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Abstract: We consider the output tracking of a set-point using cooperative distributed model
predictive control. We propose a framework to avoid the loss of feasibility, guarantee stability,
constraint satisfaction as well as convergence to admissible set-points. To enable a distributed
implementation of the model predictive control law we utilize a cyclic varying horizon length.
A simulation example illustrates the approach and its applicability for interconnected systems.
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1. INTRODUCTION

Model predictive control (MPC) is frequently used to
efficiently control systems subject to constraints, see Ma-
ciejowski (2002); Qin and Badgwell (2003). In MPC an
optimal control problem is solved at each sampling in-
stance and the first part of the resulting input is applied
until the next sampling instance. Solving this optimization
problem can be challenging, in particular for large-scale
systems. Therefore, there is an increasing trend to derive
distributed, predictive control schemes.

There are by now various MPC approaches for the control
of coupled systems, see Scattolini (2009). One straight-
forward approach is to use a centralized MPC controller,
which centrally controls all systems, c.f. top of Figure 1.
However this often results in a large optimization problem
and requires the communication with and calculation in
one central controller, which might be prone to failures
and errors.

Further, it is possible to control each subsystem by a
single MPC controller. If no communication between the
controllers is present, then this is frequently referred as
decentralized MPC, see e.g. Scattolini (2009). Although
the computational demand is reduced, this will usually
result in bad performance.

Distributed MPC refers to the case that each system
features an MPC controller, but the separate controllers
communicate with the other controllers, see bottom of
Figure 1. We focus on so-called cooperative distributed
MPC (see e.g. Scattolini (2009)), i.e. the distributed con-
trollers solve the same optimization problem as the cen-
tralized controller using distributed optimization methods
(c.f. Bertsekas and Tsitsiklis (1989)) and communicate to
achieve this goal. In principle, the distributed controllers
can achieve performance similar or very close to central-
ized MPC, while overcoming the problem of high central
computational demand and offering increased reliability
with respect to communication and system faults.
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Fig. 1. Top: Centralized MPC, Bottom: Distributed MPC.

By now many approaches exist based on distributed op-
timization for cooperative distributed MPC of physically
coupled systems. For example Wakasa et al. (2008); Gisels-
son and Rantzer (2010); Conte et al. (2012b) consider dual
decomposition for cooperative distributed MPC. A nonlin-
ear Jacobi algorithm is presented in Venkat et al. (2005);
Stewart et al. (2010) considering only input constraints.
A distributed version of Han’s method is proposed in
Doan et al. (2010). The work Scheu and Marquardt (2011)
considers a sensitivity driven approach. An augmented
Lagrangian based approach is investigated in Negenborn
et al. (2009). Finally, the alternating direction multiplier
method is investigated in for example Conte et al. (2012b);
Kögel and Findeisen (2012).

Moreover, different stability criteria have been used for
distributed MPC. Giselsson and Rantzer (2010) uses a
strong controllability assumption to derive stopping and
stability criteria. In Stewart et al. (2010) feasibility, sta-
bility and convergence criteria are presented, but only for
the case of input constraints. Terminal equality constraint
are proposed in Doan et al. (2010). Conte et al. (2012a)
present a stability criterion using a distributed invariance
approach. Kögel and Findeisen (2012) present a stability
approach for distributed MPC using cyclically varying
horizons for linear systems, which is extended to nonlinear
systems in Kögel and Findeisen (2013).
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Note that these works consider only the stabilization of
fixed steady states / set-points (usually the origin). How-
ever, especially in chemical applications, often the steady
state changes due to product quality and raw material
changes. Thus, it is necessary to track the system to the
new steady state without violating the constraints. There-
fore, it is of interest to develop MPC schemes to track
set-points as good as possible, which can be implemented
in a distributed fashion to allow an efficient solution.

