
     

Nested Modifier-Adaptation for RTO in the Otto Williams Reactor  
 

Daniel Navia*, Gloria Gutiérrez**, César de Prada**  
 

* Dpt. Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María,  
Santiago, Chile, (e-mail: daniel.navia@ usm.cl). 

** Dpt. Systems Engineering and Automatic Control, University of Valladolid,c/ Real de Burgos s/n, 47011, (e-mail: 
Valladolid, Spain , (prada@autom.uva.es). 

Abstract: This paper deals with the problem of uncertainty management in real time optimization 
(RTO). It proposes a new architecture in the modifier-adaptation methodology, reformulating the 
algorithm as a nested optimization problem with two layers. Using this approach, it is possible to find a 
point that satisfies the KKT conditions of a process using an inaccurate model, but unlike the original 
modifier method, with no need to estimate the experimental gradients of the process. The proposed 
method has been tested in the Otto Williams Reactor considering structural mismatches and perfect and 
noisy measurements. The results are compared with the previous modifier adaptation methodology using 
dual control optimization showing that the method finds a KKT point of the process with the advantage 
that no experimental gradient information is required and with less sensitivity to process noise. 
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1. INTRODUCTION 
Because of the complexity of industrial processes, finding the 
optimal operation point is not a trivial task due to the inherent 
difficulties of the process itself, as well as the uncertainties 
and disturbances that continuously modify the operating 
conditions or modelling errors. In highly automated plants, 
optimal operation is typically managed by a decision 
hierarchy with several levels including planning, real–time 
optimization (RTO) and process control. At the RTO level, 
medium–term decisions are made on a time scale of hours to 
a few days considering economic objectives. 

RTO emerged in the late 1970’s as a two-stage algorithm:  i) 
parameter estimation and ii) economic optimization. In the 
first step, the uncertainties are taken into account updating 
the parameters α of a nonlinear model, solving a parameter 
estimation problem (1), where u ∈ RNu is the actual value of 
the manipulated variables and y ∈ RNy represents the model 
outputs, f ∈ RNx is the model of the process and g ∈ RNg are 
the inequality constraints of the system. The superscript “¯” 
indicates in the entire document that the variable is measured 
from the process. 
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After the model update, an economic optimization is solved 
(2), obtaining a new set of decision variables. In (2), φ ∈ R 
represents an economic objective function. The solution of 
(2) is then applied to the process in an iterative scheme. 
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Due to the uncertainty that affects the process, there is an 
unavoidable difference between the model used in the 
optimization and the process (model mismatch). This point, 
plus the type of interaction that takes place in the two-stage 
implementation, implies that the classical approach of RTO 
will not necessarily converge to a point that satisfies the KKT 
conditions of the process, noting that the optimum of the 
process cannot be reached using this procedure. With this in 
mind, Roberts solved the integrated system optimization and 
parameter estimation problem, adding an additional modifier 
to the economic optimization that takes into account the 
difference between the gradient of the cost computed with the 
model and the real one of the process (Roberts, 1979). Later, 
Tatjewski showed that the convergence to a KKT point of the 
process does not depend on the parameter estimation 
problem, but only on the equality between the output of the 
process and the model in each RTO iteration (Tatjewski, 
2002). Following the same idea, Gao and Engell proposed an 
extension to handle process-dependent constraints, being 
necessary the estimation of the experimental gradients of the 
constrains too (Gao and Engell, 2005). Recently, Chachuat 
and co-workers have generalized this methodology in the 
Modifier-adaptation method (Chachuat et al., 2009) 

Even though previous methods can find a point that satisfies 
the necessary conditions of optimality (NCO) of the process, 
it is mandatory to estimate the real gradients of the system, 
which is not a trivial task. To avoid this step, the modifier-
adaptation has been reformulated in this work as a nested 
optimization procedure. This allows converging to a KKT 
point of the process in a similar way than the original 
method, but with no need to estimate the process gradient. 

The paper is organized as follows. Section two presents a 
summary of the modifier adaptation method. Section three 
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shows the reformulation proposed. Section four describes the 
application of the methodology proposed in the Otto 
Williams Reactor comparing the results with the former 
procedure. At last, section five gives some concluding 
remarks. 

