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Abstract: A new methodology to identify models in a pseudo-state space form for batch/fed-
batch processes is proposed. The methodology employs historical data from previous batch
runs, where a few intermittent measurements of product quality were made, and multivariate
statistical methods in order to identify data-based models. Multivariate statistical methods,
such as principal components analysis (PCA) and partial least squares (PLS), are being
increasingly employed for batch processes model identification due to the advantages they o↵er
over more di�cult and time-consuming first-principle modelling techniques. In the proposed
model identification approach, predictors are obtained employing PCA and PLS algorithms.
Then, after a new vector of pseudo-states is defined, a pseudo-state space model is identified
by performing an algebraic manipulation of the PCA and PLS statistical models. The ability
of the pseudo-state space models to accurately predict future process variable trajectories is
demonstrated by means of a simulation benchmark for penicillin production.

Keywords: Batch processes monitoring; Principal component analysis; Partial least squares;
State space models.

1. INTRODUCTION

Continuous and discontinuous operations can be encoun-
tered in the chemical industry. Whilst continuous op-
erations are mostly employed for high volume produc-
tion, discontinuous ones (batch or semi-batch) are best
suited for industry sectors focused on the manufacture of
low-volume, high value added products such as specialty
chemicals, pharmaceuticals, polymers, food, among others
(Bonvin et al. (2006)). It is clear that batch processes
constitute a very important part of the chemical industry.
Furthermore, new market environment has generated an
increase in the demand of low-volume high-added value
products (Barbosa-Póvoa (2007)), which is the main rea-
son why the development of batch process monitoring and
control techniques has received considerable interest from
both academia and industry.

The development of batch process models that can be
used for monitoring and control represents an important
challenge for process engineers, due to the complex char-
acteristics of this type of discontinuous processes. Batch
processes are distinguished by their finite duration, time-
varying and non-linear dynamics, irreversible behaviour,
and lack of equilibrium condition (Bonvin (1998)). Initial
studies of batch processes were based on rigorous first-
principles models. However, the identification of such type
? This research project is funded by the Mexican Science and
Technology Council (CONACyT).

of models is very time consuming. Furthermore, when this
type of models is being developed it is common practice to
make simplifying assumptions, due to the di�culty that
the characterization of a complex chemical phenomena
represents (Luyben (2007)). In practice, such assumptions
could make the model unreliable when used for predictions
purposes.

In recent years, multivariate statistical methods have been
increasingly used to identify data-based models in order
to monitor and control batch or semi-batch processes; the
latter can be attributed to the advantages these methods
o↵er over the ones requiring deep theoretical understand-
ing of the process. Data-based modelling does not require
detailed a-priori knowledge of the process, models are
relatively easy to identify and keep up to date. Amongst
the data-driven methodologies used to identify batch pro-
cess models for monitoring and control purposes, multi-
way principal component analysis (MPCA) and multi-way
partial least squares (MPLS), which were proposed by
MacGregor and co-workers (Kresta et al. (1991); Nomikos
and MacGregor (1994)), have received particular atten-
tion from researchers. Recently, these techniques have
been further investigated resulting in the development of
methodologies able to identify models for control purposes.
In Golshan et al. (2010) a multivariate model predictive
control (MPC) is proposed based on a multi-phased prin-
cipal component analysis (PCA) model. This methodology
has been further studied in Golshan et al. (2011), where
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di↵erent modelling alternatives were investigated. First a
model for the batch process is identified using historical
data, then a trajectory tracking controller is designed
around such PCA model. The controller has most of the
characteristics of a standard MPC. However, due to the na-
ture of the model, constraints to the manipulated variables
can not be included straightforwardly; furthermore, during
a new batch run, measurements of process variables must
be appropriately scaled before using them for prediction
purposes. These are reasons why the MPC controller has to
be specifically designed for this type of data-based models,
therefore standard MPC cannot be formulated using such
models. Furthermore, the technique proposed in Golshan
et al. (2010) is only capable of estimating future values
of the readily measured variables, it does not provide
predictions of batch product quality. In Wan et al. (2012)
a robust control methodology is proposed, where a partial
least squares (PLS) model for batch end-product quality
is identified and then a tailored MPC controller is used
to achieve batch end-quality specifications. However, the
identified PLS model is only able to predict product qual-
ity at the batch end-point rather than during the batch
progression. Therefore, a controller is designed specifically
for this type of model. Such controller has MPC charac-
teristics, but due to the way the PLS model is constructed
standard MPC cannot be formulated.