Several approaches for MPC based set-point tracking exist;
for example off-set free MPC (see Muske and Badgwell
(2002); Pannocchia and Rawlings (2003); Maeder and
Morari (2010) and the references therein). We are moti-
vated by the tracking scheme proposed in Limon et al.
(2008); Ferramosca et al. (2009); Limon et al. (2012), since
it easily allows to guarantee convergence and recursive
feasibility. This setup has been generalized to distributed,
tracking MPC by using a centralized terminal set in Fer-
ramosca et al. (2013) and in Conte et al. (2013) using
distributed, globally coupled terminal sets and distributed
invariance.

Contribution: We present a framework for set-point track-
ing MPC using cyclic varying horizons, which have been
previously proposed for regulation in Kögel and Findeisen
(2012, 2013). Using a cyclic varying horizon guarantees
that we can always enforce structure into the terminal set
and constraints to allow a distributed implementation. In
particular, we outline that the considered tracking scheme
has similar properties as the centralized approach, i.e.
it guarantees constraint satisfaction, recursive feasibility
and tracking of the reference set-point. Furthermore, it
is in some cases less restrictive than Conte et al. (2013);
Ferramosca et al. (2013), c.f. Kögel and Findeisen (2012).

Paper structure: The remainder of the paper is structured
as follows. In Section 2 we outline the problem setup. Sec-
tion 3 presents the proposed distributed, predictive control
for set-point tracking. The design of suitable terminal
constraints and cost is discussed in Section 4. Section 5
outlines the applicability of the approach.

Notation: The notation is mainly standard. By rem(a, b),
(a ∈ Z, b ∈ N) we denote the remainder function.
By Na,b we denote the integers a, a + 1, . . . , b. For a
matrix M , M† is the Moore-Penrose pseudo-inverse. A

matrixM =

(

M1,1 M1,2 ...

...
...

. . .

)

consists of the block matrices

[M ]i,j = Mi,j . With u(k) we the optimization variable
corresponding to u(k) and by u⋆(k|k − 1)) the optimal
value of u(k) at time instance k − 1.

2. PROBLEM SETUP

This section outlines the considered class of interconnected
systems and our objective: set-point tracking.

Considered system class We consider linear, discrete-
time, time-invariant systems of the form

x(k + 1) =Ax(k) +Bu(k) (1a)

y(k) =Cx(k) +Du(k), (1b)

where x(k) ∈ R
n is the state, u(k) ∈ R

p the input and
y(k) ∈ R

q the output and (A,B) is controllable.

The system consists of S interconnected subsystems. The
state of subsystem i xi(k) ∈ R

ni , the input ui(k) ∈ R
pi and

the output y(k) ∈ R
qi are parts of the overall state x(k),

input u(k) and output y(k), respectively, e.g. In detail:

x(k)T =
(

x1(k)
T x2(k)

T . . . xT
S (k)

)

(2)

In general not all subsystems might have an influence onto
every subsystem. To account for the influences between the
systems we introduce the sets Ni to denote the subsystems
with an influence onto the state or output of subsystem i:

Ni = {j s. t. Ai,j 6= 0, Bi,j 6= 0, Ci,j 6= 0 or Di,j 6= 0}.
(3)

Thus, the dynamics of subsystem i is given by

xi(k + 1) =
∑

j∈Ni

(Ai,jxj(k) +Bi,juj(k)) (4a)

yi(k) =
∑

j∈Ni

(Ci,jxj(k) +Di,juj(k)) , (4b)

where Ai,j , Bi,j , Ci,j and Di,j are partitioned as

A =

(

A1,1 ... A1,S

...
. . .

...
AS,1 ... AS,S

)

B =

(

B1,1 ... B1,S

...
...

. . .
...

BS,1 ... BS,S

)

(5)

C =

(

C1,1 ... C1,S

...
. . .

...
CS,1 ... CS,S

)

D =

(

D1,1 ... D1,S

...
...

. . .
...

