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Abstract: We propose an algorithm for designing optimal inputs for on-line Bayesian identifi-
cation of stochastic non-linear state-space models. The proposed method relies on minimization
of the posterior Cramér Rao lower bound derived for the model parameters, with respect to the
input sequence. To render the optimization problem computationally tractable, the inputs are
parametrized as a multi-dimensional Markov chain in the input space. The proposed approach
is illustrated through a simulation example.

1. INTRODUCTION

Over the last decade, great progress has been made within
the statistics community in overcoming the computational
issues, and making Bayesian identification tractable for a
wide range of complicated models arising in demographic
and population studies, image processing, and drug re-
sponse modelling (Gilks et al. [1995]). A detailed expo-
sition of Bayesian identification methods can be found
in Kantas et al. [2009]. This paper is directed towards
the class of on-line methods for Bayesian identification
of stochastic non-linear SSMs, the procedure for which is
briefly introduced here first. Let {Xt}t∈N and {Yt}t∈N be
X (⊆ Rn) and Y(⊆ Rm) valued stochastic processes, and
let {ut}t∈N be the sequence of inputs in Rp, such that the
state {Xt}t∈N is an unobserved or unmeasured process,
with initial density pθ(x) and transition density pθ(x

′|x, u):
X0 ∼ pθ(x0);Xt+1|(xt, ut) ∼ pθ(xt+1|xt, ut) (t ∈ N). (1)
{Xt}t∈N is an unobserved process, but is observed through
{Yt}t∈N, such that {Yt}t∈N is conditionally independent
given {Xt, ut}t∈N, with marginal density pθ(y|x, u):

Yt|(xt, ut) ∼ pθ(yt|xt, ut) (t ∈ N). (2)

θ in (1) and (2) is a vector of unknown model parameters,
such that θ ∈ Θ is an open subset of Rq. All the densities
are with respect to suitable dominating measures, such as
Lebesgue measure. Although (1) and (2) represent a wide
class of non-linear time-series models, the model form and
the assumptions considered in this paper are given below

Xt+1 = ft(Xt, ut, θt, Vt); Yt = gt(Xt, ut, θt,Wt), (3)

where {θt+1 = θt}t∈N = θ is a vector of static parameters.

Assumption 1. {Vt}t∈N and {Wt}t∈N are mutually inde-
pendent sequences of independent random variables known
a priori in their distribution classes (e.g., Gaussian) and
parametrized by a known and finite number of moments.

Assumption 2. {ft; gt}t∈N are such that in the open sets
X and Θ, {ft; gt}t∈N is Ck(X ) and Ck(Θ), respectively, and

in Rp, {ft; gt}t∈N is Ck−1(Rp), and in Rn and Rm, {ft}t∈N
is Ck−1(Rn), and {gt}t∈N is Ck−1(Rm), where k ≥ 2.

Assumption 3. For any random sample (xt+1, xt, ut, θt, vt)
∈ X × X × Rp ×Θ× Rn and (yt, xt, ut, θt, wt) ∈ Y ×X ×
Rp × Θ × Rm satisfying (3), ∇vtf

T
t (xt, ut, θt, vt) and

∇wtg
T
t (xt, ut, θt, wt) have rank n and m, respectively, such

that using implicit function theorem, pθ(xt+1|xt, ut) =

p(Vt = f̃t(xt, ut, θt, xt+1)) and pθ(yt|xt, ut) = p(Wt =
g̃t(xt, ut, θt, yt)) do not involve any Dirac delta functions.

For a generic sequence {rt}t∈N, let ri:j , {ri, ri+1, . . . , rj}.
Let θ⋆ ∈ Θ ⊆ Rq be the true, but unknown parameter
vector generating a measurement sequence {Y1:t = y1:t}t∈N
given {u1:t}t∈N, such that Xt+1|(xt, ut) ∼ pθ⋆(xt+1|xt, ut)
and Yt|(xt, ut) ∼ pθ⋆(yt|xt, ut). In Bayesian identification
of (3), the problem of estimating the parameter vector
θ⋆ ∈ Θ ⊆ Rq in real-time, given a sequence of input-output
data {u1:t, y1:t}t∈N is formulated as a joint state and pa-
rameter estimation problem. This is done by ascribing a
prior density θ0 ∼ p(θ0), such that θ⋆ ∈ supp p(θ0), and

computing {p(zt|u1:t, y1:t)}t∈N, where: Zt , {Xt; θt} is a
Z(⊆ Rs=n+q) valued extended Markov process with Z0 ∼
pθ0(x0)p(θ0) and Zt|(zt−1, ut−1) ∼ pθt−1(xt|xt−1, ut−1)δθt−1

(θt). The inference on {θt}t∈N then relies on the marginal
posterior {p(θt|u1:t, y1:t)}t∈N. Note that by a judicious
choice of the input sequence {u1:t}t∈N, {p(zt|u1:t, y1:t)}t∈N
can be ‘steered’ in order to yield {p(θt|u1:t, y1:t)}t∈N, which
gives more accurate inference on {θt}t∈N. This is called the
input design problem for Bayesian identification or simply,
the Bayesian input design problem. A detailed review on
this subject can be found in Chaloner and Verdinelli [1995].