2. MODIFIER ADAPTATION METHODOLOGY 
The modifier adaptation problem, in order to guarantee 
convergence to a point that satisfies the KKT conditions of 
the process, changes problem (2) in to (3). 

 (3) 

 
Being Φmod ∈ R and Gmod ∈ RNg the modified objective 
function and inequality constraints of the model. 

The modifiers λ, γ and ε directly correct the problem 
formulation (2) modifying the KKT conditions of the model, 
so that the NCO conditions of (3) match with the ones from 
the process in an iterative implementation. They are given by 
the errors in the cost function gradient, in the constraints 
gradients and the constraints respectively between the process 
and the model. Typically, a first order filter is applied to these 
modifiers for implementation (Marchetti et al., 2009). 
Equation (4) shows its definition, that uses information from 
the k-1th RTO iteration of the algorithm: λk and γk are in 
charge of correcting the gradient of the objective function and 
the inequality constraints, while εk attempts to modify the 
value of the process dependent constraints in the kth RTO 
iteration. Being computed with values from the previous 
iteration, they are considered constants when solving (3). 

 (4) 

 
The modifiers depend both on the gap between process and 
model variables and the first order constant K, that tries to 
smooth the path to achieve the optimum. 

2.2 Implementation 

Fig. 1 shows the diagram of the implementation of the 
modifier adaptation methodology. It can be seen that for 
every iteration of the RTO layer, it is necessary to estimate 
the modifiers of the cost function and the constraints. The 
bias ε is not difficult to obtain, but the estimation of the 
gradient of the cost and constraints measured on the process 
is not always available and is the key issue of this 
methodology. Mansour and Ellis (Mansour and Ellis, 2003) 
present a compilation of methods for estimating these process 
gradients. In this work, the dual control optimization will be 
used to compare with the nested methodology proposed since 
it has the advantage that fewer perturbations are required to 

estimate the process derivatives with respect to other methods 
(Gao and Engell, 2005).  

 
Fig. 1. Implementation of the Modifier Adaptation 
Methodology. 

In dual methodology it is assumed that there are as many past 
values of the manipulated variables as the number of outputs. 
Then, by using the definition of directional derivative, the 
gradient  of each measured output can be estimated as in (5) 
(Brdys and Tatjewski, 2005). 

 (5) 

 
Due to the fact that this technique involves the inversion of 
the matrix S, the value of its condition number (κ) is crucial 
in order to ensure appropriate estimations of the gradient. 
Therefore, it is necessary to add the additional non-convex 
constraint (6) to the general formulation of the modifier 
adaptation methodology (3), decreasing the original feasible 
region. The modified problem augmented with the constraint 
from (6) is the so called “Dual” problem, being δLO a lower 
bound for the inverse of κ. 

 (6) 

 
3. PROPOSED NESTED METHODOLOGY 

The iterative implementation of the modifier-adaptation 
methodology from Fig. 1 can be summarized as follows: for a 
given value of the modifiers, obtained with any of the 
methods available to calculate the process gradients, an 
optimization problem is solved using (3) in order to calculate 
and apply the next operating point to the process. Once the 
process has reached the new steady state, repeat this 
procedure until no further changes in the decision variables 
are observed, which implies, according the modifier 
adaptation assumptions, that a KKT point of the process has 
been found (Chachuat et al., 2009).  

In principle, any policy for updating the modifiers could be 
used, provided that improve the process objective function 
and respect the constraints of the process. With this idea in 
mind, one can iterate with the modifiers over the modified 
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optimization until the optimum of the process is found, 
replacing the gradient estimation and the modifier calculus 
steps by any other method that takes into account the 
minimization of the cost function measured directly from the 
process. In particular, it is possible to implement an upper 
optimization layer that uses the modifiers as decision 
variables to be applied over the inner modified optimization 
from (3) in order to obtain the decision variables to be 
applied into the process, and uses the cost function obtained 
from the process as the objective function of the upper layer. 