DS,1 ... DS,S

)

. (6)

For the constraints we assume that for each subsystem
the state xi(k) and input ui(k) has to be in a convex,
nonempty polytope Zi, which contains the origin

(xi(k), ui(k)) ∈ Zi (7a)

Zi = {xi, ui s.t. Xixi + Uiui ≤ zi}. (7b)

Note the constraints do not involve states and inputs of
other subsystems, i.e. they are separable constraints.

Set-point Tracking The objective is the tracking of a set-
point: the output y(k) should converge to a given reference
yref or at least as close as possible, while satisfying the
constraints (7).

We propose a framework for distributed MPC ensuring
convergence to a steady state set-point ys given by

0 =(A− I)xs +Bus (8a)

ys =Cxs +Dus (8b)

(xs
i , u

s
i ) ∈ (1− ǫ)Zi, ∀i ∈ N1,S , (8c)

which is as close as possible to the reference set-point yref .
In particular, if yref satisfies for some x, u (8), then y(k)
converges to yref . The parameter ǫ in (8) with 0 < ǫ < 1
is a design parameter to guarantee that the steady state
stays strictly in the feasible set and thus guarantees that
stabilizability is maintained. ǫ can be freely chosen.

3. COOPERATIVE SET-POINT TRACKING MPC
USING CYCLIC VARYING HORIZONS

This section presents the main result: the proposed MPC
scheme for distributed tracking and some of its properties.

3.1 CST-MPC - Cyclic-horizon set-point tracking MPC

We propose a control scheme for distributed, tracking
MPC, which we call cyclic-horizon set-point tracking MPC
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(CST-MPC). The scheme allows tracking of a set-point,
while avoiding constraint violations. Moreover, it enables a
distributed implementation of the underlying optimization
problem resulting in a distributed predictive controller.

As key element we use a cyclic varying horizon N(k)

N(k) = N +M − rem(k,M), (9)

where N ≥ 1 is the minimum horizon length and M ≥ 1
is the horizon period. M = 1 corresponds to the standard
fixed horizon length of N . For M > 1 the horizon varies
betweenN and the maximum lengthN+M−1: at k = iM ,
i ∈ N

0 it has the maximum length (N+M−1) and shrinks
the next time instances. At k = (i + 1)M the horizon is
restored to its maximum length, see Fig. 2.

time instances considered in prediction
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Fig. 2. Illustration of cyclic horizon for N = 5, M = 3.

Thus at time k we optimize a state/input trajectory x/u

x = {x(k), . . . , x(k +N(k))} (10a)

u = {u(k), . . . , u(k +N(k)− 1)}, (10b)

and the steady state (us, xs, ys) subject to the dynamic
(1), constraints (7) and steady-state map (8). Moreover,
our objective is that the distance between the reference
output yref and the steady-state output ys is as small as
possible, that recursive feasibility as well as stability are
guaranteed, and that the controllers can be implemented
in a distributed way to solve this problem.

The proposed CST-MPC scheme to solve this problem
is based on the solution of the following optimal control
problem denoted by O(x(k), yref , k)

min
u,x,us,xs,ys,α

J(u,x, us, xs, ys, yref ) (11a)

subject to

(A− I)xs +Bus, ys = Cxs +Dus (11b)

(xs
i , u

s
i ) ∈ (1− αi)Zi, ∀i ∈ N1,S (11c)

x(j + 1) = Ax(j) +Bu(j), ∀j ∈ Nk,k+N(k)−1 (11d)

x(k) = x(k) (11e)

(xi(j), ui(j)) ∈ Zi, ∀i ∈ N1,S , ∀j ∈ Nk,k+N(k)−1 (11f)

xi(k +N(k))− xs
i ∈ αiTi, ∀i ∈ N1,S (11g)

ǫ ≤ αi ≤ 1, ∀i ∈ N1,S , Wα ≤ 0 (11h)

where us, xs, ys denote an (artificial) steady state, ǫ > 0
is a design parameter. The cost function J is given below
and depends on the reference yref . Wα ≤ 0 denotes a set
of inequalities called terminal coupling inequalities and Ti
are terminal sets, which we discuss later-on in detail.

