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Abstract: We present an algorithm for projective integration that is computationally efficient
for integrating systems of differential equations with multiple time-scales. Adaptive projective
integration is a technique that uses a few inner integration steps to generate data to fit to
a local reduced-order model. This reduced-order model is then used to extrapolate forward
in time to estimate the states at some future time. This inner-outer integration is iterated
until the desired integration is complete. The method uses an adaptive projective horizon to
control for error generation during the integration. By examining an example Brusselator system,
consisting of three non-linear differential equations, we show two orders of magnitude savings
in computational time using adaptive projective integration over explicit Euler’s method.
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1. INTRODUCTION

Large systems of non-linear differential equations are typ-
ically very computationally expensive to solve. This ex-
pense often precludes further analysis such as optimization
or fixed point identification. Stiff differential equations are
particularly expensive to solve as they demand stringent
conditions to be met for numerical stability. Stiffness arises
when the differential equations describe both fast and slow
dynamics and frequently occur in chemical process systems
due to chemical reactor kinetics and recycle streams (Vora
and Daoutidis, 2001; Baldea and Daoutidis, 2007). Proper
exploitation of multiple time-scales in process systems has
led to efficient control strategies, such as adaptive control,
that stems from the use of reduced-order models (Saksena
et al., 1984).

Projective integration is a computationally efficient method
for solving differential equations with both fast and slow
dynamics. Projective integration works by utilizing two
coupled integration methods with very different integra-
tion time steps. An inner integration is performed at small
time steps to damp out fast dynamics. After a few inner
integration steps an extrapolation is made over a large
number of time steps which serves as the outer integration
over the slow dynamics. This process is then repeated
until the desired integration is completed (Kevrekidis and
Samaey, 2009). Projective integration is a particularly
efficient method to integrate stiff differential equations
because it avoids costly implicit integration methods (Gear
and Kevrekidis, 2003). Efficient integration of stiff dif-
ferential equations represents just one example of the
accelerating power of this method. Additional examples
include accelerating stochastic simulation of nematic liquid
crystals (Siettos et al., 2003), accelerating kinetic Monte
Carlo simulations of adsorption onto a metal substrate
(Rico-Mart́ınez et al., 2004), and projective integration

over space and time for accelerating the integration of
partial differential equation (Kevrekidis et al., 2003).

In this paper we present a projective integration scheme
that uses an adaptive projection horizon to control the
error generated. We employ a affine model 1 to make
optimal predictions for the outer integration. By applying
this additional structure, important properties such as
stability and prediction error can be estimated and the
projection horizon can be adjusted to balance the trade-
off between acceleration and accuracy. Related work in
adaptive control has led to a number of stable and robust
algorithms for extended-horizon adaptive control (Ydstie
et al., 1985, 1988). In the following sections we outline the
algorithm for adaptive projective integration and show two
test problems to show the utility of our approach. The first
test problem examines a stiff system called the Brusselator
that models a chemical reaction with oscillating states.
Adaptive projective integration can integrate the Brusse-
lator test problem two orders of magnitude faster than
using explicit Euler’s method. The second test problem is
a stochastic simulation of DNA electrophoresis through a
microfabriacted obstacle course. Adaptive projective inte-
gration is only able to make modest improvements in CPU
time for the DNA simulation problem.

2. ADAPTIVE PROJECTIVE INTEGRATION

This section describes the algorithm for adaptive projec-
tive integration. The system to be integrated contains both
fast and slow dynamics represented by

dx

dt
= g1(x, t) +

1

ε
g2(x, t) (1)

1 An affine function has the form y = Ax + b where A is a matrix
and b is a vector.
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where x ∈ Rn and ε is a small number which indicates that
the first term in the differential equation describes slow
dynamics and the second term describes fast dynamics.
Projective integration uses a detailed inner integration to
damp out the fast dynamics and then uses an outer inte-
gration to extrapolate over a long time horizon (Gear and
Kevrekidis, 2003). One such inner integration is explicit
Euler’s method with an integration time step, δt, at least
as small as ε

xk+1 = xk + δt g1(xk, tk) +
δt

ε
g2(xk, tk) (2)

which can be more simply written as xk+1 = f(xk) if we
include tk as a state variable. Because the integration time
step, δt, is required to be small for numerical stability,
integrating xk+1 = f(xk) to a long time horizon can
be prohibitively expensive depending on the size and
structure of f(x). The Projective integration technique
therefore integrates a small number of steps, then it fits an
affine function to the simulation data, and finally it makes
a long time horizon projection. This affine approximation
of the system f(x) takes on the form

yk+1 = Ayk + a0 + ek (3)

where yk = xk, yk+1 ≈ xk+1, A is a constant matrix where
the entries are found by the method of least-squares, a0 is
a vector also fit using least-squares, and ek contains the
fitting errors. A projection N steps into the future can be
made using

yk+N = ANyk +
N−1∑
i=0

Ai (a0 + ek+N−1−i) (4)

where the future errors ek+1, ek+2, . . . , ek+N−1 are un-
known. In order to make the projection, we assume that
the error is time-invariant so that e = ek ≈ ek+1 ≈ . . . ≈
ek+N−1. Using the identity for a geometric series we arrive
at

yk+N = ANyk + (a0 + e) (I −A)
−1 (

I −AN
)

(5)

where the term e (I −A)
−1 (

I −AN
)

is the estimate of the
error xk+N − yk+N .