The purpose of the upper optimization layer is to obtain the 
optimum of the process iterating with the modifiers. When 
selecting the optimization method, we can take into account 
that their decision variables (the gradient modifiers) are not 
constrained, so that we can implement any unconstrained 
method. In particular a gradient-free algorithm can be used in 
this step, avoiding the need of estimating the process 
gradients 

This is the basic idea of the nested-modifier adaptation 
methodology (Fig 2) presented in this section and 
summarized in the following algorithm: 

Step 0: Set k=0 and start the algorithm with an initial guess 
of the modifiers λk, γk and εk. Solve (3) and apply uk+1 into 
the process. 

Step 1: Once the process steady state is reached, measure the 
value φ͞k and g͞k. Compute εk = ͞gk – gk 

Step 2: Update the modifiers λk and γk by using the value of ͞φk 
and the optimization algorithm of the upper layer. Check 
convergence of the upper optimization layer. If the process 
optimum has been found stop, if not go to step 3 (optional) or 
step 4. 

Step 3: Filter the modifiers given by the upper optimization 
layer using (4).  

Step 4: Calculate the decision variable uk+1 solving the inner 
modified optimization problem from equation (3), using λk 
and γk and the value of εk. Set k=k+1. 

Step 5: Apply the decision variable uk into the process and 
wait until the next steady state. Go to step 1. 

It can be noted that the proposed methodology only uses the 
modifiers λ and γ as the decision variables, and the cost 
function of the process as the objective function for the upper 
optimization layer. The value of ε, on the other hand, is 
calculated in the same way than in the original modifier 
adaptation methodology because it can be obtained directly 
from the measurements. Notice that the process constraints 
are not considered in the outer optimization, but in the inner 
one. 

The upper optimization layer is continuously iterating with 
the modifiers with the aim of finding the optimum of the 
process. This implies that at every iteration of the algorithm 
implemented, it is necessary to solve the inner modified 
optimization and then apply its solution to the process to 
obtain the value of the real cost function. If a gradient-based 

algorithm were implemented in the upper layer, it would be 
necessary to apply additional perturbations into the real 
system to estimate the gradient of the measured cost function, 
in a similar way than the original modifier-adaptation 
methodology does. However, if we use a gradient-free 
algorithm in the upper layer, there is no need to estimate the 
process derivatives in order to look for the real optimum. 

 
Fig. 2. Implementation of the Nested Modifier Adaptation 
Methodology. 

The Nelder-Mead (NM) algorithm has been chosen in the 
upper layer, since it is particularly parsimonious in function 
evaluations per iteration. This property is very important 
considering that each function evaluation implies changing 
the operation point of the real process (Walters et al., 1991). 

Besides the suppression of the gradient estimation step, using 
a direct search algorithm instead a gradient-based method, 
allows to obtain better results in noisy environments (Walters 
et al., 1991), making the entire algorithm more robust to real 
process conditions. Also, another advantage of the proposed 
method is the fact that one of the most sensitive parameters to 
tune in modifier-adaptation methodology is neglected: the 
size of the perturbation to estimate the gradient, translated in 
the dual methodology as the specification of δLO, a number 
that is not easy to select a priori, implying simpler way to 
apply the modifier method compared with the original one. 

3.1 Equivalence with the Original Modifier-Adaptation 

The idea of the nested procedure is quite intuitive since if the 
system reaches a stationary point, the feasibility of the 
process is ensured by the definition of ε. Therefore, if the 
process cost function cannot be improved, it means that the 
real optimum of the constrained process (local if the problem 
is not convex) has been found. However, a summary of the 
equivalence with previous method can be commented here. 

Starting from the KKT conditions of (3), it is clear that, under 
stationary assumption, the definition of ε allows to ensure 
primal feasibility of the process. On the other hand, dual 
feasibility is given by the solution of the nested problem. 
Also, complementary slackness for the inequality constraints 
of the process is given by the definition of ε and the dual 
feasibility. 

Regarding the optimum of the measured objective function, it 
is possible to manipulate the complementary slackness 
condition and the gradient of the Lagrangean function of (3) 
from its KKT conditions to obtain: 
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 (6) 

 
Equation (6), holds for any value of λ and γ. In particular, if 
we replace these values with the definition of the modifiers 
(equation (4), setting K = 0) and apply the chain rule, we get: 

  (7) 

 
This means that the application of the modifier adaptation 
policy leads to a (local) unconstrained optimum of the 
process economic cost function with respect to the modifiers 
λ and γ, which is also the point given by the upper 
optimization layer of the nested approach after convergence, 
as it implements an unconstrained optimization of the process 
economic cost function having the modifiers λ and γ as 
decision variables. 

