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Abstract: A run-of-mine (ROM) ore milling circuit poses many difficulties in terms of
measuring process variables and determining accurate models. Control of the ROM circuit
is therefore not a trivial task to achieve. An example of a ROM circuit model with reduced
complexity that works well for control purposes is discussed. The mill model is discussed in detail,
as this model is used for state estimation. A neural network is trained with three disturbance
parameters and used to estimate the internal states of the mill, and the results are compared
with those of particle filter implementation. A novel combined neural network and particle filter
state estimator is presented. The estimation performance of the neural network is promising
when the disturbance magnitude used is smaller than that used to train the network.
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1. INTRODUCTION

A run-of-mine (ROM) ore milling circuit is a process that
is difficult to control because of significant model uncer-
tainties, large unmeasured disturbances and process vari-
ables that are difficult to measure (Olivier et al. (2012)).
This motivates the investigation of a neural network for
measurement purposes. When designing a controller that
requires full state feedback, the internal states of the mill
must be accurately measured to achieve good control of
this complex system. For example, model predictive con-
trol (MPC) requires full state feedback, which is difficult
to achieve, in this case because of model inaccuracies and
lack of on-line measurements. This paper investigates the
use of a neural network to estimate the states of the mill in
a ROM ore grinding circuit. It builds on the work of Olivier
et al. (2012) and is aimed at achieving more accurate
closed-loop control. The internal states of a grinding mill
model (Le Roux et al. (2013)) are estimated using a neural
network, and results are compared to those achieved when
using a particle filter. A new combined method of state
estimation using both a neural network and particle filter
is also presented.

The application of robust non-linear MPC to a ROM ore
milling circuit was presented by Coetzee et al. (2010).
The controller described by Coetzee et al. (2010) requires
full state feedback, an issue that is partially addressed in
this paper and by Olivier et al. (2012). Neural networks
have previously been used to aid in the control of mineral
grinding circuits. In a recent publication, a radial basis
function neural network was used to successfully predict
the in-mill slurry density and ball load volume in a ball-
milling system (Makokha and Moys (2012)). These vari-
ables are key milling process variables that have hitherto
been difficult or expensive to measure. Flament et al.

(1993) uses a neural network as a direct neural controller
and an inverse network controller, which is successful,
provided an offset correction scheme is present. Stange
(1993) builds on this work and states that neural networks
can be used as adaptive predictors.

A recent literature survey on the control of grinding mill
circuits is summarized by Craig (2012). The survey shows
that some multivariable control methods have fairly re-
cently been implemented in an industry where single-loop
PID controllers dominate (Wei and Craig (2009)). In par-
ticular, an MPC implementation on a grinding circuit was
first reported in the literature as late as 2007 (Chen et al.
(2007)). Compare this to the ubiquitous nature of MPC
in for example the petrochemical industry (Craig et al.
(2011)); there is great potential for increasing the number
of MPC implementations on mineral processing plants.
The estimation technique presented in this paper could
help MPC have a sufficient impact in mineral processing
control.

2. RUN-OF-MINE ORE MILLING CIRCUIT

2.1 Description of the run-of-mine ore milling circuit

The goal of minerals processing is to convert raw ore
to a final product which contains a higher concentration
of the most valuable minerals. The ROM circuit is the
focus of this study and is shown in Fig. 1. This circuit
forms part of the minerals liberation process (Hodouin
(2011)). The major disturbances affecting the ROM circuit
are due to the variation in feed size, grindability, model-
plant mismatch and variables that are difficult to measure
(Olivier et al. (2012)).

A brief description of the process is provided here, similar
to that given by Olivier et al. (2012).
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Fig. 1. ROM ore milling circuit.

The feed to the mill (see Fig. 1) is constituted of the underflow
of the cyclone, feed ore, water and steel balls. Steel balls are usually
added in discrete quantities by the operator but in this study it will
be treated as a continuous variable. The mill discharges the ground
slurry into a sump through an end-discharge grate. The slurry is
diluted with water in the sump and pumped to the hydrocyclone
for classification. The product of the milling circuit is the overflow
of the hydrocyclone.

The controlled variables in the milling circuit are the prod-
uct particle size (PSE), the fraction of the mill volume filled with
material (LOAD), and the volume of slurry in the sump (SLEV).
The manipulated variables are the feed-rate of solids into the mill
(MFS), the feed-rate of water into the mill (MIW), the feed-rate of
steel balls into the mill (MFB), the flow-rate of water into the sump
(SFW), and the flow-rate of slurry into the cyclone (CFF). The oper-
ating point of the milling circuit variables and constraints on these
variables are based on [8] and given in Table 1.