This paper presents an alternative modelling technique
based on PCA and PLS algorithms in order to identify
models for batch or semi-batch processes. The proposed
model identification methodology assumes that a few in-
termittent measurements of batch product quality were
taken during the batch runs that form the training data.
Then the data is arranged using the unfolding approach
proposed in Marjanovic et al. (2006). Therefore, batch
quality predictions can be made throughout the duration
of the batch. The models obtained using the methodology
proposed in this paper are in a general state space form,
and apart from being able to deliver accurate predictions
of process variable values (including quality related ones)
during the batch operating time, they o↵er the possibility
to be integrated into standard MPCs for trajectory track-
ing of batch product quality. The remainder of the paper is
structured as follows. In Section 2 the PCA and PLS algo-
rithms are briefly described. Then, the pseudo-state space
model identification methodology based on multivariate
statistical methods and intermittent measurements is ex-
plained in Section 3. Some results regarding the prediction
capabilities of the proposed modelling methodology are
shown in Section 4. And finally, some concluding remarks
and intended future work are presented in Section 5.

2. MULTIVARIATE STATISTICAL METHODS

Multivariate statistical methods such as PCA and PLS
have been successfully used in continuous processing appli-
cations, where data matrices are two-dimensional arrays.
However, the historical data-set collected from a batch
process forms a three-dimension matrix X consisting of
I batches, J process variables 1 , and K sample instants,
as shown in Fig 1. In order to handle three-dimensional
1 Total number of process variables J = n

x

+ n
u

, where n
x

is
the number of readily measured variables, and n

u

is the number
of manipulated variables.

arrays, MPCA and MPLS are used, which are capable of
handling data matrices with three dimensions after the
data has undergone through an unfolding step; in fact,
MPCA and MPLS are equivalent to carrying out standard
PCA and PLS on larger two-dimensional arrays. There
are several ways to unfold the data collected from a batch
process, with batch wise unfolding (BWU) considered the
most logical approach for modelling di↵erences among the
batches (Golshan et al. (2011)). The BWU approach is
depicted in Fig. 1 where the original matrixX (I ⇥ J ⇥K)
is unfolded into a matrix with two dimensionsX (I ⇥ JK),
in which each row corresponds to the information from
each individual batch run, and all the process variables at
di↵erent sample instants are put beside each other.

Fig. 1. Batch wise unfolding of original data-set.

2.1 Multi-way principal component analysis

MPCA is a method consisting of applying PCA to the
unfolded batch process data 2 . Such method is used for
projecting the original data onto a score space T with
reduced dimensions:

X = TP

T + E (1)

where T 2 RI⇥n
lv , P 2 RJK⇥n

lv , and E 2 RI⇥JK are
the scores, loadings and residuals matrices respectively,
nlv represents the number of latent variables retained that
account for most of the data variability, this value can be
obtained through cross-validation (Tan et al. (2012)). If an
appropriate nlv is selected, the residual matrix E contains
negligible information and can be discarded.