Bayesian input design for linear and non-linear regression
models is an active area of research (see Huan and Mar-
zouk [2012], Kück et al. [2006], Müller and Parmigiani
[1995] and references cited therein); however, its extension
to SSMs has been limited. Recently, Bayesian input design
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procedure for non-linear SSMs, where {Xt}t∈N is com-
pletely observed was developed by Tulsyan et al. [2012].
Despite the success with regression models, to the best
of authors’ knowledge, no known Bayesian input design
methods are available for identification of stochastic non-
linear SSMs. This is due to the unobserved state process
{Xt}t∈N, which makes the design problem difficult to solve.

This paper deals with the Bayesian input design for
identification of stochastic SSMs given in (3). The pro-
posed method is based on minimization of the posterior
Cramér-Rao lower bound (PCRLB), derived by Tichavský
et al. [1998]. First, we use Monte-Carlo (MC) methods
to obtain an approximation of the PCRLB, and then
parametrize the inputs as a multi-dimensional Markov
chain in Rp, to render the optimization problem computa-
tionally tractable. Markov-chain parametrization not only
allows to include amplitude constraints on the input, it can
be easily implemented using a standard PID controller or
any other regulator. The notation used here is given next.

Notation: N := {1, 2, . . . }; N0 := {0} ∪ N; Rs×s is the set
of real-valued s× s matrices of cardinality Card(Rs×s);
Ss ⊂ Rs×s is the space of symmetric matrices; Ss+ is the
cone of symmetric positive semi-definite matrices in Ss;
and Ss++ is its interior. The partial order on Ss induced
by Ss+ and Ss++ are denoted by < and ≻, respectively.
Fs×s ⊂ Rs×s is the set of s × s stochastic matrix, where
F := [0, 1] and the sum of each row adds up to 1. For
A ∈ Rs×s, Tr[A] denotes its trace. For vectors x ∈ Rp,
y ∈ Rp, and z ∈ Rp, x ≤ y ≤ z denotes element-wise
inequality, and diag(y) ∈ Sp is a p × p diagonal matrix
with elements of y ∈ Rp as its diagonal entries. Finally,
∆y

x , ∇x∇T
y is a Laplacian and ∇x ,

[
∂
∂x

]
is a gradient.

2. PROBLEM FORMULATION

Bayesian input design for regression models is a well
studied problem in statistics (Chaloner and Verdinelli
[1995]); wherein, the problem is often formulated as follows

ψ(u⋆1:N ) = max
u1:N∈RpN

N∑
t=1

Ep(θt,y1:t|u1:t)[ψ(Y1:t, u1:t, θt)] (4)

where {u⋆1:N}N∈N is an N -step ahead optimal input se-
quence, and ψ(·) is a utility function. When inference on
{θt}t∈N is of interest, Lindley [1956] suggested using the
mean-square error (MSE) as a utility function, such that

ψ(u⋆1:N ) = max
u1:N∈RpN

N∑
t=1

−Φ(P θ
t|t(u1:t)), (5)

where P θ
t|t(u1:t) = Ep(θt,y1:t|u1:t)[(θt − θt|t)(θt − θt|t)T ] is the

MSE associated with the parameter estimate given by
θt|t = Ep(θt|u1:t,y1:t)[θt], and Φ : Sq++ → R is a test function.

Remark 4. For the model considered in (3), the marginal
posterior density {p(θt|u1:t, y1:t)}t∈N, or the expectation
with respect to it, does not admit any analytical solution,
and thus, (5) cannot be computed in closed form. 2

Remark 5. Methods such as SMC and MCMC can be used
to approximate {p(θt|u1:t, y1:t)}t∈N; however, it makes the
computation in (5) formidable (Kück et al. [2006]). More-
over, the input {u⋆1:N}N∈N is optimal only for the Bayesian
estimator used to approximate {p(θt|u1:t, y1:t)}t∈N. 2

To address the issues in Remarks 4 and 5, we propose to
define a lower bound on the MSE first, and minimize the
lower bound instead. The PCRLB, derived by Tichavský
et al. [1998] provides a lower bound on the MSE associated
with the estimation of {Zt}t∈N from {p(zt|u1:t, y1:t)}t∈N,
and is given in the next lemma.