The milling circuit model consists of separate modules for the
feeder, mill, sump and hydrocyclone. The model uses five states,
namely water, rocks, solids, fines, and steel balls to describe the
flow of material through the milling circuit. All the equations that
constitute the non-linear model are based on these material clas-
sifications. A full description of these equations can be found in
[8].

Table 1
Constraints and operating point.

Variable Min  Max OP Description

MIW  0 100 33.33 Flow-rate of water to the mill [m3/h]
MFS  0 200 100 Flow-rate of solids to the mill [t/h]
MFB  0 4 2 Flow-rate of steel balls to the mill [t/h]
CFF  400 500 442 Flow-rate of slurry to the cyclone [m3/h]
SFW 0 400 267 Flow-rate of water to the sump [m3/h]
PSE 60 90 80 Product particle-size [% < 75 !m]
LOAD 30 50 45 Total charge of the mill [%]
SLEV 2 37.5 30 Level of the sump [m3]

The main sources of non-linearity in the process are the break-
age functions that describe how material change state inside
the mill. The amount of fines produced in the mill is expressed
as

FP ! Pmill

Ds!f [1 + ˛!f
((LOAD/vmill) − vPmax )]

, (1)

where Pmill is the mill power, Ds is the density of feed ore, !f is
the energy needed to produce a ton of fine ore, ˛!f

is the frac-
tional change in !f per change in fractional filling of the mill,
vmill is the mill volume and vPmax is the fraction of mill volume
to be filled for maximum power usage. LOAD is the total charge
of the mill given by LOAD = Xw + Xs + Xr + Xb, where Xw , Xs, Xr
and Xb are respectively the hold-ups in the mill of water, solids,
rocks and balls. The amount of rocks consumed in the mill is given
by

RC ! 1
Ds!r

· Pmill · ϕ ·
(

Xr

Xr + Xs

)
, (2)

where !r is the rock abrasion factor and ϕ is the rheology fac-
tor, that relates to the fluidity of slurry inside the mill, given
by

ϕ !
√

max[0,  (Xw − ((1/εws) − 1)Xs)]
Xw

, (3)

with εws the maximum water-to-solids volumetric ratio at zero
slurry flow. A full description of the non-linear model is given in
[8].

Two important parameters to note in the non-linear model is
the fraction of rocks in the feed ore (˛r) that gives an indication of
the composition of the ore and the energy needed for a ton of fines
produced (!f) that gives an indication of the hardness of the feed
ore. A change in either of these two  parameters may  be considered
as the introduction of an external disturbance into the plant. This
is because there is no control over the composition and hardness of
the feed ore entering the milling circuit. These parameters will be
varied in what follows to test the disturbance rejection capabilities
of different controllers.

Both of these parameters, ˛r and !f, mainly affect the grinding
performance of the mill. Because the solid ore itself also acts as
grinding medium, a change in ˛r implies a change in the composi-
tion of the grinding medium and a change in !f implies a change in
the hardness. Grinding harder ore requires more energy and con-
sequently a drop in throughput should the same particle size be
required.

2.1. Linearized milling circuit model

Model based milling circuit controllers, such as linear model
predictive control, and common PI(D) tuning rules require a lin-
earized plant model. Such a linear model of the plant is obtained
through applying a standard system identification (SID) procedure
as described by [9],  to the milling circuit model described by [8]
around the operating point given in Table 1. The final linearized
model for control is given by:

[
$PSE

$LOAD
$SLEV

]
=

[
g11 g12 g13
g21 g22 g23
g31 g32 g33

]  [
$CFF
$MFS
$SFW

]
(4)

Fig. 1. Run-of-mine circuit. From Olivier et al. (2012)

Ore containing some valuable mineral (such as those
containing copper, iron, platinum or gold) is fed into the
mill where it is ground fine using rocks and steel balls
as the grinding medium. The mill discharges into a sump
where the slurry is diluted with water to achieve the
correct density before it is pumped to a hydrocyclone.
The cyclone separates the coarse and fine particles, with
the fine particles leaving the circuit as product whilst
the coarse particles are recycled back into the mill for
further grinding. Ore is fed into the milling circuit at
about 100 t/h, and leaves the circuit when its size is
about 80% smaller than 75 µm. A relationship between
residue (valuable mineral not recovered by the downstream
upgrading process) and particle size was derived by Craig
et al. (1992) and the results show that a finer grind results
in better recovery; however, this results in the throughput
decreasing (Bauer and Craig (2008)), which could increase
the overall operating cost.

