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Abstract: For process fault detection and diagnosis, a real time hybrid method based on
Principle component analysis (PCA) and Bayesian belief network (BBN) is described. Upon
successful identification of fault from PCA residual plot and Q statistics, information from the
PCA contribution of each variable is passed to the BBN for root cause analysis. Pearl‘s message
passing algorithm is used for belief updating. Early detection of fault, makes the methodology
more reliable and robust during the process fault occurrence. The aim of this monitoring tool
is to incorporate prior process knowledge along with the present observed evidence to come
up with most plausible explanation of how the process is behaving. The effectiveness of the
proposed method is demonstrated for a Dissolution tank model for different simulated scenarios
by detecting and diagnosing the fault accurately.
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1. INTRODUCTION

According to Himmelblau (1978), the term fault in pro-
cess, is generally defined as a departure of an observed
variable or a calculated parameter from an acceptable
range. The underlying cause of this abnormality is called
the basic event or the root cause. In the recent years signif-
icant research has been done on process monitoring. This
analysis includes qualitative, quantitative and multivariate
statistical approaches, excellent review of these methods
can be found in Venkatasubramanian et al. (2003c,a,b).
Although, these methods are very effective for detecting
the fault early but they are not as effective for pinpointing
the root cause of the fault.

Modern processes are complex with large number of vari-
ables and it needs complex analysis for the operators to
detect the root cause of a process fault. According to
the industrial statistics, human error is the main reason
for about 70% of the industrial accidents which have
significant economic, safety and environmental impact.
Therefore, an automated fault diagnosis method is desired
during the process fault condition to aid the human oper-
ators to steer the process to a safe operating condition.

In this work, a PCA-BBN based automated hybrid fault
detection and diagnosis method is described. PCA is very
efficient for fault detection however not as efficient in
diagnosing the fault and cannot provide the root cause
of the fault. In a process once a fault is detected by a
monitoring scheme, in addition to the diagnosis report
an operator uses the process knowledge to pinpoint the
root cause. Process knowledge is introduced into BBN to
perform this diagnosis task by mimicking exactly what an

operator does during the process fault to find the root
cause.

The paper is structured as follows: background and moti-
vation of research is in section 2, Next in section 3, a brief
description of the PCA-BBN based hybrid algorithm, then
simulation case study Dissolution tank model in section
4, After that, performance and efficiency of the proposed
method is shown with simulated result in the section 5
followed by conclusion in the section 6.

2. BACKGROUND AND MOTIVATION

The motivation for designing hybrid diagnostic systems
arises due to the fact that there is no single method that
meets all the requirements of a good diagnostic system,
Mylaraswamy and Venkatasubramanian (1997). Qualita-
tive diagnosis models such as signed directed graph (SDG)
based methods tend to be good for root cause analysis
rather than being early detectors. SDG models are less
sensitive to the process parameter change or noise but they
are not efficient for large processes. For large scale or non-
linear process, building a SDG based diagnosis model is
tedious, Yang et al. (2010). On the other hand, quantita-
tive model-based methods, often referred to as analytical
models or observer-based or parity-based approaches, are
very efficient and sensitive to process fault. They are built
with deep process knowledge, however requires significant
computational effort. Computational cost associated with
developing statistical classifiers and neural networks are
very low. They are relatively robust to noise and other
model uncertainties present in the process. However, they
cannot provide adequate explanations about the diagnos-
tic reasoning. For example, PCA/PLS based FDI scheme
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are efficient and quick at fault detection but from the
contribution plot it requires a complex analysis to find out
the root cause. Sometimes more than one variable is shown
as faulty due to the smearing effect in the PCA leads to
an ambiguity in root cause analysis, Yoon and MacGregor
(2000); Liu (2012).

It is evident from the above discussion that one single
method is not enough to develop an efficient FDI scheme.
To combine the positive features of various methods hybrid
methods have been proposed. Becraft et al. (1991) have
proposed an integrated methodology for fault diagnosis
with a neural network and an expert system. To diagnose
the most commonly encountered faults in chemical process
plants, a neural network is used. Once the faults are de-
tected within a particular process by the neural network, a
deep knowledge expert system analyse the result and sug-
gests mitigating action. A DKit based hybrid model pro-
posed by Mylaraswamy and Venkatasubramanian (1997)
for process fault detection and diagnosis. The inability of
SDG for timely fault detection is overcome by the strength
of early detection abilities of neural networks and the in-
ability of neural networks to provide insights for diagnosis
was compensated by the SDG’s accurate diagnostic power.
Vedam and Venkatasubramanian (1999) proposed a PCA-
SDG based hybrid methodology for fault detection and
diagnosis. In order to perform diagnosis using SDGs alone,
each measured variable need to be compared against the
high and low thresholds to identify its deviation which is
very difficult for a large process. PCA plays a vital role
in dimension reduction of the analysis. A hybrid system
with signed directed graphs (SDG) and fuzzy logic have
proposed by Enrique E. Tarifa (2003). The SDG model
of the process is used to perform qualitative simulation
to predict possible process behaviour for various faults.
Those predictions are used to generate if-else rules that are
evaluated by an expert system using information about the
actual process state. Sun et al. (2012) used a first-principle
model combined with a data-driven artificial neural net-
work model for process fault detection and diagnosis. It
demonstrates good performance both in process monitor-
ing and fault diagnosis.