Lemma 6. Let {Y1:t = y1:t}t∈N be an output sequence gen-
erated from (3) using {u1:t}t∈N, then the MSE associated
with the estimation of {Zt}t∈N from {p(zt|u1:t, y1:t)}t∈N is
bounded from below by the following matrix inequality

P z
t|t , Ep(zt,y1:t|u1:t)[(Zt−Zt|t)(Zt−Zt|t)

T ] < [Jz
t ]

−1, (6)

where: Zt|t = Ep(zt|u1:t,y1:t)[Zt] is an estimate of {Zt}t∈N;

P z
t|t ,

[
P x
t|t P xθ

t|t
(P xθ

t|t )
T P θ

t|t

]
∈ Ss++, J

z
t ,

[
Jx
t Jxθ

t

(Jxθ
t )T Jθ

t

]
∈ Ss++,

[Jz
t ]

−1 ,
[

Lx
t Lxθ

t

(Lxθ
t )T Lθ

t

]
∈ Ss++ are the MSE, posterior in-

formation matrix (PIM), and PCRLB, respectively.

Proof. See Tichavský et al. [1998] for proof. 2

Lemma 7. A recursive approach to compute {Jz
t }t∈N for

(3) under Assumptions 1 through 3 is given as follows

Jx
t+1 = H33

t − (H13
t )T [Jx

t +H11
t ]−1H13

t ; (7a)

Jxθ
t+1 = (H23

t )T − (H13
t )T [Jx

t +H11
t ]−1(Jxθ

t +H12
t ); (7b)

Jθ
t+1 = Jθ

t +H22
t − (Jxθ

t +H12
t )T [Jx

t +H11
t ]−1

× (Jxθ
t +H12

t ), (7c)

where:

H11
t = Ep̃t+1 [−∆

Xt

Xt
log pt]; (8a)

H12
t = Ep̃t+1 [−∆

θt
Xt

log pt]; (8b)

H13
t = Ep̃t+1 [−∆

Xt+1

Xt
log pt]; (8c)

H22
t = Ep̃t+1 [−∆

θt
θt
log pt]; (8d)

H23
t = Ep̃t+1 [−∆

Xt+1

θt
log pt]; (8e)

H33
t = Ep̃t+1 [−∆

Xt+1

Xt+1
log pt]; (8f)

p̃t+1 = p(x0:t+1, θt, y1:t+1|u1:t+1), and pt = p(Xt+1|Zt, ut)

p(Yt+1|θt, Xt+1, ut+1); and J0 = Ep(z0)[−∆
Z0

Z0
log p(Z0)].

Proof. See Tichavský et al. [1998] for proof. 2

Corollary 8. Let P z
t|t ∈ S

s
++, [Jz

t ]
−1 ∈ Ss++ be such that

they satisfy (6), then the MSE associated with the point
estimation of {θt}t∈N, computed from {p(θt|u1:t, y1:t)}t∈N,
is bounded from below by the following matrix inequality

P θ
t|t = Ep(θt,y1:t|u1:t)[(θt − θt|t)(θt − θt|t)

T ] < Lθ
t , (9)

where Lθ
t ∈ S

q
++ is the lower-right sub-matrix of [Jz

t ]
−1 ∈

Ss++ in (6).

Proof. The proof is based on the fact that the PCRLB
inequality in (6) guarantees that P z

t|t− [Jz
t ]

−1 ∈ Ss+. 2

Theorem 9. Let Jz
t ∈ Ss++ be the PIM for model in (3)

and Lθ
t ∈ S

q
++ be the lower bound on the MSE associated

with the estimation of {θt}t∈N in (3), then given Jz
t ∈ Ss++,

the lower bound Lθ
t ∈ S

q
++ at t ∈ N can be computed as

Lθ
t = [Jθ

t − (Jxθ
t )T (Jx

t )
−1Jxθ

t ]−1, (10)

where Jθ
t , J

xθ
t and Jx

t are the PIMs given in Lemma 7.

Proof. The proof is based on the matrix inversion lemma
(see R.B. Bapat and T.E.S. Raghavan [1997]). 2
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Finally, the input design problem for Bayesian identifica-
tion of {θt}t∈N in (3) can be formulated as follows

ψ(u⋆1:N ) = min
u1:N∈RpN

N∑
t=1

Φ(Lθ
t (u1:t)) (11a)

s.t. umin ≤ {ui}t∈[1,N ] ≤ umax, (11b)

where Lθ
t (u1:t) , Lθ

t ; and umax ∈ Rp and umin ∈ Rp are
the maximum and minimum magnitude of the input.