2.2 Multi-way partial least squares

In order to identify a MPLS model, batch process data
is divided into cause/input variables and e↵ect/output
variables. The input matrix usually corresponds to the
unfolded process variables X (I ⇥ JK), and the output

2 Prior to performing PCA or PLS, the data is scaled to zero mean
and unit variance.
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matrix Y (I ⇥ ny) corresponds to measurements of batch
product quality, where ny is the number of quality related
outputs. Note that such measurements are usually taken
at the end of each batch run. Performing PLS on these
matrices also results in a reduced dimension model of the
form:

X = TP

T + E (2)

Y = UQ

T + F (3)

where T 2 RI⇥n
lv , P 2 RJK⇥n

lv , and E 2 RI⇥JK are the
input scores, loadings and residuals matrices, respectively;
similarly, U 2 RI⇥n

lv , Q 2 Rn
y

⇥n
lv , and F 2 RI⇥n

y

are the output scores, loadings and residuals matrices,
respectively. The input and output scores are related by a
diagonal matrix � 2 Rn

lv

⇥n
lv so that U = T�. The non-

linear iterative partial least squares (NIPALS) regression
algorithm is normally used to obtain the PLS model (Wold
et al. (1987)), in this algorithm an additional weighting
matrix W 2 RJK⇥n

lv is used to calculate the scores
T = XW

�
P

T
W

��1
. In practice, the PLS model is often

expressed as a predictive model directly relating the input
and output variables:

Y = XW

�
P

T
W

��1
�Q

T

| {z }
⇥

+F

⇤ (4)

where F

⇤ is the residuals matrix containing negligible
information if an appropriate nlv were selected.

3. PSEUDO-STATE SPACE MODEL
IDENTIFICATION

The proposed methodology for identifying models for
batch processes in a general state space form is based
on the data arrangement proposed by Marjanovic et al.
(2006), and on PCA/PLS algorithms. After the data-based
models have been obtained and a vector of pseudo-states
has been defined, algebraic manipulation is carried out on
the PCA and PLS models in order to obtain a model in a
standard state space representation.

3.1 Data arrangement

The method for identifying statistical models using inter-
mittent measurements consists in a re-arrangement of the
unfolded data. Pseudo-batches are created at those inter-
mittent measurement instants and they are aligned toward
their end-points. Then, a modelling window size (Kw) is
selected and all the information outside such window is
discarded. The windows size is equal to the size of the
smallest pseudo-batch.

In order to illustrate the new data alignment Fig. 2
is presented, where data from two di↵erent batch runs
is depicted; during each batch run three measurements
of product quality were taken, therefore a total of six
pseudo-batches (Iw = 6) are created and they are aligned
toward their end-points as shown in Fig. 2. Afterwards,
Kw is selected to be equal to the number of sample
instants contained in the smallest pseudo-batch. As a
result, two new input and output matrices are formed:
Xw (Iw ⇥ JKw) and Yw (Iw ⇥ ny). For a more detailed
description of the data arrangement the reader is referred
to Marjanovic et al. (2006).

Fig. 2. Batch wise unfolding of original data containing
intermittent measurements.

In order to identify the pseudo-state space model, an
additional input matrix

�
Xss 2 RI

w

⇥J(K
w

�1)
�
is formed.

This matrix is obtained by removing the first J columns
of Xw. The new input and output matrices have the form:

Xw =

2

64
x

T
1,1 u

T
1,1 · · · x

T
1,K

w

u

T
1,K

w

...
...

x

T
I
w

,1 u

T
I
w

,1 · · · xT
I
w

,K
w

u

T
I
w

,K
w

3

75 (5)

Xss =

2

64
x

T
1,2 u

T
1,2 · · · x

T
1,K

w

u

T
1,K

w

...
...

x

T
I
w

,2 u

T
I
w

,2 · · · xT
I
w

,K
w

u

T
I
w

,K
w

3

75 (6)

Yw =

2

64
y1,1 · · · y1,n

y

...
...

yI
w

,1 · · · yI
w

,n
y

3

75 (7)

where x 2 Rn
x

⇥1 is the column vector of the readily
measured variables, and u 2 Rn

u

⇥1 is the column vector
of the manipulated variables.

