Adx(k∣i) +Bdu(k∣i)
z(k∣i) =Dxx(k∣i) +Duu(k∣i)
zmin − θ ≤ z(k∣i) ≤ zmax + θ k = i . . . i +N − 1
x(i∣i) = x(i)

If the solution to this problem is denoted as u∗(k∣i), then
the manipulated input given to the process at time i
is u(i) = u∗(i∣i). The feedback aspect of this controller
resides in the initial condition x(i). Specifically, at the next
time-step a new set of process measurements will become
available and an updated initial condition x(i + 1) will be
generated. With this new value in place, a new solution to
the optimization will be calculated and used to define the
next manipulated input: u(i + 1) = u∗(i + 1∣i + 1).
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Fig. 1. Canonical hybrid vehicle power system
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Fig. 2. Hybrid vehicle controller hierarchy

3. HYBRID FUEL CELL VEHICLE MODEL

To illustrate the method a system consisting of two storage
devices (a battery and a supercapacitor) and a fuel cell will
be used. A high level model of this system is summarized
as follows (Ahmed and Chmielewski, 2012) :

Ėbat = −Pbat − P (loss)bat ,0 ≤ Ebat ≤ Emax
bat , ∣Pbat∣ ≤ Pmax

bat (7)

Ėsc = −Psc − P (loss)sc ,0 ≤ Esc ≤ Emax
sc , ∣Psc∣ ≤ Pmax

sc (8)

Ṗfc =∆Pfc,0 ≤ Pfc ≤ Pmax
fc , ∣∆Pfc∣ ≤∆Pmax

fc (9)

where Ebat,Esc, Pbat, Psc are energy within and power out
of the battery and super capacitor, Pfc,∆Pfc is the fuel

cell power and its ramp rate, P
(loss)
i = P 2

i /L̂i, are power
losses (i = bat, sc), and Emax

bat , Emax
sc , Pmax

fc , Pmax
bat , Pmax

sc ,
∆Pmax

fc are the device limits.

Table 1. Disturbance Model Parameters

i τi(s) w̄i(W ) Swi(kW 2 ⋅ s)
l 4.3 × 104 162 4354
m 909 18 92
h 5 0 884

The power requested by the operator and sent to the motor
is modeled by the following shaping filter.

Pmot = Pl + Pm + Ph (10)

Ṗl = (wl − Pl)/τl (11)

Ṗm = (wm − Pm)/τm (12)

Ṗh = (wh − Ph)/τh (13)

where each wi is stationary white noise with mean w̄i

and spectral density Swi (i = l,m,h). The parameters of
this model are given in Table 1. The basic idea is that Pl
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Fig. 3. The economics of back-off selection

will capture the low frequency aspects of power demand,
Pm will capture the medium frequency aspects and Ph

represents the high frequency aspects. It is highlighted that
the disturbance model of Equation(10)-(13), is to be used
only for controller design, though we also use it for our
simulations. In the actual system, Pmot will be a received
signal from the vehicle operator.

Finally, a power balance between the three devices and the
motor yields the following equality that must be enforced
at all times:

Pmot = Pfc + Pbat + Psc (14)

A linearized model in deviation variables with respect to
the time-averaged conditions is as follows. ẋ = Ax +Bu +
Gw, z = Dxx + Duu, z

min ≤ z ≤ zmax, where x = s − s̄,
u =m−m̄, w = w−w̄, z = q−q̄, zmin = qmin−q̄, zmax = qmax−
q̄, s = [Ebat Esc Pfc Pl Pm Ph]T , m = [Psc ∆Pfc], w =
[wl wm wh]T , q = [Ebat Esc Pfc Pbat Psc ∆Pfc]T
and s̄, m̄, w̄, q̄ are the time-averaged values of s, m, w,
and q. The matrices A, B, G, Dx, Du, and Sw are given
below.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −1 −1 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1/τl 0 0
0 0 0 0 −1/τm 0
0 0 0 0 0 −1/τh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 0
0 1
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

1/τl 0 0
0 1/τm 0
0 0 1/τh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sw =
⎡⎢⎢⎢⎢⎢⎣

Swl 0 0
0 Swm 0
0 0 Swh

⎤⎥⎥⎥⎥⎥⎦
(16)

Dx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Du =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
−1 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Using the sample and hold method (Burl, 1999) with a
sample time of 0.5 s the model of (1)-(3) is determined.