Remark 10. The optimization problem in (11) allows to
impose magnitude constraints on the inputs. Although
constraints on (x0:N ) ∈ XN+1 and (y1:N ) ∈ YN are not in-
cluded, but if required, they can also be appended. 2

Remark 11. Integral in (8), with respect to p̃t, makes (11)
independent of the random realizations from X t+1, Θ, and
Yt. The optimization in (11) in fact only depends on: the
process dynamics represented in (3); noise densities Vt ∼
p(vt) and Wt ∼ p(wt); and the choice of Z0 ∼ p(z0) and
u1:N ∈ RpN . This makes (11) independent of θ⋆ ∈ Θ ⊆ Rq

or the Bayesian estimator used for estimating {θt}t∈N. 2

Remark 12. The formulation in (11) yields a sequence
{u⋆1:N}N∈N, which is (a) optimal for all the Bayesian iden-
tification methods that approximate {p(θt|u⋆1:t, y1:t)}t∈N;
and (b) independent of θ⋆ ∈ Rq (see Remark 11), such that
the input {u⋆1:N}N∈N is optimal for all θ⋆ ∈ supp p(θ0). 2

There are two challenges that need to be addressed in
order to make the optimization problem in (11) tractable:
(a) computing the lower bound {Lθ

t}t∈N; and (b) solving
the high-dimensional optimization problem in RpN . Our
approach to address the above challenges is discussed next.

3. COMPUTING THE LOWER BOUND

The first challenge is to compute the lower bound Lθ
t in

(11). It is well known that computing Lθ
t in closed form

is non-trivial for the model form considered in (3) (see
Tichavský et al. [1998], Bergman [2001]). This is because
of the complex, high-dimensional integrals in (8a) through
(8f), which do not admit any analytical solution.

MC sampling is a popular numerical method to solve
integrals of the form F (u1:t) = Ep(x0:t|u1:t)[h(X0:t, u1:t)],

where h : X t+1 × Rpt → R. Using M i.i.d. trajectories
{Xi

0:t|u1:t}Mi=1 ∼ p(x0:t|u1:t), the probability distribution

p(x0:t|u1:t)dx0:t , p(dx0:t|u1:t), can be approximated as

p̃(dx0:t|u1:t) =
1

M

M∑
i=1

δXi
0:t|u1:t

(dx0:t), (12)

where p̃(dx) is a MC estimate of p(dx) and δx0(dx) is
the Dirac delta mass at x0. Finally, substituting (12)

into F (u1:t), we get F̃ (u1:t) , F̃ ({Xi
0:t|u1:t}Mi=1) =∫

h(x0:t, u1:t)p̃(dx0:t|u1:t) = 1
M

∑M
i=1 h(X

i
0:t, u1:t), where

F̃ (u1:t) is an M -sample MC estimate of F (u1:t).

Remark 13. Using MC methods, the multi-dimensional
integrals in (8a) through (8f), with respect to the density
p̃t(·) can be approximated by simulating M i.i.d. sample
paths {Xi

0:t, θ
i
t, Y

i
1:t|u1:t}Mi=1 ∼ p̃t(·) using (3), starting at

M i.i.d. initial positions drawn from {Zi
0}Mi=1 ∼ p(z0).

Example 14. Consider the following stochastic SSM with
additive Gaussian state and measurement noise

Xt+1 = ft(Xt, θt, ut) + Vt, (13a)

Yt = gt(Xt, θt, ut) +Wt, (13b)

where {Vt}t∈N and {Wt}t∈N are mutually independent
sequences of independent zero mean Gaussian random
variables, such that Vt ∼ N (0, Qt) and Wt ∼ N (0, Rt),
where Qt <∞ and Rt <∞ for all t ∈ N.

Note that for the model form considered in Example 14,
using the Markov property of the states and conditional
independence of the measurements, the dimension of the
integrals in (8a) through (8f) can be reduced, as given next.

Theorem 15. For a stochastic non-linear SSM in Example
14, the matrices in (8a) through (8f) can be written as

H11
t = Ep(xt,θt|u1:t+1)[∇Xtf

T
t (Xt, θt, ut)]Q

−1
t

× [∇Xtf
T
t (Xt, θt, ut)]

T ; (14a)

H12
t = Ep(xt,θt|u1:t+1)[∇Xtf

T
t (Xt, θt, ut)]Q

−1
t

× [∇θtf
T
t (Xt, θt, ut)]

T ; (14b)

H13
t = −Ep(xt,θt|u1:t+1)[∇Xtf

T
t (Xt, θt, ut)]Q

−1
t ; (14c)

H22
t = Ep(xt,θt|u1:t+1)[∇θtf

T
t (Xt, θt, ut)]Q

−1
t

× [∇θtf
T
t (Xt, θt, ut)]

T

+ Ep(xt+1,θt|u1:t+1)[∇θtg
T
t (Xt+1, θt, ut+1)]R

−1
t+1

× [∇θtg
T
t (Xt+1, θt, ut+1)]

T (14d)

H23
t = −Ep(xt,θt|u1:t+1)[∇θtf

T
t (Xt, θt, ut)]Q

−1
t

+ Ep(xt+1,θt|u1:t+1)[∇θtg
T
t (Xt+1, θt, ut+1)]R

−1
t+1

× [∇Xt+1g
T
t (Xt+1, θt, ut+1)]

T (14e)

H33
t = Q−1

t + Ep(xt+1,θt|u1:t+1)[∇Xt+1g
T
t (Xt+1, θt, ut+1)]

×R−1
t+1[∇Xt+1g

T
t (Xt+1, θt, ut+1)]

T (14f)

Proof. (14a): First note that H11
t = Ep̃t+1 [−∆

Xt

Xt
log pt] =

Ep̃t+1 [∇Xt log pt][∇Xt log pt]
T (see Tichavský et al. [1998]).

