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Abstract: Oil price significantly affects the economic performance of an oil field. In this study,
Model Predictive Control (MPC) is used as a reference tracking method to provide corrective
control action by meeting an objective, which balances short term and long term effects, based
on an updated oil price. The long-term optimized production profile is based on a predicted oil
price while the short-term objective is optimized with respect to the predicted short-term oil
price by applying MPC. The fluid flow equations must be solved many times to find an optimal
input for a short-term horizon; therefore, instead of a large-scale nonlinear reservoir model,
local linear models are used to decrease the computation time for short-term optimization. The
developed method is tested with several oil price scenarios on a synthetic case. The efficiency of
the developed method is confirmed by comparing its economic performance to that using open
loop long-term optimization.

Keywords: Short-term production optimization, Balanced objective function, Time-varying oil
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1. INTRODUCTION

Optimizing oil production is important to ensure good eco-
nomic performance of an oil field. Many parameters such
as heterogeneities in reservoir properties do affect such an
economic objective. The situation is further complicated
by the uncertainty in the parameters. The variation in
oil price is a major factor in oil field management. For
instance, an oil price increase may result in an operational
strategy with increased production, possibly harming long-
term oil recovery (van Essen et al. (2011)). A balanced
objective function that incorporates both long-term and
short-term objectives, and which is determined by the oil
price is therefore of interest and can help to avoid these
problems.

Handling constraints consisting of bounds on injection
rates and bottom hole pressures (bhp) is an inseparable
part of production optimization of an oil field. MPC is
widely used as a robust controller with constraint handling
capabilities in the process industries (Qin and Badgewell
(2003)), but has only been used to a limited extent in
oil and gas production. In this study we apply MPC
to production optimization of an oil field for two more
reasons. First, MPC enables feedback so as to incorporate
recent short-term predictions of the oil price into the
scheme. Such predictions are significantly more accurate
than long-term predictions. Second, MPC results in robust
and efficient solutions.

In short-term production optimization, as in all optimiza-
tion problems, the fluid flow equations must be solved
many times to obtain an optimal solution. Reduced-order
modeling procedures are therefore useful when the sim-
ulation model requires long run times (van Essen et al.
(2010)). This paper thus uses local linear models to de-
crease computation time.

In this paper, we first develop a set of local linear models.
A typical multi-level control hierarchy is subsequently
defined for an oil field, and the developed long-term
and short-term optimization methods are presented in
the following section. In Section 4 linear MPC is briefly
described. Finally, a synthetic simulation is conducted for
10 different oil price scenarios to verify the accuracy and
efficiency of the developed method; the paper ends with
conclusions.

2. RESERVOIR LOCAL LINEAR MODELING

In a typical commercial reservoir simulator, the well condi-
tions are used as inputs and there are various outputs, such
as the production rates of each phase for a given reservoir.
Thus, the simulator maps the control actions to an output
vector. (1) shows a map for a two-phase reservoir:[

qo
qw

]
= M(

[
qi
pbh

]
), (1)

where qi and pbh denote the vectors corresponding to the
injection rates and the bhp of the wells, respectively. The
terms qo and qw denote the oil and water production rates,
respectively.
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Here, we develop a set of local linear models, which are
mathematically defined functions that describe the dy-
namic relationship between the inputs and the outputs for
short prediction horizons and uses autoregressive models
with exogenous inputs (ARX models) in the identification
algorithm. In this paper, a set of ARX models is used
for reference tracking of the long-term optimization to
relate production rates to the injection rates and bhp of
the wells. Each local linear model is computed around a
long-term operational trajectory, i.e., the control inputs
and the states that are defined for a long-term scenario.
Consequently, each local model is valid on a short-term
horizon in some neighborhood of the long-term trajectory.
Each local linear model is formulated as follows:

A(z) y = B(z) u (2)

where

y =

[
qo
qw

]
, u =

[
qi
pbh

]
(3)

where A(z) denotes an n × n diagonal matrix, and the
number of outputs, y, is denoted by n, the number of
control actions by m, and B(z) is an n ×m matrix. The
delay operator is denoted by z, while the elements of A(z)
and B(z) are defined as follows:

Aii(z) = 1 + ai1z
−1 + . . .+ anai z

−nai (4)

Bij(z) = bi1 + bi2z
−1 + . . .+ bnbij z

−nbij (5)

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
where nai denotes the number of poles, and nbij defines
the zeros.