Note that each optimization problem (11) depends on
three parameters: the current overall system state x(k),
the reference output yref and the current time k (due
to the time-varying length of the horizon N(k)). If (11)
is feasible, then it delivers an optimal input sequence
u⋆ depending on yref , xk, k from which the first part
u(k) = u⋆(k) is used as feedback.

We assume that the cost function J is given by

J =

k+N(k)−1
∑

j=k

l(x(j)− xs, u(j)− us) (12)

+ V F (x(k +N(k))− xs) + V O(ys − yref ),

where we consider convex quadratic functions for the stage
cost l(x, u), the terminal cost V F and the offset cost V O.
Moreover, we assume that the cost is separable, i.e. the
overall cost is given by the sum of the costs of each
subsystem i. Consequently, we have that

l(x, u) = xTQx+ uTRu =
S
∑

i=1

xT
i Qixi + uT

i Riui (13a)

V F (x) = xTFx =

S
∑

i=1

xT
i Fixi (13b)

V O(x) = yTHy =

S
∑

i=1

yTi Hiyi, (13c)

where Q = QT ≥ 0, (A,Q
1

2 ) detectable, R = RT > 0,
F = FT > 0 and H = HT > 0.

Remark 1. (Interpretation of optimization problem (11))
In the optimization problem (11) the equality constraints
(11d), (11e) guarantee that the input sequence u and
state trajectory x are consistent with the the dynamic (1)
and (11f) imply satisfaction of the constraints (7). The
constraints (11b), (11c) guarantee that the steady state
(us, xs, ys) satisfies (8). The steady state is coupled with
the terminal state x(N(k)) by the constrains (11g), (11h).

In the cost function (12) the stage cost l and terminal cost
V f weight the difference between u, x and the artificial
steady state, the offset cost V O penalizes differences be-
tween the artificial steady state and the reference yref .

Remark 2. (Application to distributed MPC)
The cost function J (12) is separable. Moreover, all in-
equality constraints are separable except possibleWα ≤ 0.
However, it is possible to reformulate Wα ≤ 0 as a set of
equalities and separable constraints. This can for example
be achieved by introducing copies of α for all subsystems
and enforcing via equality constraints consensus, i.e. re-
quiring that all copies have similar values.

Our setup allows to easily use tailored optimization meth-
ods to solve (11) in a distributed manner and thus facil-
itates distributed model predictive control, see e.g. Doan
et al. (2010); Kögel and Findeisen (2012); Conte et al.
(2012b). Note that one advantage of using a cyclic varying
horizon is that under rather mild assumptions it is always
possible to choose separable terminal constraints Ti with
nonzero volume and separable terminal costs Fi, see Kögel
and Findeisen (2013).

Remark 3. (Addition of a smoothing cost)
One can add to the cost function J (12) an additional
term to take the difference between the previous predicted
optimal input and current input to be optimized, i.e.
u(k) − u⋆(k|k − 1), into account and similarly for the
state, which provides additional degrees of freedom. So
it is possible to use for k ≥ 1 the cost function

J̃ =J + (u(k)− u⋆(k|k − 1))TY (u(k)− u⋆(k|k − 1))

+ (x(k)− x⋆(k|k − 1))TZ(x(k)− x⋆(k|k − 1)), (14)
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where Y = Y T ≥ 0 and Z = ZT ≥ 0. This results in the
modified optimal control problem Õ(x(k), yref , k, x⋆(k|k−
1), u⋆(k|k − 1)) given by

min
u,x,us,xs,ys,α

J̃ subject to (11b)-(11h). (15)

3.2 System theoretic properties of CST-MPC

We can guarantee recursive feasibility, constraint satisfac-
tion, stability and convergence of the proposed scheme
under certain conditions as discussed in the following.

First let us assume that the terminal cost, terminal con-
straints, terminal coupling matrix and horizon period are
designed such that they satisfy the following conditions.