Eq. (5) serves as the outer integration in the projective
integration method. Once the projection yk+N is made
using Eq. (5) the inner integration is restarted taking
xk+N = yk+N . Because the system f is approximated
by the affine function (3) in order to make the long
time horizon projections, the projections introduce some
additional integration error beyond the discretization error
associated with Euler’s method. Before we summarize the
projective integration method in an algorithm we will
first outline theorem 1 which is used to determine the
projection horizon as a function of the user specified error
tolerance.

Theorem 1. Let κe be the user specified error tolerance
and λmax = maxi{|λi|} where λi is an eigenvalue of the
matrix A in Eq. (3). The projection horizon N is bounded
by

N ≤ log (κλmax − κ+ 1)

log (λmax)
(6)

so that the outer integration (5) does not introduce more
error than κe.

Proof. A bound on the projection horizon N can be
derived from bounding the projection error estimate by

eκI in Eq. (5) which requires

κI − (I −A)
−1 (

I −AN
)
≥ 0 (7)

where M ≥ 0 means M is positive-semidefinite. If the
matrix A in (5) is stable then (I −A) ≥ 0 and N can be
arbitrarily large, otherwise condition (7) is premultiplied
by (I −A) to yield

(κ− 1) I − κA+AN ≤ 0 (8)

using (I −A) < 0. The matrix A can then be diagonalized,
A = PDP−1, where Dii = λi, Dij = 0, to yield

(κ− 1) I − κD +DN ≤ 0. (9)

The maximum absolute eigenvalue λmax = max{|λi|}must
then satisfy the condition

κ− 1− κλmax + λNmax ≤ 0 (10)

which can be rearrange to give the bound on the projection
horizon N in Theorem 1 2.

The algorithm for adaptive projective integration is as
follows:

(1) Starting at xk, integrate h steps forward using the
inner integrator, xk+1 = f(xk), to generate data
xk, xk+1, . . . , xk+h+1.

(2) Let φ = [xk, . . . , xk+h] and Ψ = [xk+1, . . . , xk+h+1].
Append a row vector of ones, 1, to the matrix φ so
that Φ = [φ;1] where a semi-colon denotes a new row
in the matrix. Fit the affine model yk+1 = Ayk + a0
using least-squares so that Θ = ΨΦ+ where Φ+ is the
pseudoinverse of Φ, found efficiently using a SVD, and
Θ = [A, a0].

(3) Diagonalize A and calculate N∗ =
⌊
log(γmax)
log(λmax)

⌋
where

b·c is the floor operator, γmax = κλmax − κ + 1,
and λmax = max{|λi|} is maximum absolute eigen-
value of A. If λmax > 1 set the projection horizon
to N = min{N spec, N∗}, where N spec is the user
specified projection horizon, otherwise λmax ≤ 1 and
set N = Nspec.

(4) Project forward N steps to yk+h+1+N = ANyk+h+1+

a0
∑N−1
i=0 Ai, set xk+h+1+N = yk+h+1+N , reset the

index k ← k + h+N + 1, and go to step 1.

The emphasis of this approach is fast and cheap com-
putations to accelerate long simulations. In certain cases
it may be advantageous to replace the matrix A in step
2 with a strictly diagonal matrix B so that the cost of
diagonalization can be avoided. This introduces a tradeoff
with accuracy, however, as the diagonal matrix B contains
less information than the full least-squares solution A and
the projection yk+h+1+N is correspondingly less accurate.
Ultimately using a strictly diagonal matrix B will require
smaller projection horizons N which can lead to increased
CPU time yet again. Another approach is to omit step 3
in the algorithm completely. This approach requires some
experimentation to identify a projection horizon Nspec

that appropriately balances accuracy and acceleration of
the simulation.
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3. TEST PROBLEMS