Persistent excitation is essential for parameter convergence
in model identification; that is, the system must be excited
for the model to capture all of the relevant dynamics in
an identified model (Gevers (2005)). In this study, PRBS
signals are superimposed onto the long-term optimized
production strategy, u∗.

Obviously, a local model may have a smaller validity range
than typical variations in a long-term scenario. Therefore,
several local models are combined in this study (Johansen
and Foss (1993)). Consequently, the long-term horizon will
be divided into a number of shorter ranges over which
the long-term optimization solutions are approximately
constant. One local model will be identified for each of
these intervals.

3. MULTI-LEVEL CONTROL HIERARCHY FOR AN
OIL FIELD

In this study, production optimization of oil and gas
fields is performed using a hierarchical approach (Foss and
Jensen (2011)). The production and injection targets are
defined for a long-term horizon on the order of years and a
short-term horizon with the range of weeks as illustrated
by level 2 and 3 in Figure 1.

3.1 Long-term Production Optimization

The well settings, i.e., the bhp and the flow rates are
determined by maximizing an economic objective function.

Fig. 1. Multi-level control hierarchy (Foss and Jensen
(2011)).

The discrete form of the net present value (NPV) is widely
used and is defined by (6):

J =

KT∑
k=1

roqo,k − rwqw,k − riqi,k
(1 + b)

tk
τt

∆tk (6)

where ro denotes the fixed oil price, and rw and ri
are the water production and the water injection costs,
respectively, all of which are assumed to be constant. To
account for depreciation, the discount rate, b, is added for
a certain reference time, τt. The final time step is KT , and
∆tk denotes the time interval at the kth time step. The
oil production, water production and water injection rates
are denoted by qo,k, qw,k, and qi,k, respectively, at the time
step k.

The optimization problem can be formulated using a
constant oil price as follows:

u∗ = arg max
u

J (7)

s.t. f(xk+1, xk, uk) = 0, k = 1, . . . ,KT

g(uk) ≤ 0, x0 = x̂0
where f denotes the reservoir model. The initial conditions
are represented by x̂0, and g are the constraints corre-
sponding to the lower and upper bounds on the injection
rates and the bhp. The optimal control actions that are
used as a reference trajectory in short-term optimization
are denoted by u∗.

Many methods are available for solving the problem (7).
Gradient-based optimization is efficient to deal with large-
scale systems, such as production optimization in oil reser-
voirs, provided the gradient can be computed efficiently.
The adjoint method has been used in many papers for
similar problems, see for example Jansen (2011). This
method is sufficiently efficient since the gradient can be
computed in only two simulation runs regardless of the
number of optimization variables.

In this study, the adjoint method is used to determine
the gradient of the objective function with respect to the
control settings. We omit the detailed derivation of the
reservoir model equations because of space limitations,
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further details on the reservoir equations and the adjoint
model are available in Krogstad and Gulbransen (2011).

Let pn denote the vector that consists of the grid block
pressures and the unknown wellbore pressures at the time-
step n. Similarly, let sn−1 denote the grid block saturations
at the time step n − 1. Enforcing a volume balance, i.e.,
setting the sum of all of the outward fluxes from each block
equal to the source flux, yields to a positive semidefinite
matrix in a linear system equationB(sn−1) C D

CT 0 0
DT 0 0

 pn = Bun (8)

Here, the right-hand side is a function of the control input
vector un at the time step n.

We discretize the saturation equation using a standard
upstream weighted implicit finite volume method to yield
the following equation:

sn = sn−1 + g(υn−1, sn−1), (9)

where υ denotes the outward face fluxes and the well
perforation rates.