On simplifying, we haveH11
t = Ep(xt+1|xt,θt,ut)p(xt,θt|u1:t+1)

[∇Xt log p(Xt+1|Xt, θt, ut)][∇Xt log p(Xt+1|Xt, θt, ut)]
T .

This is due to ∇Xt log p(Yt+1|Xt+1, θt, ut+1) = 0. For Ex-
ample 14, ∇Xt log p(Xt+1|Xt, θt, ut) = [∇Xtf

T
t (Xt, θt, ut)]

Q−1
t [Xt+1 − ft(Xt, θt, ut)]

T . Substituting it into H11
t ,

and using Ep(xt+1|xt,θt,ut)[Xt+1 − ft(Xt, θt, ut)][Xt+1 −
ft(Xt, θt, ut)]

T = Qt, we have (14a). Note that the expres-
sion in (14b) through (14f) can be similarly derived. 2

Theorem 15 reduces the dimension of the integral in (8)
for Example 14 from (t + 1)(n +m) + s to s. Using MC

sampling, (14a), for instance, can be computed as H̃11
t =

1
M

∑M
i=1[∇Xtf

T (Xi
t , θ

i
t, ut)]Q

−1
t [∇Xtf

T (Xi
t , θ

i
t, ut)]

T . Here

{Xi
t , θ

i
t|u1:t+1}Mi=1 ∼ p(xt, θt|u1:t+1) and H̃11

t is an M -
sample MC estimate of H11

t . Note that the MC estimates
of (14b) through (14f) can be similarly computed. In gen-
eral, substituting the MC estimates of (8a) through (8f)
first into Lemma 7, and then into Theorem 9, yields

L̃θ
t = [J̃θ

t − (J̃xθ
t )T (J̃x

t )
−1J̃xθ

t ]−1, (15)

where L̃θ
t is an estimate of Lθ

t , and J̃
θ
t , J̃

xθ
t and J̃x

t are the
estimates of the PIMs in Lemma 7. Finally, substituting
(15) into (11) gives the following optimization problem
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ψ̃(u⋆1:N ) = min
u1:N∈RpN

N∑
t=1

Φ(L̃θ
t (u1:t)) (16a)

s.t. umin ≤ {ui}t∈[1,N ] ≤ umax. (16b)

Theorem 16. Let ψ(u⋆1:N ) and ψ̃(u⋆1:N ) be the optimal
utility functions, computed by solving the optimization
problem in (11) and (16), respectively, then we have

ψ̃(u⋆1:N )
a.s.−−−−−→

M→+∞
ψ(u⋆1:N ), (17)

where
a.s.−−→ denotes almost sure convergence.

Proof. Since (15) is based on perfect MC sampling, using

the strong law of large numbers, we have L̃θ
t

a.s.−−→ Lθ
t as

M → +∞. Equation (17) follows from this result, which
completes the proof. 2

A natural approach to solve (16) is to treat {u1:N}N∈N as
a vector of continuous variables in RpN ; however, this will
render (16) computationally inefficient for large N ∈ N. A
relaxation method to make (16) tractable is given next.

4. INPUT PARAMETRIZATION

To overcome the complications due to continuous valued
input {ut}t∈N ∈ Rp, we discretize the input space from
Rp to U ⊆ Rp, such that Card(U) = r, where r = bp, and
b ∈ N is the number of discrete values for each input in R.
If we denote U = {s1, . . . , sr}, then umin ≤ si ≤ umax, for
all 1 ≤ i ≤ r, such that (16) can be written as follows

ψ̃(u⋆1:N ) = min
u1:N∈UN

N∑
t=1

Φ(L̃θ
t (u1:t)). (18)

Note that although the input {u1:N}N∈N in (18) is defined
on a discrete input space UN of Card(UN ) = rN , (18)
is still intractable for large N ∈ N. To address this issue,
a multi-dimensional Markov chain input parametrization,
first proposed by Brighenti et al. [2009], is used here.