Introduction of process knowledge into an expert model
to perform diagnosis has been recent interest of research.
Leung and Romagnoli (2000) developed an process knowl-
edge based diagnosis method (PCEG) for fault diagnosis.
In this context, BBN brings value as it quantifies the
uncertainty in the diagnosis and it can incorporate process
knowledge. More recently BBN has been used to com-
bine various fault detection and diagnosis methods. Huang
(2008) used BBN to unite diagnostic information from
various diagnostic tools to calculate the overall control
loop performance. S. Dey (2005) showed that pearl’s direct
message passing algorithm can find root cause of process
fault successfully in which posterior probability of each
node is updated from evidence.

In this work a PCA-BBN based hybrid fault detection and
diagnosis method is described where BBN takes detection
and diagnosis results of PCA and further refines it based
on process knowledge to accurately pinpoint the root cause
of fault.

Fig. 1. FDD algorithm

3. PCA-BBN HYBRID METHOD

Detail algorithm for this hybrid FDI model is shown in
Fig. 1. This algorithm has two essential parts. They are
online fault detection using PCA, fault diagnosis using
BBN and process knowledge incorporation into BBN for
fault diagnosis.

3.1 Fault Detection using PCA

For online fault detection, PCA model is built from the
normal operating condition data. The PCA model (the
loading vectors) is used for process monitoring by project-
ing the on-line data onto the model.

For a given data matrix of dimension XεRN×m where N
is the number of sample data and m is the number of the
correlated variables in the data set. From SVD analysis
of covariance matrix, the original variables decomposes as
follows:

cov(X) = PΛPT + P̃ Λ̃P̃T (1)

where Λ is a diagonal matrix with significant eigenvalues
and P contains the respective eigenvectors also known as
loading vector. The Λ̃ and P̃ are the residual eigenvalues
and eigenvectors respectively.

Then the PCs can be expressed by the following equation

ti = XPi (2)

Here, i = 1, 2, 3......m and PiεR
m×1

X̂ is the underlying noise free signal given by,

X̂ =

r∑
i=1

tiPi (3)

Where r is the number of principle component r ≤
m. Then the residual, between the projected data and
model predictions, is estimated. Residual R, is calculated
according to the following formula,

R = (X − X̂)T (X − X̂)

= XT P̃ P̃TX
(4)

Whenever the residual exceeds its threshold limit, the
fault is detected. Upon successful detection of fault, PCA
contribution of each variable is analysed and passed to the
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BBN for fault diagnosis known as evidence. Contribution
of i th variable to the Q-statistic can be calculated as

Ci = (XT P̃ P̃Tβi)
2 (5)

Here β is a column vector i th element is one and the others
are zero. From the contribution plot it requires a complex
analysis to find out the root cause. Sometimes more than
one variable is shown as faulty due to the smearing effect in
the PCA leads to an ambiguity in root cause analysis. The
contributions of the each variable is calculated by a matrix
multiplication. The effect of faulty variables may smear
out over the other non-faulty variables. This will mislead a
diagnosis of the correct root causes of the faults. Therefore,
to mitigate this smearing effect, process knowledge along
with contribution of each variable is used as evidence for
the BBN for fault diagnosis.

3.2 Fault Diagnosis using BBN

BBN can be built from the process dynamics or differ-
ential equation of the process variables or cause effect
relationship among the process variables. Analysing the
historical data of the process, both prior probability and
conditional probability can be calculated. One can rely
on expert judgement if historical data is not reliable.
BBN is a graphical representation of the cause and effect
relationship among the process variables. Parent nodes are
casual or root nodes where child nodes are the effect nodes.
For example a network with two nodes X and Y , where
X is the parents node and Y is the child node can be
expressed as

BEL(X) = αP (X)λ(X) (6)

where BEL(X) = P (X|Y ), α = [P (e)]−1 and λ(X) =
P (e|X) = P (Y |X) is the likelihood vector or the condi-
tional probability of the corresponding nodes.

For our proposed method PCA contribution of each vari-
able is used as evidence for the BBN for fault diagnosis.
Depending upon this on-line evidence, BBN updates its
belief of each node. If evidence is introduced from the
head and tail of a BBN shown in Fig. 2 BEL(X) can
be calculated as a function of the incoming evidences e+

and e−. Here, e+ and e− represents evidence coming into
BBN, to node X, from its parent node and child node
respectively.