In this section we outline two useful example to illustrate
the algorithm for adaptive projective integration. The first
example problem is a Brusselator with rapidly replenished
source which is a non-linear system that describes an oscil-
lating chemical reaction. This example was also analyzed
by Gear and Kevrekidis (2003). The following differential
equations for the Brusselator with a rapidly replenishing
source are

dx1
dt

=
p1 − x1
p2

− x1x2

dx2
dt

= p3 − (x1 + 1)x2 + x22x3

dx3
dt

= x1x2 − x22x3

(11)

where the terms x1 and p3 represent the concentration
of the reagents and the terms x2 and x3 represent the
concentration of the products. The chemical reaction takes
place in a large reservoir of reagents leading to the concen-
tration, p3, to be constant. The second reagent is rapidly
replenished to its set point p1 with a time scale p2. The
system has an unstable stationary point at x1 = p1,
x2 = p3 and x3 = p1/p3 and all other points lead to a
stable limit cycle. The terms p1, p2 and p3 are constant
parameters with values p1 = 3, p2 = 10−4, and p3 = 1.
The initial conditions are x1(0) = p1, x2(0) = p3 + 0.1,
and x3(0) = p1/p3 + 0.1. The system of differential of
equations is stiff and is integrated using explicit Euler’s
method to tk = 10 with a time step δt = p2 = 10−4.
The results from explicit Euler’s method are used as the
standard to compare against the results from Adaptive
Projective Integration.

Results are shown in figure 1 for different error factors
κ = 103 and κ = 106. In step 1 of the algorithm the
full simulation is integrated forward h = 4 steps. The
affine model is then fit and the projection horizon is
specified according to the error factor. When the linear
model yk+h+1 = Ayk+h + a0 is stable the projection
horizon is Nspec = 10240 otherwise the projection horizon
is bounded by Eq. (6). In figure 1 we see that adaptive
projective integration with an error factor κ = 103 leads to
good agreement with data produced using Euler’s method
alone with correlation coefficients r2 = 0.79, 0.81, and 0.79
for the states x1, x2, and x3, respectively. When the error
factor is set to κ = 106 the error increases substantially
and the correlation coefficients drop to r2 = 0.01, 0.02,
and 0.01. Regardless of the large error introduced during
the adaptive projective integration, we can see that the
integration recovers quickly to the correct trajectory so
that the error in the states at tk = 10 is commensurate
to when κ = 103. In this example the stable limit cycle
helps to correct any over projections that occur. The CPU
times for adaptive projective integration with κ = 103

and κ = 106 are 0.049 s and 0.016 s compared to 0.835
s using Euler’s method alone. These computations were
performed in MATLAB(R) using a desktop PC equipped
with an Intel(R) i7 2.93 GHz quad-core processor ran in
serial.

As the emphasis is on efficient computations, the algorithm
for adaptive projective integration may be modified to bet-
ter suit these needs. One approach is to omit step 3 of the
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Fig. 1. Brusselator example results. Euler’s method is
compared to the results from adaptive projective
integration. The lines (——), (− • −), and (· · H · ·)
corresponds to Euler’s method, projective integration
with error factor κ = 103, and projective integration
with error factor κ = 106, respectively. The specified
projection horizon is Nspec = 10240 for both cases.

algorithm which adjusts the projection horizon according
to the user specified error factor κ and the eigenvalues of
the fit matrix A. By omitting this step, the diagonalization
of A can be avoided but the projection horizon cannot
be corrected. The user must typically specify a smaller
projection horizon so that the projective integration algo-
rithm does not introduce too much error. Figure 2 shows
the results from using projective integration with fixed
projection horizons Nspec = 2560 and Nspec = 10240.
The integration results from using projective integration
with an integration horizon Nspec = 2560 are nearly indis-
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tinguishable from the results generated by Euler’s method
with correlation coefficients r2 = 0.999, 0.996 and 0.999
for states x1, x2, and x3, respectively. As the projection
horizon is increased to Nspec = 10240 the correlation
coefficients drop to r2 = 0.010, 0.026, and 0.013. The CPU
times for projective integration with a fixed horizon are
0.006 s and 0.002 s using Nspec = 2560 and Nspec = 10240,
respectively, compared to 0.835 s using Euler’s method
alone. Projective integration also outperforms commercial
integrators designed for stiff differential equations such as
ode23s in MATLAB(R) which requires 0.02 s of CPU time
to integrate Eq. (11) to the default accuracy.

Another useful example simulates DNA migrating through
a microfabricated obstacle course under the action of
electrophoresis. Here DNA is represented by Nb beads
connected by springs. A momentum balance yields the
stochastic differential equation

dr =
(
F elec(r) + FEV (r) + F s(r)

)
dt+

√
2 dW (12)

where r = [x1, y1, z1, x2, y2, z2, . . .]
T

is a vector containing
the (x, y, z) coordinates of each bead, F elec(r) is a look
up table containing the values for the force applied by the
electric field in the obstacle course, FEV (r) is the excluded
volume term that prevents the beads from overlapping,
F s(r) is the spring force term that keeps the beads
connected, and dW is a Wiener process represented by
Gaussian white noise with zero mean and variance dt
which accounts for Brownian motion.