Definition 17. For k ∈ N0 and S := {k + 1, k + 2, · · · }, let
{Ut}t∈S = {ut−k:t}k∈N0 be a Uk+1 valued first-order finite
Markov chain, where Card(Uk+1) = rk+1, such that the
sample values of {Ut}k∈N0,t∈S\{k+1} ∈ Uk+1, depend on
the past only through the sample values of {Ut−1}t−1∈S ∈
Uk+1, such that for all {Ut}k∈N0,t∈S\{k+1} ∈ Uk+1 and

{Uk+1:t−1}k∈N0,t−1∈S ∈ U t−1, we have the following

Pr(Ut = {ut−k:t}|Uk:t−1 = {u1:t−1}) =
PΠ(Ut = {ut−k:t}|Ut−1 = {ut−k−1:t−1}), (19)

where Pr(·) is a probability measure and PΠ ∈ Frk+1×rk+1

is a rk+1×rk+1 probability transition matrix. 2

In Definition 17, PΠ(Ut = s2)|Ut−1 = s1), where {s1, s2}
∈ Uk+1 represents the probability that the Markov chain
transits from {Ut−1}k∈N0,t−1∈S = s1 to the input state
{Ut}k∈N0,t∈S\{k+1} = s2. Consider the following example.

Example 18. For p = 1, k = 0, and b ∈ N, we have r = b
and S = N, such that {Ut}t∈S = {ut} is a Markov chain on
the input space U = {s1, s2, . . . , sb} of Card(U) = b, then
the probability matrix PΠ ∈ Fb×b can be represented as

PΠ =


ps1,s1 ps1,s2 · · · ps1,sb
ps2,s1 ps2,s2 · · · ps2,sb

...
...

...
psb,s1 psb,s2 · · · psb,sb

 ,

where psi,sj , PΠ(Ut = sj)|Ut−1 = si) ∀1 ≤ i, j ≤ b.
Example 19. For p = 1, k = 1, and b ∈ N, we have r = b
and S = N \ {1}, such that {Ut}t∈S = {ut−1:t} is a Markov
chain on U2 = {{s1, s1}, {s1, s2}, . . . , {s2, s1}, . . . , {sb, sb}}
of Card(U2) = b2 then PΠ ∈ Fb2×b2

can be represented as

PΠ =



p{s1,s1},{s1,s1} p{s1,s1},{s1,s2} · · · p{s1,s1},{sb,sb}
p{s1,s2},{s1,s1} p{s1,s2},{s1,s2} · · · p{s1,s2},{sb,sb}

...
...

...
p{s1,sg},{s1,s1} p{s1,sg},{s1,s2} · · · p{s1,sg},{sg,sg}
p{s2,s1},{s1,s1} p{s2,s1},{s1,s2} · · · p{s2,s1},{sg,sg}

...
...

...
...

...
...

p{sg,sg},{s1,s1} p{sg,sg},{s1,s2} · · · p{sg,sg},{sg,sg}


.

where p{si,sj},{sl,sm} , PΠ(Ut = {si, sj})|Ut−1 = {sl, sm})
∀1 ≤ i, j, l,m ≤ b.
Assumption 20. The Markov chain {Ut}t∈S = {ut−k:t}k∈N0

considered in Definition 17 is time-homogeneous.

Assumption 21. The Markov chain {Ut}t∈S = {ut−k:t}k∈N0

in Definition 17 has a prior probability distribution
Uk+1 ∼ PΓ({u1:k+1}), where PΓ is a 1× rk+1 vector.

Theorem 22. For k ∈ N0 and S := {k + 1, k + 2, · · · }, let
{Ut}t∈S = {ut−k:t}k∈N0 be a Markov chain defined in
Definition 17, and satisfying Assumptions 20 and 21,
such that Ut|({ut−k−1:t−1}) ∼ PΠ({u1:k+1}|{ut−k−1:t−1})
for all t ∈ S \ {k + 1} and Uk+1 ∼ PΓ({u1:k+1}) then

{Uk+1:N}N∈N ∼ P k+1:N
Γ,Π has a probability distribution

PΓ({u1:k+1})
N∏

t=k+2

PΠ({ut−k:t}|{ut−k−1:t−1}). (20)

Proof. Using probability chain rule, the joint probability
distribution of Uk+1:N ∼ P k+1:N

Γ,Π can be written as

P k+1:N
Γ,Π = Pr({u1:k+1}, {u2:k+2}, . . . , {uN−k:N})
= Pr({uN−k:N}|{u1:k+1}, {u2:k+2}, . . . , {uN−k−1:N−1})
× Pr({u1:k+1}, {u2:k+2}, . . . , {uN−k−1:N−1}), (21a)

= PΠk,r
({uN−k:N}|{uN−k−1:N−1})

× Pr({u1:k+1}, {u2:k+2}, . . . , {uN−k−1:N−1}), (21b)

where in (21b), we have used the first-order Markov prop-
erty of {Ut}t∈S. Noting the time-homogeneous property of
{Ut}t∈S and repeatedly appealing to the probability chain
rule in (21b), we get (20). This completes the proof. 2

Remark 23. From Theorem 22, it is clear that: (i) the sam-
ple values of the random variables {Uk+1:N}k∈N0,N∈N is
an ordered sequence constructed from {u1:N}N∈N; (ii) the
probability distribution of the sequence {Uk+1:N}k∈N0,N∈N
given in (20) is uniquely defined by PΠ and PΓ.