4. STATISTICALLY CONSTRAINED CONTROL
SYSTEM DESIGN

The proposed design scheme is based on the notion of back-
off control. The basic idea is that one would like to operate

*

BOP with 

more profit 

BOP with 

less profit 

OSSOP 

EDOR’s due to 

different controller 

tunings 

*

Fig. 4. BOP selection and controller design

at the Optimal Steady-State Operating Point (OSSOP),
typically at a corner of the feasible operating region (see
Figure 3). However, operation at the OSSOP is impossible
due to the influence of external disturbances. These dis-
turbances will cause the system to operate, not at a single
point, but within an Expected Dynamic Operating Region
(EDOR). If one attempts to operate at the OSSOP, the
EDOR will almost certainly extend beyond the constraint
set and result in numerous violations. Thus, the challenge
is to select a Backed-off Operating Point (BOP) that is eco-
nomically close to the OSSOP (to maximize profit) while
ensuring that the EDOR is completely contained within
the constraint set (to avoid violations). While EDOR size
and shape is a function of the disturbances acting on the
process, the selected control system will have a strong
influence. This ability to manipulate the EDOR can then
be used to reduce the amount of back-off (see Figure 4).

Using a full state information structure, the controller
is assumed to be of the following linear feedback form:
u(i) = Lx(i), where the gain matrix L is selected such
that statistical interpretations of the output constraints
are enforced. Specifically, the controller must be such that
two times the standard deviation of each output is less
than the distance between the time-averaged value of the
output and the constraint limit:

2σi < qmax
i − q̄i and 2σi < q̄i − qmin

i i = 1 . . . ,6 (18)

The standard deviation of each output is calculated as:

Σx = (Ad +BdL)Σx(Ad +BdL)T +GdΣwG
T
d (19)

ζi = ρi [(Dx +DuL)Σx(Dx +DuL)T ]ρTi (20)

σi =
√
ζi i = 1 . . . ,6 (21)

where ρi is the ith row of an identity matrix.

In general, the time-averaged values of each output (the
q̄i’s) can be selected freely. However, they must satisfy the
following condition:

q̄3 + q̄4 + q̄5 = P̄mot (22)

where P̄mot = w̄l + w̄m + w̄h. To account for thermal losses
the time averaged power of each storage device is required
to equal the time averaged loss:

q̄4 = −(q̄24 + σ2
4)/L̂bat

q̄5 = −(q̄25 + σ2
5)/L̂sc
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Fig. 5. Optimal Back-off, EDOR and scatter plot resulting from simulation of statistically constrained controller

Table 2. Parameter Table

Parameter Value Units

Emax
bat 3.79×104 kJ

Emax
sc 181.4 kJ

Pmax
fc 0.599 kW

Pmax
bat 116.7 kW

Pmax
sc 20.99 kW

∆Pmax
fc 16.64 mW/s

L̂bat 5.36 kW

L̂sc 197.47 kW

If these equality constraints are relaxed to inequalities,
they may be converted to the following Linear Matrix
Inequalities

⎡⎢⎢⎢⎢⎢⎣

−q̄4 q̄4 σ4

q̄4 L̂bat 0

σ5 0 l̂bat

⎤⎥⎥⎥⎥⎥⎦
> 0

⎡⎢⎢⎢⎢⎢⎣

−q̄5 q̄5 σ5

q̄5 L̂sc 0

σ5 0 L̂sc

⎤⎥⎥⎥⎥⎥⎦
> 0 (23)

To ensure the above relaxations are (near) active, the
following inequality is introduced

P̄loss > −q̄4 − q̄5 (24)

In summary, the statistically constrained controller design
problem is defined as:

min
P̄loss,q̄i,L,Σx,ζi,σi

P̄loss (25)

s.t. Equations (18) − (24)

Using the parameters of Table 1 and Table 2, and the
computational methods presented of Peng et al. (2005),
the solution to the Problem (25) was found to be:

L = [−0.0045 15.5 −12.1 4.7 28.4 396
0 0 −0.45 0.14 0.0044 0

]10−3 (26)

The optimal BOP is depicted in Figure 5 (the * points)
along with the OSSOP (the pentagram points). Figure
5 also depicts the two standard deviation EDORs as
the solid line ellipses. The energy, power, and ramp rate
constraints are depicted as the dashed lines. The scatter
plot points are a simulation using the shaping filter to
generate Pmot. Clearly, there is a statistical enforcement

of the constraints. The loss of power can be found in the
fuel cell plot, as the difference between the time-averaged
fuel cell power, 300 W (the BOP), and the time-averaged
motor power, 180 W (the OSSOP).

5. MPC TUNING

The conversion of the linear statistically constrained con-
troller to MPC form should be such that the EDOR of the
resulting MPC is similar to the original linear feedback. To
begin the conversion consider the following unconstrained
version of MPC

min
x(k∣i),u(k∣i)

⎧⎪⎪⎨⎪⎪⎩

i+N−1
∑
i=k

[ x(k∣i)
u(k∣i) ]

T

[ Q M
MT R

] [ x(k∣i)
u(k∣i) ]

⋅ ⋅ ⋅ + x(i +N ∣i)TPx(i +N ∣i)

⎫⎪⎪⎬⎪⎪⎭
x(k + 1∣i) = Adx(k∣i) +Bdu(k∣i)
x(i∣i) = x(i)