4. APPLICATION IN THE OTTO WILLIAMS REACTOR 
In order to test the proposed algorithm, we have implemented 
the modifier-adaptation methodology in the Otto Williams 
Reactor (Williams and Otto, 1960). Two scenarios were 
considered in the RTO evolution: with and without noise in 
the process measurements. The implementation was 
compared with dual modifier- adaptation methodology for 
different values of δLO. 

4.1  Process Description 

The Otto Williams Reactor is a CSTR with two sources of 
pure raw material A and B (with flows FA and FB 
respectively), being FA a known disturbance and FB a 
decision variable. The other manipulated variable in the 
system is the reactor temperature TR, which can be modified 
using the heating/cooling system. Inside the vessel, three 
chemical reactions take place in parallel (8), forming in total 
6 compounds: four products C, E, G and P, along with the 
unused reactants. This mixture leaves the reactor from the 
bottom of the vessel in a unique stream (FR).  Fig. 3 presents 
a diagram of the example where Xi is the mass fraction of the 
“i” compound inside the reactor. 

 (8) 

 
The objective of the process optimization is to find a 
combination of the manipulated variables that achieves the 
maximal profit in steady state of the reactor operation, 
expressed as a function of the flow rate of the compounds (9). 
Here Pi and Ci are prices of the products and costs of the raw 
materials respectively. 

 (7) 

 
The mass fraction of the product C is one order of magnitude 
below the rest of the compounds. Therefore, a common 

choice in a gross representation of the process is considering 
only the other five species, with the corresponding modeling 
mismatch. Forbes and Marlin(Forbes and Marlin, 1996), 
defines a model of the Otto  Williams example to be used in 
the model-based optimization, neglecting the existence of the 
product C and supposing only two parallel reactions inside 
the reactor (8). 

 

 
Fig. 3. Diagram of the Otto Williams Reactor. 

 (8) 

 
We can test the Nested Modifier Adaptation method using 

a model based on (8) for computing the optimal operation 
point of the reactor and applying the results to a simulated 
reactor based on (6). The optimization should find the 
decision variables inside a feasible space that maximize the 
profit (7), subject to a wrong model with only five 
compounds and two chemical reactions, as in (9).  

 (9) 

 
The parameters, disturbances and bounds utilized in the 

model–based optimization and in the simulation of the 
process, are presented in Table 1.  
 

Table 1.  Value of the Parameters and Bounds 

Parameter Value Units Bound Value Units 
CA 76.23 €/kg FB

Lo 3 kg/s 
CB 114.34 €/kg FB

Up 6 kg/s 
FA 1.8275 kg/s TR

Lo 70 ºC 
PP 1143.38 €/kg TR

Up 100 ºC 
PE 25.92 €/kg    

 

4.2  Results 

Noise Free Scenario 

The Nested and dual modifier adaptation methodologies 
where tested starting from the optimum of the model, 
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corresponding to point (A) in Fig 4. The starting values for 
the modifiers were obtained from finite differences.  
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Fig. 4. Evolution of the decision variables and the objective 
function Dual and Nested-modifier adaptation for noise-free 
scenario  

Fig.4 shows the evolution of the decision variables and the 
contours of the economic cost function. One can see how the 
nested modifier- adaptation (in black) converges to the real 
optimum of the process (R), in a similar way than the dual 
methodology (grey triangles and squares) does, from the 
starting point. The convergence to the real optimum is quite 
expectable after the analysis presented in section III where it 
was commented that, under convergence assumption of the 
upper layer, the results of the nested method would be similar 
to the real optimum. 

Even though the proposed methodology presents a similar 
behaviour than the previous one, it can be noted that there is 
no need to take in to account the grade of excitation of the 
process to estimate the experimental gradient because is no 
longer needed. In the dual methodology, this is equivalent to 
choose δLO, which is very sensitive to the evolution to the real 
optimum of the process as can be noted from Fig.4. In fact, if 
this value is equal to 0.05 the dual methodology does not 
converge to the desired point. As this lower bound increases, 
the gradient-based algorithm reaches the real optimum of the 
process, but increasing the number of the RTO iterations, 
which can be seen more clearly in the evolution of the 
objective function.  