Manipulated variables include the solids feed rate (MFS),
the flow rate of the sump water (SFW), and the cyclone
feed flow rate (CFF). Other inputs to the mill are the mill
inlet water (MIW), steel balls (MFB), and the cyclone
underflow. The MIW is calculated as a ratio to the solids
feed and MFB is kept constant as discussed by Olivier
et al. (2012). All operating points in this description can
be found in Coetzee et al. (2010).

A typical mill is 9 m long and has a diameter of 5 m
(Stanley (1987)). The mill is supported by pressurized-oil
circumference bearings and operates at 90% of its critical
speed (Coetzee et al. (2010)). Table 1 shows the constraints
and operating values for the manipulated variables (MVs)
and controlled variables (CVs). If the upper or lower
bounds are not adhered to the controller is unsuccessful,
as these bounds are due to physical constraints and cannot
be violated.

2.2 Objectives of the run-of-mine ore milling circuit

The two major objectives for implementing control of
the ROM ore milling circuit are to stabilize the process
as well as optimize the economic performance of the
process (Craig and MacLeod (1995)). Craig and MacLeod
(1995) define a set of sub-objectives that contribute to
the main objectives. The sub-objectives for the milling
circuit performance are: (i) to improve the quality of the
product either by increasing grind fineness or by decreasing
variations in product size, (ii) to maximize throughput,

Table 1. Constraints and operating points.
From Olivier et al. (2012)

Variable Min Max Nom Description

MVs
MIW 0 100 33.33 Flow rate of water to the mill [m3/h]
MFS 0 200 100 Flow rate of solids to the mill [t/h]
MFB 0 4 2 Flow rate of steel balls to the mill [t/h]
CFF 400 500 442 Flow rate of slurry to the cyclone [m3/h]
SFW 0 400 267 Flow rate of water to the sump [m3/h]
CVs

PSE 60 90 80 Product particle size [% < 75 µm]
LOAD 30 50 45 Total charge of the mill [%]
SLEV 2 37.5 30 Level of the sump m3

States

Xmw 0 50 8.53 Holdup of water in the mill [m3]
Xms 0 50 9.47 Holdup of solid ore in the mill [m3]
Xmf 0 50 3.54 Holdup of fine ore in the mill [m3]
Xmr 0 50 20.25 Holdup of rocks in the mill [m3]
Xmb 0 20 6.75 Holdup of steel balls in the mill [m3]
Parameters

αf 0.05 0.15 0.1 Fraction of fines in the ore
αr 0.05 0.15 0.1 Fraction of rocks in the ore
φf 14 42 28 Power needed per ton of fines produced [(kW

h)/t]
φr 55 83 69 Rock abrasion factor [(kW h)/t]
φb 89 99 94 Steel abrasion factor [(kW h)/t]

(iii) to minimize the resources (steel) used to produce
final product and (iv) to minimize the power consumed for
each ton of fines produced. It is impossible to satisfy all
objectives, since sub-objectives (i) and (ii) have a negative
effect on objectives (iii) and (iv). A trade-off between these
objectives has to be found.

3. MILL CIRCUIT MODULES

An individual model for each module, shown in Fig.
1, has been created in the past (Coetzee et al. (2010);
Le Roux et al. (2013)). A summary of the modules are
presented here, similar to the models by Olivier et al.
(2012). The model parameters used by Olivier et al. (2012)
are employed in this paper. The mill module in this section
will serve as the basis for further state estimation work.
The mill has five states, namely water, rocks, solids, fines
and steel balls. The variables and nomenclature used in
this section are shown in Table 1 and Table 2 respectively.

The state equations for the mill are given by equations (1)
to (5).

Ẋmw = MIW − Vwo (1)

Ẋms =
MFS

Ds
(1− αr)− Vso +RC (2)

Ẋmf =
MFS

Ds
αr − Vfo + FP (3)

Ẋmr = αf
MFS

Ds
−RC (4)

Ẋmb =
MFS

Db
−BC (5)

The variables for equations (1) to (5) are given by equa-
tions (6) to (8).