Using Definition 17 and Theorem 22, (18) can be refor-
mulated to the following stochastic programming problem

ψ̃(U⋆
k+1:N ) = argmin

PΠ,PΓ

{
k+1∑
t=1

Φ(EPΓ [L̃
θ
t ({Uk+1)])+

N∑
t=k+2

Φ(EPk+1:t
Γ,Π

[L̃θ
t (Uk+1:t)])

}
(22a)

s.t. 0 ≤ PΠ(si|sj) ≤ 1 ∀ 1 ≤ i, j ≤ rk+1, (22b)
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rk+1∑
i=1

PΠ(si|sj) = 1 ∀ 1 ≤ j ≤ rk+1, (22c)

0 ≤ PΓ(si) ≤ 1 ∀ 1 ≤ i ≤ rk+1, (22d)

rk+1∑
i=1

PΓ(si) = 1. (22e)

The expectations in (22a), with respect to PΓ and P k+1:t
Γ,Π

can again be approximated using MC sampling, such that

P̃ k+1:t
Γ,Π =

1

Mu

Mu∑
i=1

δUi
k+1:t

(Uk+1:t) (23)

where P̃ k+1:t
Γ,Π is the Mu-sample MC estimate. Note that

marginalizing (23) with respect to {Uk+2:N}k∈N0,N∈N

yields P̃Γ = 1
Mu

∑Mu

i=1 δUi
k+1

(Uk+1), where P̃Γ is a MC es-

timate of PΓ. Substituting P̃
k+1:t
Γ,Π and P̃Γ into (22a) yields

ψ(U⋆
k+1:N ) = argmin

PΠ,PΓ

1

Mu

{
k+1∑
t=1

Φ

(
Mu∑
i=1

L̃θ
t (U

i
k+1)

)
+

N∑
t=k+2

Φ

(
Mu∑
i=1

L̃θ
t (U

i
k+1:t)

)}
(24a)

s.t. 0 ≤ PΠ(si|sj) ≤ 1 ∀ 1 ≤ i, j ≤ rk+1, (24b)

rk+1∑
i=1

PΠ(si|sj) = 1 ∀ 1 ≤ j ≤ rk+1, (24c)

0 ≤ PΓ(si) ≤ 1 ∀ 1 ≤ i ≤ rk+1, (24d)

rk+1∑
i=1

PΓ(si) = 1. (24e)

Note that solving (24), yields U⋆
k+1:N ∼ P

k+1:N
Γ⋆,Π⋆ , which is

the optimal distribution of the input sequence.

Corollary 24. Let ψ(U⋆
k+1:N ) and ψ̃(U⋆

k+1:N ) be the opti-
mal utility functions, computed by solving the optimiza-
tion problem in (22a) and (24a), respectively, then

ψ(U⋆
k+1:N )

a.s.−−−−−−→
Mu→+∞

ψ̃(U⋆
k+1:N ), (25)

where
a.s.−−→ denotes almost sure convergence.

Proof. Proof is similar to Theorem 16. 2

Remark 25. There are several advantages of using the for-
mulation given in (24): (a) the optimization is independent
of N ∈ N, as the number of parameters to be estimated
are rk+1(1 + rk+1); (b) easy to include magnitude and
other transition constraints on the inputs; and (c) samples
from the optimal distribution can be easily sampled, and
implemented using a PID or any classical regulator. 2

In this paper, the optimization problem in (24) is imple-
mented through an iterative approach, that involves stan-
dard numerical solvers (Nocedal and Wright [2006]). The
proposed method for input design, including the iterations
in the optimization, is summarized in Algorithm 1.

5. SIMULATION EXAMPLE

Consider a process described by the following univariate,
and non-stationary stochastic SSM (Tulsyan et al. [2013b])

Algorithm 1 Bayesian input design for identification

1: Choose an initial value for the input design parameters

PΓ = P
(0)
Γ and PΠ = P

(0)
Π . Set c← 0.

2: while converged do
3: for i = 1 to Mu do
4: Generate a random input sequence U i

k+1:N ∼
P k+1:N
Γ,Π using the distribution given in (20).

5: GenerateM random samples of states and param-
eters from the prior density {Zj

0}Mj=1 ∼ p(z0).
6: for t = 1 to N do
7: Generate M random samples of the process

states {Xj
t |(z

j
t−1, u

i
t−1)}Mj=1 ∼ p(xt|zjt−1, u

i
t−1)

and parameters {θjt = θjt−1}Mj=1 using (3).
8: Generate M random samples of the measure-

ments {Y j
t |(z

j
t , u

i
t)}Mj=1 ∼ p(yt|z

j
t , u

i
t) using (3).