 

Noisy Scenario 

To test the performance of the proposed methodology under 
more realistic conditions, a band-limited white noise error 
was added in the measurements of the mass fractions. The 
maximum amplitude of the band was a 10% of the total range 
of the mass fractions. With this error, the measurement of the 
compound “i” from the process can be represented as Xi 
±0.05 (an expected resolution for a composition probe).  In 
experimental setups, it is quite expectable the presence of 
noise in the measurements, therefore it is also common trying 
to face this problem considering more than one measurement 
in time. This step was also simulated filtering the random 
noise using the average of the last ten measurements obtained 
each 20s to compute the cost function of the process. 

The evolution of the nested methodology, as well as the dual 
one with different values of δLO is presented in Fig. 5. 
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Fig. 5. Evolution of the decision variables and the objective 
function Dual and Nested-modifier adaptation for noise-free 
scenario  

Analysing the path of the nested methodology, it can be noted 
that there is a wrong direction in the estimation of the 
modifiers at the beginning of the iterations due to the 
inaccuracy in the measurements. Nevertheless, the NM 
algorithm corrects the search direction updating the decision 
variables converging in to a point close to the process 
optimum. Regarding the number of iterations that the method 
needs, it can be said that the presence of noise increases this 
number; however, the inaccurate measurements do not affect 
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the evolution of the gradient-free based method, which is 
quite similar to the previous case. Comparing the evolution of 
the decision variables with the dual method, it can be 
distinguished how the gradient-based methodology seems to 
be more sensitive with the noise in the measurement, from 
the zigzag behaviour observed in the path described with dual 
optimization. This situation was critical for a value of δLO = 
0.05 that is not presented in Fig. 5 because it diverged 
completely. Previous description can also be observed in the 
evolution of the objective function, where important jumps 
are detected in the gradient-based iterations.  

Discussion of the Results 

The evolution of the nested methodology under the two 
scenarios tested, shows that it converges close to the 
optimum of the process in a similar way than the dual 
methodology, but with no need to estimate the gradient of the 
process. 

Neglecting the gradient information implies that there is no 
need to take care about the excitation of the process, which is 
an additional advantage regarding the implementation of the 
methodology. In the case of dual optimization, the evolution 
of the method seems to be very sensitive to this issue, which 
is reflected in the variations of the outcomes observed with 
the value of δLO. For small values of this parameter the 
method is not able to reach the optimum of the process since 
there is not enough excitation to estimate accurately the 
process derivatives. As this value increases, the algorithm is 
able to reach the optimum of the process due to the fact that 
the gradient is identified in a better way; however, the 
feasible region of the original problem is reduced, producing 
a path with significant changes in the direction and increasing 
the number of RTO iterations. This tradeoff is reflected in a 
better way if we consider process noise in the measurements, 
since the information of the curvature can be very inaccurate 
if the gradient is estimated with not enough energy. Because 
of this, we can also note that the proposed algorithm seems to 
be more robust due to fact that the modifiers have been 
updated with  a method that is specially recommended for 
these cases (Walters et al., 1991). 

The Otto Williams Reactor is a small size test bed, 
nevertheless it gives an indication about the scalability of the 
proposed methodology for a large-scale problem. It is clear 
that an increase in the decision variables growths the number 
of the vertex of the simplex in the NM algorithm and 
therefore, in a linear way, the evaluations in the objective 
function that are needed before the algorithm can start 
correcting the modifiers. In the same way as it happens in the 
computation of the gradients in the dual methodology. 

5. CONCLUSIONS 
The modifier-adaptation methodology has been reformulated 
as a nested optimization, allowing the use of gradient free 
algorithms to avoid the estimation of the experimental 
gradients, expanding the application of this methodology for 
cases where the experimental gradients are expensive to 
obtain.   

Neglecting the gradient estimation also facilitate the 
implementation of methods based in modifiers, since there is 
no need to take into account the grade of excitation of the 
process. This situation is critical when there is noise in the 
process measurements where the methodology proposed 
seems to be more robust. 
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