RC ,
1

Dsφr
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
(6)

BC ,
1

Dsφb
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
(7)

FP ,
Pmill

Dsφf [1 + αφf
((LOAD/vmill)− vPmax]

(8)
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Table 2. Nomenclature. From Olivier et al.
(2012)

Volumetric flow-rates used for Description
internal flows: in (i), out (o)

Vwi, Vwo Water [m3/h]
Vsi, Vso Solids [m3/h]
Vfi, Vfo Fines [m3/h]
Vri, Vro Rocks [m3/h]
Vbi, Vbo Steel [m3/h]
Ds Density of feed ore [kg/m3]
Db Density of steel balls [kg/m3]

The volumetric flow-rates out of the mill, defined in Table
2, are given by equations (9) to (11).

Vwo = VV · ϕ ·Xmw ·
(

Xmw

Xmw +Xms

)
(9)

Vso = VV · ϕ ·Xmw ·
(

Xms

Xmw +Xms

)
(10)

Vfo = VV · ϕ ·Xmw ·
(

Xmf

Xmw +Xms

)
(11)

The model includes the effect of the mill power and slurry
rheology on the breakage and power functions (Shi and
Napier-Munn (2002)). The rheology factor is given by
equation (12).

ϕ ,

√
max[0, (Xmw − (( 1

εws
− 1)Xms]

Xmw
(12)

The discharge grate at the end of the mill prohibits the
steel balls and rocks from exiting. The LOAD is given by
equation (13).

LOAD = Xmw +Xms +Xmr +Xmb (13)

The power that the mill motor supplies is given by
equation (14). The mill power has a parabolic relation-
ship to the mill load (fraction of the total mill volume)
(Van Nierop and Moys (2001)). The increase in load results
in an increase in power; however, when the load increases
above approximately 55% (Van Nierop and Moys (2001))
full the power starts to decrease.

Pmill = Pmax·(1−δPvZ2
x−2χP δPvδPsZxZr−δPsZ2

r ) (14)

Zx ,
Xmw +Xms +Xmr +Xmb

vpmax · vmill − 1
(15)

Zr ,
ϕ

ϕPmax
− 1 (16)

The hold up of water (Xmw), solids (Xms), fines (Xmf ),
rocks (Xmr) and steel balls (Xmb) in the mill is estimated
in the sections that follow. The measured outputs are:
volumetric flow-rates out of the mill, LOAD and Pmill.

4. STATE ESTIMATION

4.1 Simulation setup

In order to illustrate the accuracy of the estimation al-
gorithms, a simulation run is performed while the milling
circuit is kept under feedback control by PI controllers
for a 20-hour period. The same PI controllers and simu-
lation environment were used by Olivier et al. (2012) who
provide further details and justification. Disturbances are
introduced as follows: The value of φf is decreased by 10%
at time 3 h, the value of αr is decreased by 10% at time

9 h and the value of αf is increased by 10% at time 15 h.
The “true” simulated states are estimated and therefore
no measurement noise is taken into account. Also, this
comparison aims to show the estimation accuracy and not
the noise-handling capability. A 10-second sampling time
was used in the simulation.

4.2 Particle filter

Description Particle filtering is a technique of imple-
menting a recursive Bayesian filter by Monte Carlo simu-
lations. The setup of the particle filtering simulation run
is the same as that used by Olivier et al. (2012), in which
more information on the particle filter is presented. A brief
description is given in this section.

Particle filtering relies on the technique of representing the
posterior density function (pdf), which is used for estima-
tion, by a set of random samples and associated weights.
The locations of the particles represent the locations at
which the pdf is evaluated and the sizes of the particles
represent the associated weights, giving an indication of
the value of the pdf at this location. This representation
is expandable to an arbitrary number of dimensions and is
applicable to any distribution, even multi-modal and other
non-Gaussian distributions. As the number of particles
becomes very large, this method of representing the pdf
becomes equivalent to the functional description of the
posterior pdf. The pdf at time t may then be approximated
as (Arulampalam et al. (2002)):

p(xt|Yt) ≈
Ns∑

i=1

witδ(xt − xit) (17)

where Ns is the number of particles and
{
xit, w

i
t

}Ns

i=1
is the

set of particles and associated weights. These weights are
defined to be (Ristic et al. (2004)):

wit ∝ wit−1

p(yt|xit)p(xit|xit−1)

q(xit|xit−1, yt)
(18)

where q(xit|xit−1, yt) is a proposal distribution called an
importance density. Ideally the importance density should
be the true posterior distribution p(xt|Yt), but as this is
not known in general, a proposal distribution is used.