BEL(X) = P (x|e+, e−)
= αP (e−|x, e+)P (x|e+)
= αP (e−|x)P (x|e+)
= αλ(X)π(X)

(7)

here

π(X) = P (x|e+)

=
∑
u

P (x|u, e+)P (u|e+) (8)

since node U separates node X from e+

π(X) =
∑
u

P (x|u)π(u)

= π(u) ∗Mx|u

(9)

Fig. 2. Introduction of evidence in BBN

hereMx|u is a matrix defining conditional probability table
for P (X|U). Similarly λ(X) can be calculated as

λ(X) =
∑
y

P (y|x)λ(Y )

= λ(Y ) ∗My|x

(10)

Now each node of the network can compute its own π and
λ based on the evidence it receives.

Belief propagation between the parent nodes and child
nodes follows Peral‘s message passing algorithm shown in
Fig. 3 can be found in Pearl (1988). Each parent node is
initiated by prior probability. Prior belief of parent nodes
are calculated by evidence from the PCA and initially
calculated prior probability. By top-down propagation
parent nodes prior belief are passed to the child nodes.
Then child nodes calculate the prior belief with the help
of the conditional probability table and the prior belief
of the parent nodes. Each child node updates its prior
belief to posterior belief based on the evidence coming
from PCA. Posterior belief of the child node is sent to
the parent node by bottom up belief propagation. Then
each parent node updates its prior belief to posterior belief
based on the posterior belief of the child nodes. This
updating process continues until each node is updated to
the posterior belief. At next time instant each node receive
new evidence from the PCA and posterior belief of the
previous time instant becomes prior belief for next time
instant. Belief propagation start again until the network
is converged.

Prior belief of every node is rectified by both PCA evidence
and process knowledge. Initially some non-faulty variables
may show up as faulty in the PCA contribution plot.
But when they are updated based on the evidence and
current process knowledge in the BBN, their posterior
belief reflects the real condition of the variable and removes
the ambiguity of diagnosis. Belief propagation can be
summarized as below

Step 1 - Belief Updating When a node X is activated
to update its parameters, it simultaneously inspects the
message from its parent nodes π(X) and the messages from
its child nodes λ(X). Using these inputs, a initiated node
updates its belief

BEL(X) = αλ(X)π(X) (11)

where

λ(X) =
∏
j

λyj
(X) (12)

π(X) =
∑
u

P (X|u)πx(u) (13)

and α is a normalizing constant and for all states of X∑
x

BEL(X) = 1 (14)
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Fig. 3. Message passing in BBN after evidence coming to
the nodes

Step 2 - Bottom-Up Propagation Using the λ message,
child nodes communicate with the parent nodes, which
is known as Bottom-Up propagation of belief. Node X
computes a new message λx(u) which is sent to its parents
U

λx(u) =
∑
x

λ(X)P (X|u) (15)

Step 3 - Top-Down Propagation Using the π message,
parent nodes communicate with the child nodes, which
is known as top-down propagation of belief. Node X
computes a new message πyj

(x) which is sent to its j − th
child Yj is computed by

πyj (X) = απ(X)
∏
k 6=j

λyk
(x) (16)

Here

λX(u) = P (e−X |u)
πy(X) = P (x|e+y )

(17)

4. SIMULATION CASE STUDY

4.1 Dissolution Tank Model

A simplified process diagram for the dissolution tank
system can be found in Mallick and Imtiaz (2011), is shown
in Fig. 4. In this system solid PTA crystals is dissolved
in a tank with water. Water is pumped into the tank
under flow control. PTA crystal is fed to the dissolution
tank from a hopper using a rotary feeder. The feed rate
of solid crystals to the mixing vessel is controlled by the
speed of the rotary feeder (RPM). The water level in tank
and the concentration of the liquid going out of the tank
are measured variables. The main control objectives of
the system are to maintain the tank level and maintain
the concentration at desired set point. However, both the
concentration and the water level at the outlet are subject
to frequent large disturbances when the operators have to
take control of the process to ensure safe operation during
abnormal condition. Objective of the monitoring scheme
is to develop an automated method for this process that
will detect the fault early along with the root cause.