Then, for an arbitrary selection of Q,R, and M such that
the compound matrix is positive definite and P is set
equal to the positive definite solution of Equation 6, it
is well known that the feedback policy generated by the
unconstrained MPC will be identical to u(i) = LLQRx(i)
The subscript LQR highlights the fact that this controller
is of the Linear Quadratic Regulator class:

LLQR = (BT
d PBd +R)−1(BT

d PAd +M) (27)

This observation leads to the following conversion strategy.
Given the linear feedback suggested by the statistically
constrained controller design scheme, find quadratic ob-
jective weights Q,R, and M such that the unconstrained
MPC will generate a policy identical to the original. The
first issue in this strategy concerns the existence of such
weights. This question is answered in Peng et al. (2005),
where a class of controller design problem (of which (25)
is a member) are shown to generate linear controllers in
the LQR family. The second issue of constructing suit-
able weights is addressed by the following theorem, from
Chmielewski and Manthanwar (2004):

Theorem 1: If P > 0 and R > 0 s.t.
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Fig. 6. Scatter plot from simulation of MPC Controller

[P −A
T
d PAd +LT (R +BT

d PBd)L LT (R +BdPBd)T +AT
d PBd

(R +BT
d PBd)L +BT

d PAd R
]

> 0 (28)

then Q = P −AT
d PAd+LT (R+BT

d PBd)L and M = LT (R+
BT

d PBd) +AT
d PBd will be s.t.

[ Q M
MT R

] > 0 (29)

and P and L will satisfy (6) and (27).

Application of Theorem 1 to the gain of Eqn (26) results
in the following quadratic objective function weights:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 0.0004 0.0001 −0.0001 −0.0010
0 0.293 3.08 −0.753 0.503 7.220

−0.0004 3.076 32.4 −7.95 5.28 75.8
0.0001 −0.753 −7.95 1.95 −1.29 −18.57
−0.0001 0.503 5.28 −1.29 0.863 12.4
−0.0010 7.22 75.83 −18.57 12.39 177.9950

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

R = [ 17.33 25.6
25.6 190

] (31)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0008 0.0012
−2.70 −3.98
2.21 3.95
−0.86 −1.48
−4.93 −7.28
−68.5 −101

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

It is highlighted that the mapping from the controller to
objective function weights is not unique and results are
expected to very depending on the LMI solver used. The
important test is to check if the obtained weights generate
an LQR controller equal to the original.

The next question concerns the impact of re-imposing
output constraints on the MPC formulation. As illustrated
in Section 4, the unconstrained MPC is designed to statis-
tically observe the output constraints. Thus, if point-wise-
in-time constraints are imposed, then one would expect
these constraints to be active only a small fraction of the
time, assuming the actual disturbance has characteristics
equal to the disturbance model.

The next step is to construct the soft constraint structure.
This begins by ranking the constraints by order of impor-
tance. The least important are those on the fuel cell ramp
rate. While a violation of these constraints will reduce cell
life, there is no safety or hardware limitation. The next
set are the constraints on the battery and supercapacitor
power. While there is a safety concern it is physically
possible to violate these constraints. The last set are those
for which the equipment dictates that a violation is impos-
sible. This includes fuel cell power and energy within the
storage devices. As such slack variables were defined only
for the fuel cell ramp rate and power of the two storage
devices (θ = [θ∆Pfc

θbat θsc]T ) and the soft constraint
weights were selected to reflect the relative importance of
each.

Unfortunately, simulation with this limited set of soft
constraints will eventually result in the MPC becoming
infeasible. This is due to the fact that the energy storage
limits cannot be softened. For example, if both the battery
and supercapacitor are out of energy, the fuel cell is will
unlikely be able to make up the difference. Similarly, if
both storage devices are full then regenerative braking
will be impossible. One option is to restructure the slack
variables. Specifically, the power balance is redefined as

Pmot = Pfc + Psc + Pbat + θunav − θfric (33)

where both, θunav and θfric, are required to be positive and
possess heavy linear weights in the objective function. The
impact is expected to be as follows. If the power request,
Pmot, is larger than the three devices can deliver due to
Esc and Ebat being zero, then θunav will become positive to
make the problem feasible. However, the operator will see
this as unavailable power in the amount θunav. Similarly,
if regenerative braking is active (Pmot < 0) and neither
of the two storage devices can take any more power, then
θfric will become active and send this power to the friction
brake.

Figures 6 illustrates the performance of constrained MPC.
Clearly the occurrence of constraint violations is virtually
eliminated. The exception is in the ∆Pfc direction where
we see significant utilization of the slack variable. The time
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series plots of Figure 7 gives a more detailed account of
the soft constraints. At 16.4 minutes the super-capacitor
reaches its maximum energy limit and Psc is forced to be
zero or positive. (Note that based on the definition of Psc,
a positive value indicates a discharging of the battery). At
the same time the ∆Pfc slack variable becomes active and
allows Pfc to quickly move to zero. At 17.2 minutes, both
storage devices reach their maximum energy limits and the
friction brake must become active.
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