The look up table for F elec(r) is generated by solving
Laplace’s equation ∂2V/∂x2 + ∂2V/∂y2 = 0 over the
interior of the obstacle course, shown in figure 3, with
homogeneous Neumann boundary conditions on the walls
and Dirichlet boundary conditions of V (0, y) = Vapp
and V (4, y) = 0. Laplace’s equations is solved using
MATLAB(R) PDE toolbox to generate V (x, y) which
is then numerical differentiated to yield the vector field
ζF elec(x, y) where ζ is a unit fixing constant the places
that force field in dimensionless units. The magnitude of
the spring force term is given by

fi =
νqi

(1− q2i )
2 −

7νqi
ν (1− q2i )

+ Cqi +Dqi
(
1− q2i

)
(13)

where qi = ‖ri+1 − ri‖ is the distance between bead i+ 1
and bead i, ν is a unit fixing constant, C and D are con-
stants, and the total spring force for each bead i is calcu-
lated by F si (r) = fi (ri+1 − ri) /qi − fi−1 (ri − ri−1) /qi−1
(Underhill and Doyle, 2006). The excluded volume term in
Eq. (12) prevents the beads from overlapping and is given
by

FEVi = −
∑
j

9αν4.5

2

(
3

4
√
π

)3

e−2.25ν‖rj−ri‖
2

(rj − ri)

(14)
where α is constant parameter that specifies the strength
of the repulsion between beads (Jendrejack et al., 2002).

The stochastic differential equation (12) has 3Nb equations
that are solved using semi-implicit Euler’s method (Somasi
et al., 2002) with Nt integration steps and is solved Ne
multiple times to yield estimates of the first two moments
of r. In our example we use Nb = 12, Nt = 5 × 105, and
Ne = 100 with an integration time step δt = 5 × 10−4.
The simulation requires 70.14 minutes of wall-clock time
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Fig. 2. Brusselator example results. Euler’s method is
compared to the results from adaptive projective in-
tegration. The lines (——), (− • −), and (· · H · ·)
corresponds to Euler’s method and projective inte-
gration with fixed projective horizons Nspec = 2560
and Nspec = 10240, respectively.
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Fig. 3. DNA approximated by a bead-spring model in an
obstacle course.
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Fig. 4. Radius of gyration of DNA as it migrates through
the obstacle course. Integration results of Eq. (12)
using semi-implicit Euler’s method (—) are compared
against adaptive projective integration (−−).

to complete the simulation using a desktop PC equipped
with an Intel(R) i7 2.93 GHz quad-core processor ran in
parallel using MATLAB(R).

The simulation of DNA electrophoresis in an obstacle
course generates the (x, y, z) coordinates for each bead as
they evolve through time. The size of the DNA as is moves
through the obstacle course is indicated by the radius of
gyration,

R2
g =

1

Nb

Nb∑
i=1

〈
(ri − rcm)

2
〉

(15)

where rcm is the center of mass of the DNA and the
brackets 〈·〉 indicate an ensemble average over the Ne
simulation realizations. The radius of gyration from the
simulation is shown in figure 4. We apply the version
of our adaptive projective integration method which fits
a strictly diagonal matrix B for outer-integration model
yk+1 = Byk + b0 where yk = 〈r(tk)〉. The projection
horizon is set at Nspec = 5000 and step 3 of the algo-
rithm adaptive projective integration algorithm is omitted.
The results from figure 4 show that projective integra-
tion results in overshooting the actual trajectory of the
simulation, but the stability and dissipative properties of
the simulation quickly correct the overshoot and bring the
results from the different integration techniques into qual-
itative agreement with each other. In general, quantitative
agreement from stochastic simulations cannot be achieved
without using a large number of realizations. The wall-
clock time using adaptive projective integration is 57.48
minutes which is small decrease over the full simulation
time of 70.14 minutes.

4. CONCLUSIONS

Adaptive projective integration is a method for computa-
tionally inexpensive integration of differential equations.
In the algorithm, the differential equation is integrated
forward for a small number a steps which generates data
that is used to construct an affine model. The linear
model is used to project forward a large number of steps.

Based on the eigenvalues of the linear model the projec-
tion horizon can be adjusted to help avoid large errors
during the integration. We used the Brusselator problem
as an example to highlight the different features of our
approach. We found that using projective integration with
a fixed projective horizon yields the best tradeoff between
computational speed up and accuracy giving nearly an
identical answer to Euler’s method but with two orders of
magnitude speed up in CPU time. Less impressive speed
up is observed using the stochastic simulation of DNA.
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