3.2 Model identification

Before performing PCA or PLS analysis, each column of
matrices Xw, Xss and Yw is scaled to zero mean and unit
variance. The mean (µ) and standard deviation (�) row
vectors used for scaling the data arrays are:

µX
w

= [ m̄1 · · · m̄JK
w

] 2 R1⇥JK
w (8)

�X
w

= [ std1 · · · stdJK
w

] 2 R1⇥JK
w (9)

µY
w

=
⇥
m̄1 · · · m̄n

y

⇤
2 R1⇥n

y (10)

�Y
w

=
⇥
std1 · · · stdn

y

⇤
2 R1⇥n

y (11)

where m̄n and stdn are the mean and standard deviation,
respectively, of the n-th column of the corresponding
matrix. PCA is then applied to matrix Xw, and PLS is
applied to matrices Xss and Yw in order to identify the
statistical models:
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Xw = TP

T + E (12)

Yw =Xss⇥+ F (13)

After the PCA and PLS models have been obtained, a
pseudo-states vector (z) is to be defined. Such vector at
sample instant k has the form:

zk =
⇥
x

T
k�K

ss

+1 u

T
k�K

ss

+1 · · · xT
k u

T
k

⇤T
(14)

where Kss = Kw�1. Then, in order to estimate the future
values of the readily measured variables, x, at sample
instant k+1, a data imputation algorithm called projection
to the model plane (PMP), presented in Nelson et al.
(1996), is used along with the PCA model depicted in
equation (12). First, the loadings matrix P is grouped into
two parts, corresponding to the known, P ⇤, and unknown,
P

], information:

P

⇤ =

2

66666664

p1
...

pJK
ss

pJK
ss

+n
x

+1
...

pJK
w

3

77777775

2 R(JK
ss

+n
u

)⇥n
lv (15)

P

] =

2

64
pJK

ss

+1
...

pJK
ss

+n
x

3

75 2 Rn
x

⇥n
lv (16)

where pm represents the m-th row vector of the loadings
matrix P . Using PMP, future values of the readily mea-
sured variables can be calculated as follows:

xk+1 = P

]
�
P

⇤T
P

⇤��1
P

⇤T
| {z }

�


zk

uk+1

�
(17)

where � 2 Rn
x

⇥(JK
ss

+n
u

). In equation (17) � can be

divided in two matrices so that xk+1 = [�z �u]


zk

uk+1

�
;

where �z 2 Rn
x

⇥JK
ss and �u 2 Rn

x

⇥n
u . Next, matrices

A and B can be formed:

A=

"
0 (J (Kss � 1)⇥ J) IJ(K

ss

�1)

�z

0 (nu ⇥ JKss)

#
(18)

B =

"
0 (J (Kss � 1)⇥ nu)

�u

In
u

#
(19)

In equation (18) and equation (19), 0 (m⇥ n) represents a
matrix of zeros with m rows and n columns. Similarly, Ii
represents an identity matrix of size i. Utilising matrices
defined in equations (13), (18) and (19), the state space
model used to compute the future pseudo-state (zk+1 2
RJK

ss

⇥1) and output (yk 2 Rn
y

⇥1) column vectors can be
defined as follows:

zk+1 =
�
A

⇥�
zk � µ

T
1

�
↵ �1

⇤
+

B

⇥�
uk+1 � µ

T
2

�
↵ �2

⇤ 
⌦ �

T
3 + µ

T
3 (20)

yk =
�
⇥T

⇥�
zk � µ

T
3

�
↵ �3

⇤ 
⌦ �

T
Y
w

+ µ

T
Y
w

(21)

where ↵ and ⌦ represents the Hadamard division and
multiplication, respectively. In equation (20) and equa-
tion (21), standard deviation (�1:3) and mean (µ1:3) row
vectors are constructed as follows:

�1 = �X
w

(1 : JKss) (22)