Assumption 4. (Conditions on terminal conditions)
The terminal weighting matrices F , the terminal control
gain K, the closed loop matrix Ã = A+BK, the terminal
sets Ti, horizon period M and terminal coupling matrix W
satisfy

a) ∀x with xi ∈ Ti

xTFx ≥
∑M−1

j=0
xT (Ãj)T (Q+KTRK)Ãjx (16)

+ xT (ÃM )TFÃMx

b) If xi ∈ αiTi, i ∈ N1,S and Wα ≥ 0, then for l ∈ N1,S

(x̃(j)l, ũ(j)l) ∈ αlZl, j ∈ N0,M−1 and x̃(M)l ∈ αlTl.

where x̃(0) = x, x̃(i+ 1) = Ãx̃(i) and ũ = Kx̃.

Given these conditions it is possible to establish stability,
convergence and recursive feasibility:

Theorem 5. (Recursive feasibility, convergence)
Let the terminal weighting matrices F , the terminal control
gain K, the terminal sets Ti, horizon period M and termi-
nal coupling matrix W be designed such that Assumption 4
holds. Let either every Ti have a nonzero volume or N ≥ n.
If the optimization problem O(x(0), yref , 0) (11) is feasible,
then we have:

• Recursive feasibility:
Using the optimal feedback u⋆(x(i), yref (i), i) all
optimization problems O(x(i), yref (i), i) are feasi-
ble for any yref (i), where x(i + 1) = Ax(i) +
Bu⋆(x(i), yref (i), i).

• Convergence to the reference/stability:
Using the optimal feedback u⋆(xi, y

ref , i) x(k), y(k)
converges to xa and ya satisfying

(xa, ua, ya) ∈ arg min
xs,us,ys

V O(ys − yref ) s.t. (8).

(17)

In particular, if there are xs, us and ys such that (8)
holds with ys = yref , then y(k) converges to yref .

For space limitations the proof is avoided here. It builds
upon results of Limon et al. (2008); Ferramosca et al.
(2009) and Kögel and Findeisen (2013).

Note that in (17) ya is unique (since V 0 is positive
definite), but xa might be non-unique, see e.g. Limon et al.
(2012). Observe that the recursive feasibility is not lost if
the reference changes. Moreover as usual in MPC (Scokaert
et al. (1999)), it is not necessary to obtain the exact
optimizers: it is possible to use suboptimal solutions if

feasibility and a sufficiently large cost decrease (if possible)
are guaranteed.

Using an additional smoothing cost term, i.e. solving (15)
instead of (11), yields similar results. In particular, if
Y > 0, then also u(k) converges to a ua satisfying (17),
which might be for certain cases not guaranteed without
a smoothing cost.

4. DESIGN OF TERMINAL ENTITIES

We derived conditions to guarantee convergence and fea-
sibility. In the following we outline for some cases how to
design suitable terminal control gain K, terminal weight-
ing matrix P , horizon period M and the terminal coupling
matrix W .

4.1 Symmetric constraints

Let us consider symmetric constraints, i.e. that the con-
straints (7) are given by ‖Xix + Uiui‖∞ ≤ 1, where
Xi ∈ R

mi×ni , Ui ∈ R
pi×ni . Moreover, we aim to design

terminal sets with the structure

Ti = {xi s.t. ‖Tixi‖∞ ≤ c, i ∈ N1,S} (18a)

T = {x s.t. xi ∈ Ti} = {x s.t. ‖Tx‖∞ ≤ c} (18b)

where c > 0 is some parameter to be determined and
Ti ∈ R

mi×ni are given with mi ≥ ni. We assume that
each Ti is bounded, i.e. Ti has ni independent columns,
and that A+BK = Ã is asymptotic stable.