9: Approximate the lower bound L̃θ
t using (15).

10: end for
11: end for
12: Evaluate the approximate cost function in (24a).
13: Use any standard constrained non-linear optimiza-

tion algorithm to find a new input design parameters

PΓ = P
(c)
Γ and PΠ = P

(c)
Π . Set c← c+ 1.

14: end while

Xt+1 = aXt +
Xt

b+X2
t

+ ut + Vt, Vt ∼ N (0, Qt), (26a)

Yt = cXt + dX2
t +Wt, Wt ∼ N (0, Rt), (26b)

where θ , [a b c d] is a vector of model parameters to be es-
timated, with θ⋆ = [0.8 0.7 0.6 0.5] being the true parame-
ter vector. The noise covariances are selected as Qt = 0.01
and Rt = 0.01, for all t ∈ N. For Bayesian identification,
{θt = θt−1}t∈N = θ in (24) is a random process, with
Zt = {Xt, θt}, such that Z0 ∼ N (zm, zc), where zm =
[1 0.7 0.6 0.5 0.4], zc = diag(0.01, 0.01, 0.01, 0.01, 0.01).
Here we assume that umin ≤ {ut}t∈N ≤ umax, where
umin = −0.8 and umax = 0.8. Starting at t = 0, we are
interested in choosing an input sequence {u1:N}N∈N that
would eventually lead to minimization of the MSE of
the parameter estimates, computed using an SMC based
Bayesian estimator given in Tulsyan et al. [2013a]. Al-
gorithm 1 was implemented with N = 100, M = 2000,
and Mu = 2000. For input, we consider Example 18, with
g = 2, such that U = {umin, umax}. Here {Ut}t∈N = {ut}
have the following initial and transition probability

Case 1: PΓ = [p1 1− p1], PΠ =

[
p1 1− p1

1− p1 p1

]
;

Case 2: PΓ = [p1 1− p1], PΠ =

[
p1 1− p1

1− p2 p2

]
;

Case 3: PΓ = [p0 1− p0], PΠ =

[
p1 1− p1

1− p2 p2

]
,

where pi, where i = {0, 1, 2} in Cases 1 through 3 are the
probabilities. For comparison purposes, we also consider a
pseudo-random binary signal, which can be represented as

Case 4: PΓ = [0.5 0.5], PΠ =

[
0.5 0.5
0.5 0.5

]
.

For all of the above cases, Φ(·) in (24a) was selected as
the trace. Table 1 gives PΓ⋆ and PΠ⋆ for Cases 1 through
3 as computed by Algorithm 1, and Figure 1(a) gives the
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Fig. 1. (a) Trace of the approximate lower bound; (b) trace of the
MSE. Magnification of the key region of (a) is provided as inset.

corresponding trace of the lower bound. It is clear from
Table 1 and Figure 1(a) that Case 3 yields the lowest
objective function value. Although the objective function
value for Case 2 is comparable to Case 3, note that Case 3
provides the most general form of the Markov chain in U .
Figure 1(b) validates the quality of the designed inputs
based on the performance of the Bayesian estimator. From
Figure 1(b), it is clear that with Case 3, the estimator
yields the lowest trace of MSE at all sampling time. The
same is also evident from Table 1; wherein, the sum of
the trace of MSE is smallest with Case 3 as the input.
The Results are based on 500 MC simulations, starting
with 500 i.i.d. input path trajectories generated from
{U1:N} ∼ P 1:N

Γ⋆,Π⋆ for Cases 1 through 4. If required, a more
rigorous validation of the designed input can be performed
using the approach proposed in Tulsyan et al. [2013b].

The results appear promising; however, we faced problems
in solving the optimization. As discussed earlier, (24) is a
stochastic programming problem, as a result (24a) tends
to be non-smooth, and have many local minima. In future,
we will consider use of stochastic gradient-based methods.

Table 1. Results as computed by Algorithm 1.

Case 1 Case 2 Case 3 Case 4

p0 N.A. N.A. 0.34 N.A.
p1 0.62 0.63 0.61 N.A.
p2 N.A. 0.92 0.72 N.A.

ψ(U⋆
1:100) 0.42 0.37 0.36 0.51∑100

t=1
Tr[P θ

t|t] 1.66 1.27 1.25 2.02

6. CONCLUSIONS

An algorithm for input design for Bayesian identification
of stochastic non-linear SSM is proposed. The developed
algorithm is based on minimization of the PCRLB with
respect to inputs. One of the distinct advantages of the
proposed method is that the designed input is independent

of the Bayesian estimator used for identification. Simula-
tion results suggest that the proposed method can be used
to deliver accurate inference on the parameter estimates.
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