�2 = �X
w

(JKw � nu + 1 : JKw) (23)

�3 = �X
w

(J + 1 : JKw) (24)

µ1 = µX
w

(1 : JKss) (25)

µ2 = µX
w

(JKw � nu + 1 : JKw) (26)

µ3 = µX
w

(J + 1 : JKw) (27)

Note that the scaling vectors (�, µ) can be incorporated
into the state space model in equation (20) and equa-
tion (21). Resultant state-space model matrices A, B, C,
µz, and µy are then given as follows:

A=A⌦
⇥
�

T
3 · (1↵ �1)

⇤
(28)

B =B ⌦
⇥
�

T
3 · (1↵ �2)

⇤
(29)

C =⇥T ⌦
⇥
�

T
Y
w

· (1↵ �3)
⇤

(30)

µz = µ

T
3 �Aµ

T
1 �Bµ

T
2 (31)

µy = µ

T
Y
w

� Cµ

T
3 (32)

where 1 represents a row vector of ones; for equation (28)
and equation (30) the size of such vector is (1⇥ JKss), and
for equation (29) the size of 1 is (1⇥ nu). Therefore, the
pseudo-state space model based on multivariate statistical
methods is:

zk+1 =Azk +Buk+1 + µz (33)

yk =Czk + µy (34)

The structure of the model depicted in equations (33) and
(34) can be related to subspace model identification (SMI)
applied to continuous processes. Therefore, it should be
possible to utilize the modelling procedure presented in
this paper to identify state-space models of continuous
processes, which would exploit the ability of PLS technique
to handle highly correlated data sets. A work concerning
the application of PLS-based models within the MPC
control framework to continuous processes is presented in
Lauŕı et al. (2013).

4. CASE STUDY

In this section, a benchmark simulation of a fed-batch
process is used to demonstrate the ability of the proposed
modelling approach to identify models that can make
accurate predictions of batch product quality. The model
validation was based on statistical indices for comparing
predicted variable values against the actual ones.

4.1 Process description and model identification

The case study used was developed by Birol et al. (2002),
which corresponds to a benchmark simulation for fed-
batch fermentation of penicillin and is based upon a series
of detailed mechanistic models that describe the fermen-
tation process. Although the actual penicillin simulator
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considers multitude of various process variables, many
of these cannot be continuously measured in most real-
world applications. Therefore, in this case study only the
following variables are assumed to be measured hourly in
order to ensure that the case study is realistic:

(1) Aeration rate.
(2) Agitation power.
(3) Substrate feed temperature.
(4) Carbon dioxide (CO2) concentration.
(5) Dissolved oxygen (DO) concentration.
(6) Culture volume.
(7) pH.
(8) Fermenter temperature.

These eight process variables form the vector x, and the
only manipulated variable u is the substrate feed rate.
The quality related output variable was considered to be
the biomass concentration, which can only be measured
intermittently throughout the batch operating time.

Data from 30 batches was collected for model building,
with each batch having a duration of K = 200 hours, the
process variables were measured hourly and filtered pseudo
random binary signals (PRBS) were superimposed on the
nominal substrate feed rate of 0.045 l/hr, as well as on the
aeration rate and agitation power in order to excite process
dynamics. It was further assumed that a few biomass
concentration measurements were taken during each batch
run. A single sample was randomly taken between the
45th and 55th hour, another one between the 95th and
105th hour, a third one between the 145th a 155th hour;
and a last one by the end of each batch cycle. Therefore,
four measurements were taken during each batch run,
resulting in the total of 120 pseudo batches, which were
created and aligned according to the procedure depicted in
Fig. 2. The length for the modelling window was Kw = 45
corresponding to the size of the smallest pseudo-batch.
Afterwards, a pseudo-state space model is identified based
on PCA and PLS, following the methodology described in
Section 3.