First let us consider αi = 1, ∀i. In order to have x ∈ T ⇒
ÃMx ∈ T we need to have

‖TÃMx‖∞ ≤ ‖TÃMT †‖∞‖Tx‖∞ ≤ c (19)

using the fact that the pseudo-inverse T † satisfies T †T = I

(independent columns). So ‖TÃMT †‖∞ ≤ 1 needs to hold,
which can be achieved by choosing M large enough. So a
suitable M can be computed by increasing M until the
above condition is satisfied.

For the constraints we need ‖XÃlx + UKÃlx‖∞ ≤ 1 for
all x ∈ T and all l ∈ N0,M−1. Consequently, we need

‖XÃlT † + UKÃlT †‖∞ ≤
1

c
(20)

which can be satisfied by choosing c, c > 0 small enough.

Moreover to satisfy Assumption (4) we need to have that

if xi ∈ αiXi and Wα ≥ 0 ∀j ∈ N1,S , then ÃMxi ∈ αiXi

∀i ∈ N1,S . So

‖Tix̃
M
i ‖∞ =

∑

j∈Ni

‖[TÃM ]i,jxj‖∞ (21)

≤
∑

j∈Ni

‖[TÃMT †]i,j‖∞αjc. (22)

Note that ‖Tix̃
M
i ‖∞ ≤ αic holds ifWi,j ≥ ‖[TÃMT †]i,j‖∞,

i 6= j and Wi,i ≥ ‖[TÃMT †]i,i‖∞ − 1, since we have

αi ≥
∑j

i=1,j 6=i Wi,jαj + (Wi,i + 1)αi. The constraints of
Assumption 4 require that

‖[XÃlx+ UKÃlx]i‖∞ (23)

= ‖
∑

j∈Ni

[XÃl + UKÃl]i,jxj‖∞ ≤ αi,
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which is true if
‖[XÃlT †+UKÃlT †]i,j‖∞

c
≤ Wi,j , i 6= j and

‖[XÃlT †+UKÃlT †]i,i‖∞

c
− 1 ≤ Wi,i. Hence choosing W such

that all of the above conditions on W hold guarantee that
Assumption 4 b) is satisfied.

Note that the above derivations can easily be extended to
non-symmetric constraints: one method is to design the
terminal cost, terminal constraints, terminal coupling ma-
trix and horizon period by restricting (7) to a symmetric
inner approximation of the constraints.

The terminal cost F can be determined straightforwardly
by solving the linear matrix inequality given by (16) and
restricting F to be block diagonal.

4.2 Terminal equality constraints

The simplest choice of terminal sets is Ti = {0}, i.e. to
enforce that the terminal state x(k + N(k)) is equal to
the steady state xs. Clearly, Assumption 4 is satisfied for
M = 1, W = 0, any K, F and independently of αi. Thus,
we can fix αi = ǫ. However, this choice of the terminal sets
often results in rather poor control performance.

4.3 Coupling via inputs, asymptotic stable systems

Another special case is given by asymptotic stable plants
coupled via the inputs. Without a terminal control law,
i.e. K = 0 and Ã = A, there are terminal constraints Ti
such that for all i ∈ N1,S and any αi ∈ [0, 1]

xi ∈ αiTi ⇒ Ai,ixi ∈ αiTi and (xi, 0) ∈ αiZi. (24)

As a consequence αiTi are positive invariant, i.e. xi ∈ αiTi
implies that Ai,ixi ∈ αiTi, ∀i. Moreover, the second part
of the above equation (24) implies that if xi ∈ Ti for all i,
then the open-loop system will not violate the constraints.
Different choices for Ti are possible, e.g. small enough sub-
level set of the open loop cost.

In order to satisfy condition a) of Assumption 4 one can use
as terminal costs Fi the solution of the Lyapunov equations

Fi = AT
i,iFiAi,i +Qi = 0.

In a summary, for this special case one can select terminal
sets Ti and terminal costs Fi satisfying the conditions of
Assumption 4 forK = 0,M = 1 and withW = 0. However
using K = 0 might lead to bad performance.