State estimation The particle filter is specified with 50
particles. A larger number of particles have been tried
without too much improvement in the estimation results.
In this study (as in Olivier et al. (2012)) the transitional
prior is used. The initial estimates of the mill states are
randomly selected from a region (± 0.01) around the
actual initial values in each case. The “true” states and
particle filter estimates are shown in Fig. 2.

4.3 Neural network

Training The neural network was trained using 480
hours of simulation data. The inputs to the mill were
used to estimate the five states of the mill. Over-training
the neural network is a factor that was considered when
training the network, as an over-trained network will likely
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Fig. 2. Particle filter state estimates

only work for the specified case it was trained on. A
positive and negative 20% step change was made to φf , αr
and αf . The data consisted of 20% positive and negative
step changes with various combinations of φf , αr and αf
at 700 minutes, 40 minutes and 480 minutes respectively,
as shown in Figures 4, 5 and 6.
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Fig. 3. Training data set 1 with positive 20% disturbance
changes
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Fig. 4. Training data set 2 with negative 20% disturbance
changes

0 200 400 600 800 1000 1200
−30

−20

−10

0

10

20

30

 

 X: 45.67
Y: 20

X: 700
Y: 20

X: 70
Y: 0

X: 480
Y: 20

X: 510
Y: 0

X: 730
Y: 0

Time (minutes)

P
e
rc

e
n
ta

g
e
 c

h
a
n
g
e
 i
n
 d

is
tu

rb
a
n
c
e

Disturbance change as a function of time

α
f

α
r

φ
f

Fig. 5. Training data set 3 with positive and negative
disturbance changes

A two-layer feedforward backpropagation network with
sigmoid hidden neurons and linear output neurons was
trained for state estimation. The data that were used for

the training was randomly arranged. The neural network
was trained according to the Levenberg-Marquardt (Ha-
gan et al. (1996)) optimization algorithm. This algorithm
determines the weights and the bias values for the network.
The network consisted of five hidden neurons.

Results The network was then tested on 10% changes
using the same simulation environment as for the particle
filter defined in section 4.1, to determine if the network
would be able to predict smaller changes in parameters
than it was trained on. The state estimation results for
the neural network are shown in Fig. 7.
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Fig. 6. State estimation from neural network

The results show that the neural network performs well
for the first four states and deviates after 10 h for state 5,
as shown in Fig. 6. The hold-up of steel balls (state 5) is
also difficult to estimate for the particle filter, as shown in
Fig. 2. A comparison between Fig. 2 and Fig. 6 indicates
that the neural network performed better than the particle
filter for states 4 and 5; however, the particle filter’s
estimates for the first three state were more accurate.

When comparing the neural network and the particle filter
estimators, it should be kept in mind that the neural
network estimator estimated the mill states based on
only the mill input data. The particle filter, however,
requires output measurements and an initial estimate of
the mill parameters (presented in Olivier et al. (2012))
to function. These were provided to the particle filter
estimator as described in section 4.2. The neural network
estimator therefore had less information at its disposal
when estimating the mill states.

4.4 Combination of particle filter and neural network

An alternative method of combining the neural network
and particle filter is described in this section. Fig. 2 shows
that the particle filter estimate is more accurate for the
first three states than the neural network estimate (Fig. 6);
however, the neural network estimate was more accurate
for states 4 and 5. This section investigates the use of
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the particle filter to correct the offset found in the neural
network estimates for the first three states, similar to offset
correction described by Flament et al. (1993). For the
first three states only, the average of the particle filter
estimate at every hour is compared to the average of
the neural network estimate. The average of the particle
filter estimate is then subtracted from the neural network
estimates. The results of the neural network method with
particle filter offset correction at every hour are shown
in Fig. 7. The performance index as a function of time
is shown in Fig. 8. An average performance index was
determined from ten simulation runs because particle
filtering is a Monte Carlo method and will therefore have
a difference index for each iteration.

The algorithm, which shows how the particle filter method
was used as an offset correction method for the neural
network method, is presented below. M is the time at
which the offset error correction will be implemented. N is
the number of values used to determine the average of each
method. N was chosen to be 10% of the M value. At every
hour the difference between the neural network estimation
and particle filter estimation was calculated based on six
minutes of historical data. The offset correction was then
implemented to the neural network estimation for an hour.