4.2 Model validation

The performance indices used to analyse the model accu-
racy were the mean of absolute percentage error (MAPE)
and the R2 statistic:

MAPE =
100

K �Kw + 1

KX

k=K
w

�����
b
Yk � Yk

Yk

����� (35)

R2 = 1�

KP
k=K

w

⇣
b
Yk � Yk

⌘2

KP
k=K

w

⇣
b
Yk � Y

⌘2
, where Y =

KP
k=K

w

Yk

K �Kw + 1
(36)

MAPE provides the absolute error in terms of percentage,
where error is defined as the di↵erence between the pre-
dicted (bY ) and the actual (Y ) values. The R2 statistic is
used to asses the amount of variability accounted for by
the model and it ranges between 0 and 1, with the value
of 1 indicating a perfect fit.

In order to demonstrate the prediction capabilities of the
identified model, 50 new batches were simulated and the

di↵erences between the estimated and actual values were
analysed. During the simulations a white noise with a
signal to noise ratio 3 (SNR) equal to 60 dB was added
to the measurements. For each batch run the first and
only decision point was at k = 45, from this instant (as-
suming that the future values of the manipulated variable
were known) the future process variable trajectories were
predicted using the identified state space model. Fig. 3
shows the MAPE obtained from biomass predictions in his-
togram form. By observing the histogram it can be noted
that the percentage of error is approximately between
0.2% and 1.4% for all the simulated batches, and that
for the majority of them the error was actually less than
1%. These results indicate that the biomass predictions
obtained with the model were very close to the actuals
values.
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Fig. 3. Histogram of the MAPE from 50 batches.

Fig. 4 presents the histogram of the R2 statistic obtained
from predictions of the biomass concentration, where the
values are expressed in terms of percentage. By inspecting
this figure it can be seen that the percentage of vari-
ability accounted for was at least 95.5% approximately.
Furthermore, by paying closer attention to Fig. 4 it can
be seen that most of the variability accounted for by the
model during the 50 batches was actually greater than
97%, only eight batches had R2 values between 95.5% and
97%. Therefore, from the information presented in Fig. 3
and Fig. 4 it can be concluded that the model is able to
accurately predict the biomass concentration.

Additionally, the plot shown in Fig. 5 is included to show
the amount of percentage error obtained for each readily
measured process variable during the 50 batch simulations.
In Fig. 5 each box corresponds to a readily measured
variable according to the list presented at the beginning
of this section, e.g. variable 4 is CO2 concentration. For
each box, the central red mark represents the median, the
edges of the boxes are the 25th and 75th percentiles and
the whiskers extend to the most extreme data points. By
inspecting this plot it can be noted that the percentage of
error was less than 3.5% for all the variables. Furthermore,
from a closer look to Fig. 5 it can be seen that only the
agitation power (variable 2) had estimation errors between

3 SNR = 20 log

⇣
RMS

signal

RMS
noise

⌘
dB
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0.5% and 3.5% approximately. For the rest of the variables
the error was below 1%.
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Fig. 4. Histogram of R2 from 50 batches.
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Fig. 5. Average MAPE for each readily measured variable.

5. CONCLUSIONS

In this paper a new methodology to identify batch pro-
cesses models in a general state space form was proposed,
which represents a practical way to obtain prediction
models using multivariate statistical methods. From the
case study employed it was demonstrated that the model
obtained using the proposed methodology was able to
give accurate predictions throughout the batch operating
time. Predictions were obtained for both the continuously
measured process variables and, more importantly, the
quality related variables. This could facilitate design of
controllers for trajectory tracking of batch product quality.
Since the models obtained with the methodology presented
in this paper are in a general state space form, standard
MPC formulations could be used to design batch process
controllers, opposed to the common practice of designing
a predictive controller specifically for the PCA or PLS
models when such statistical techniques are used for model
identification. Hence, future work will be carried out where
the proposed modelling approach will be used within gen-
eral MPC architecture for developing trajectory tracking
controllers for batch/fed-batch product quality.
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