Fig. 4. Process flow diagram with the existing control
strategy

Fig. 5. Dissolution Tank Model BBN

4.2 BBN of Dissolution Tank Model

BBN for the Dissolution tank model is constructed from
the process dynamics shown in Fig. 5. Solid flow is con-
trolled by a rotary valve which is driven by an actuator.
An arc from the RPM of the actuator to rotary valve and
rotary valve to solid flow is drawn. Precise control of both
solid flow and water flow rate keeps the concentration of
the output product in desired level. So, density node has
two arcs incoming from the solid flow and water flow rate
nodes. On the other hand, water flow rate has a direct
influence from water flow valve which is shown by an arc
from the water flow valve node to the water flow rate node.
Uniform water flow is desired to have water level in control.
Again to give more flexibility to control density water level
is controlled depending on the solid flow. Therefore, water
level node has two incoming arcs from the solid flow node
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and water flow node. PCA contribution for each variable
is used as evidence to the corresponding nodes shown by
broken arcs. Process dynamics is introduced to the BBN by
prior probability and conditional probability. Both prior
probability and conditional probability table filled up for
each node based on expert judgement.

The BBN is initiated with prior probability calculated
from the expert judgement. When ever new evidence come
to solid flow node, the node update its own belief and
propagates its belief according to the propagation method
described in the Section 3.2 to the density node and the
water level node. Evidence coming to the density node
updates the prior belief of density to the posterior belief
and propagates its belief to the both water flow node and
solid flow node. Solid flow node then updates its belief
based on the information it gets from the density node.
With the similar process belief is propagated between
water flow, water level and solid flow node. When belief
of all node is updated network stabilizes and wait for the
next evidence. This cycle repeats at each time instant until
all nodes update its belief to the posterior belief.

Two faulty scenarios are created and hybrid method is
applied. PCA detected the fault early but diagnosis was
not precise since PCA contribution plot showed more
than one variables to be faulty since the contributions are
transformed from the process variables through a matrix
multiplication, the faulty variables may smear out over
the other variables, which will mislead a diagnosis of the
correct root causes of the faults. BBN resolve this diagnosis
problem. Here, PCA evidence and process knowledge plays
a vital role. Successful diagnosis is shown in the result
section.

5. RESULT

The hybrid method was successfully implemented on the
dissolution tank model. In case study 1 a fault is intro-
duced in solid flow and in case study 2 a fault is introduced
in water flow rate. In both cases fault was detected and
diagnose correctly.

5.1 Case Study 1

A fault is introduced in the solid flow at t = 3100 min, as
a result a fault in density is observed at t = 3160 min in
Fig. 6. This fault is detected early at t = 3130 min from
PCA residual plot, as it violates Q-statistic threshold level
shown in Fig. 7. From PCA contribution plot Fig. 8 its
difficult to diagnose the fault correctly as it is seen that
all the variables have significant contribution for the fault
due to the smearing effect discussed in Section 3.1. With
process knowledge the BBN correctly diagnose the solid
flow as root cause of the fault in Fig. 9. Evidence from both
density and water level updates the posterior probability
of both water flow rate and solid flow node. Because fault
in density has more strong relation with solid flow than
water flow rate the root cause of the fault was pinpointed
correctly.

5.2 Case Study 2

A fault is introduced in the water flow at t = 3100 min , as
a result a fault in water level is observed at t = 3190 min

Fig. 6. Case study 1: Fault in density

Fig. 7. Case study 1: PCA early fault detection

Fig. 8. Case study 1: PCA contribution plot

Fig. 9. Case study 1: Root cause diagnosis from BBN

in Fig. 10. This fault is detected early at t = 3160 min
from PCA residual plot, as it violates Q-statistic threshold
level shown in Fig. 11. From PCA contribution plot Fig.
12 its difficult to diagnose the fault correctly, as it is seen
that all the variables have significant contribution for the
fault except density due to the smearing effect discussed
in Section 3.1. With process knowledge the BBN correctly
diagnose the water flow as root cause the fault in Fig. 13.
Evidence from both density and water level updates the
posterior probability of both water flow rate and solid flow
node. Because fault in water level has more strong relation
with water flow rate than solid flow, the root cause of the
fault was pinpointed correctly.

6. CONCLUSIONS

A real time hybrid process monitoring technique based on
PCA and BBN for process fault detection and diagnosis
is described here. The proposed hybrid method uses the
diagnostic outputs from PCA and combines with process
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Fig. 10. Case Study 2: Fault in Water Level

Fig. 11. Case Study 2: PCA early fault detection

Fig. 12. Case Study 2: PCA contribution plot

Fig. 13. Case Study 2: Root cause diagnosis from BBN

knowledge captured in a BBN. Thus the method is able
to accurately pinpoint the root cause of a fault which is
lacking in PCA and other statistical fault detection and
diagnosis approaches. The methodology is demonstrated
using a solid crystal dissolution tank example. Various
fault scenarios were considered. The method successfully
detected the fault early allowing the operator to take
corrective action. Also, it diagnose the root cause precisely.
Since BBN is a directed acyclic graph, this method is
applicable for acyclic process only. Further research is
required to represent a general class of systems (process
systems with cycles) using BBN.
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