5. SIMULATION EXAMPLE

We consider as simulation examples a reactor chain with
a non-adiabatic flash separator. The system (taken from
Venkat et al. (2005)) consists of two continuous stirred
tank reactors (CSTRs) followed by a non-adiabatic flash
as illustrated in Figure 3. Two irreversible reactions take
place in both reactors: A → B and B → C, where B
is the desired product and C a side product. In the flash
separator A is separated from B and C. The vapor consists
mostly of A and is therefore partly recycled and the liquid
bottom phase containing mostly B and C is removed.

From the nonlinear model we obtained, similar as in
Venkat et al. (2005), a linearized model. The flows F0, F1,
D and heat exchangers Qr, Qm, Qb can be manipulated.
The system is splitted into three subsystems: the first

incorporates the dynamics of the left CSTR and controls
the input flow FI and the heat flow Qr, the second
subsystem is the right CSTR has as controls the flow FII

and Qm. The last subsystem is given by the dynamic of
the flash and the controls Hm and D.

As constraints we assume that the states and input need
to be limited to ±10% of the steady state value. For the
MPC setup we use Q = I and R = 100I, Y = Z = 0 and
N = 20.

We transformed the system into new coordinates such that
the state constraints correspond to ‖x‖∞ ≤ 1. Using K as
the LQR gain and choosing M = 5 we compute

W =
(−0.992 0.082 0.060

0.032 −0.919 0.289
0.0129 0.1210 −0.9321

)

T ={x s.t. ‖x‖∞ ≤ 0.14}

F1 =

( 589 −0.043 −0.013 −0.20
−0.043 300.09 0.024 −0.068
−0.013 0.024 300 −0.020
−0.20 −0.068 −0.020 1261

)

F2 =

( 686 −4.19 −1.29 −18.76
−4.19 306 2.47 −5.67
−1.29 2.4 300 −2.35
−18.8 −5.67 −2.35 1287

)

F3 =

(

300 0 0 0
0 300 0 0
0 0 301 0
0 0 0 1261

)

,

which satisfy the condition of Assumption 4.

FI

D

Qr Qm
Qb

Hr

Hb

Hm

Fp

Fr FII

Fm

Fb

Fig. 3. Example: Two reactors followed by a flash drum.

We consider the tracking of the concentration of A and
B in the flash (outputs yI and yII , respectively). We use
ǫ = 0.001 and H = diag(2, 200). As illustrated in Figure
4 tracking works well in the first 150 steps. However,
afterwards due to the saturation of the inputs, this is no
longer the case.

In summary, for this example the proposed tracking
scheme using distributed MPC works well.

6. SUMMARY AND POSSIBLE EXTENSIONS

We presented a set-point tracking scheme for model predic-
tive control. We outlined how using a cyclic varying hori-
zon enables a distributed implementation of this scheme.
A simulation example illustrated the proposed approach.

Extension to uncertain system Often the plant is un-
certain, e.g. disturbances act on the plant. For bounded,
additive disturbances tube-based robust MPC, see e.g.
Mayne et al. (2011), can be used, c.f. Limon et al. (2012).

Nonlinear systems An extension to nonlinear systems
based on Limon et al. (2012) and the references therein
and Kögel and Findeisen (2012) seems to be possible.
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Fig. 4. Plots for CSTRs flash system.

Utilization of an additional prediction horizon Note that
enforcing an equality constraint x(k+1) = (A+BG)x(k)

where Ã = A + BG is Schur stable and the constraints
(7) can be done within distributed optimization methods,
especially if G is sparse. Under mild conditions, one can
choose Np large enough such that the set

S = {x|x(i+ 1) = Ãx(i), x(0) = x, (xj(i), uj(i)) ∈ Zj

i ∈ N0,Np−1},

is invariant, i.e. can be used as terminal set and might be
significantly larger than separable sets. In particular, for
large enoughNp this set might be the maximum admissible
set, see Rawlings and Muske (1993).
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