Algorithm

• Initialize average arrays to 0.
• Using three FOR loops, calculate the average of N time

steps back at every M for each state. This is done for both
methods.

• Find the difference between the two matrices. This is the
offset between the neural network and the particle filter.

• For M time steps forward create a new matrix that subtracts
the difference from the neural network estimation.

• N was chosen to be 36 i.e. 6 minutes.
• M was chosen to be 360 i.e. 60 minutes or 1 hour.

The combined method employs the particle filter method
and therefore requires the mill parameter estimates.

4.5 Comparison

The performance index shown in Fig. 8 clearly shows that
an improvement has been made using the particle filter as
an offset error correction method. The performance index
used is shown in equation (19) where xyz represents the
ideal state and xyz represents the estimated state.

PI = (
xmw − xmw

xmw
)2 + (

xms − xms
xms

)2 +

(
xmf − xmf

xmf
)2 + (

xmr − xmr
xmr

)2 + (
xmb − xmb

xmb
)2 (19)

Table 3 shows the results from 16 simulation scenarios. The
first two scenarios illustrate the performance of the neural
network training and therefore should have very small
state errors. Tests number 3 to 7 illustrate a scenario when
all three disturbance parameters are positive. This could
occur when the parameters are underestimated. It should
be noted that in Test number 7 the neural network could
not estimate the states accurately, as a 30% disturbance
change was made and the network was only trained on a
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Fig. 7. State estimation from neural network with particle
filter correction
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Fig. 8. Squared error comparison of all three methods

20% change. This shows that the neural network needs
to be trained on a worse-case scenario of disturbance
changes else the state estimation results are not reliable.
Similarly, Test numbers 8 to 12 illustrate negative distur-
bance changes. Test numbers 13 to 16 illustrate a scenario
when positive and negative disturbance changes occur.
The results show that as the magnitude of the disturbances
increases, the estimation accuracy for both particle filter
and neural network decreases. The particle filter results are
more consistent compared to the neural network results.
The combined method results are always better than the
individual neural network and particle filter results except
in Test number 7 and 12.

5. CONCLUSION

The work presented shows that it is possible to do internal
state estimation for a milling circuit using a neural network
trained on input data. The network was trained using
disturbance changes in model parameters of 20%, and then
used to predict the effect of 10% disturbances. A new
method that combines a neural network and particle filter
estimator for offset correction was presented. Initial results
indicate that such a method can work well.
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Table 3. State estimation validation tests and corresponding performance index results

Test No. αr αf φf State errora

Change (%) Time (mins) Change (%) Time (mins) Change (%) Time (mins) NN PF Combined

1 20 40 20 480 20 700 0.6893 16.849 0.4394
2 -20 40 -20 480 -20 700 0.8389 11.547 0.5505
3 5 540 5 900 5 180 0.3905 10.782 0.2399
4 10 540 10 900 10 180 1.0691 7.6039 0.7326
5 15 540 15 900 15 180 2.2655 15.126 1.4364
6 20 540 20 900 20 180 4.6991 13.889 2.2946
7 30 540 30 900 30 180 23.586 11.844 13.682
8 -5 540 -5 900 -5 180 1.2861 14.868 0.3885
9 -10 540 -10 900 -10 180 2.7745 13.913 1.0001
10 -15 540 -15 900 -15 180 3.4191 13.158 2.0793
11 -20 540 -20 900 -20 180 6.2087 17.003 3.5542
12 -30 540 -30 900 -30 180 75.278 13.967 14.469
13 -5 540 5 900 -5 180 1.4202 11.286 0.3881
14 -10 540 10 900 -10 180 2.6133 11.155 0.9994
15 -15 540 15 900 -15 180 3.3618 10.977 2.0905
16 -20 540 20 900 -20 180 7.7633 14.980 3.5137

a Based on the summation of equation 19 throughout a 20-hour simulation at the sampling interval of 10 seconds.

Training the neural network in practice will be difficult,
as the method is highly dependent on the quality of the
training data. It may also not be possible to train the
neural network on one disturbance at a time, as was done
here. Plants outside the minerals processing industry are
often accompanied by accurate simulators (Garatti and
Bittanti (2008)) and according to Garatti and Bittanti
(2008) a set of experiments using neural networks can
be performed “virtually” by simulation trials. Further
research should be done on how much training data are
required and to what extent the neural network method is
accurate in mineral processing applications. A promising
start has, however, been made.
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