To derive the adjoint equations corresponding to (8) and
(9), we introduce the Lagrange multipliers λnu, λnp , λnπ̂,
and λns for each time step, tn, which correspond to the
dual variables υn, pn, π̂n, and sn, respectively. The adjoint
equations for the time step n are then given by

(I − ∂g(υn, sn)

∂sn
)λns = λn+1

s − ∂JnT

∂sn
− (

∂B(sn)υn+1

∂sn
)λn+1
u

(10)B(sn−1) C D̂
CT 0 0

D̂T 0 0

λnuλnp
λnπ̂

 =

−∂J
nT

∂υn
− ∂g(υn, sn)

T

∂υn
λns

0
0


(11)

Once the adjoint equations have been solved, the gradient
of the objective function J at the time step tn can be
computed as follows:

∇unJ =
∂JT

∂un
−AnD

Tλnυ −AnN
Tλnπ̂ (12)

where the matrices AnD and AnN are defined below:

−DDπ
n
D = AnDu+ bnD (13)

υ̂nN = AnNu+ bnN (14)

This gradient can be used with any gradient-based al-
gorithm to determine the new search direction and step
length and, thereby, the new control actions. The process
is repeated until some termination criterion, such as a
vanishing gradient, is satisfied.

3.2 Production Optimization in Short-term Horizon

The life-cycle water flooding problem, which was defined
in the previous section, can be solved by maximizing
the NPV. However, short-term effects must in practice
also be considered in reservoir management. As previ-
ously mentioned, short-term considerations may adversely
impact the long-term NPV (Suwartadi et al. (2012)). In
this paper, we therefore develop the following balanced

objective function to track the long-term control actions
while meeting the short-term objective:

Jbal = Js + Jl (15)

Js =

N∑
k=1

−ws,k(qTo,kq1) (16)

Jl =

N∑
k=1

wl,k[(uk − u∗k)TR2(uk − u∗k)

+ (yk − y∗k)TQ2(yk − y∗k)]

(17)

R2, Q2 � 0

where Js and Jl represent the short- and long-term ob-
jectives, respectively, N denotes the short-term horizon,
and q1, R2 and Q2 are a constant vector and two con-
stant matrices, respectively. The terms wl and ws are the
weighting factors for the short- and long-term objectives.
The vector of control actions is denoted by u and consists
of the injection rates and the bottom hole pressures. The
output vector of the phase production rates is denoted by
y. These two vectors are defined in (3).

It is challenging to determine suitable weighting factors
(van Essen et al. (2011)). In this paper, we develop a
method based on the oil price to determine these weights.
As previously stated, the long-term optimization problem
is solved using a fixed oil price on the entire horizon, which
is denoted by r∗o . The method developed for determining
the weights is based on the premise that if the oil price is
higher than the fixed price, r∗o , it is economically prudent
to increase production and vice versa. Therefore, ws and
wl can be defined by (18) - (20) below:

ws,k =


−1 if ro,k ∈ s1
3

√
ro,k − r∗o

∆r∗o
if ro,k ∈ s2

1 if ro,k ∈ s3
(18)

where 
s1 : ro,k < r∗o −∆r∗o ,

s2 : r∗o −∆r∗o ≤ ro,k ≤ r∗o + ∆r∗o ,

s3 : ro,k > r∗o + ∆r∗o .

(19)

| ws,k | +wl,k = 1. (20)

where ro,k is the oil price at the kth time step. The variable
∆r∗o depends on the operational strategy chosen by the
managers. Figure 2 shows the weight of the short-term
objective versus the oil price.

4. MODEL PREDICTIVE CONTROL

The optimization problem is formulated as follows:

min Jbal (21)

s.t. A(z)

[
qo(k)
qw(k)

]
= B(z)

[
qi(k)
pbh(k)

]
,[

qlo(k)
qlw(k)

]
≤
[
qo(k)
qw(k)

]
≤
[
quo (k)
quw(k)

]
, k = 1, . . . , N

where Jbal is defined by (15), and A(z) and B(z) are
obtained by the local linear model identification. The lower
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Fig. 2. Weight of short-term objective as a function of oil
price.

and upper bound of control actions are denoted by l and
u, respectively.

The theory of constrained linear MPC has been explained
in many papers, see for example Garcia et al. (1989). The
MPC algorithm is briefly explained below.

(1) Given a measurement of the output vector, the system
state is estimated at the current control time, and
the future control input is computed by solving an
optimization problem over a prediction horizon.

(2) The first part of the control input is implemented.

(3) The system is reoptimized over a receding horizon at
the next control time.

5. SIMULATION

In this example, we consider the 3D two-phase reservoir
described in Lie et al. (2012). The model contains a
production well and a couple of injector wells, and it is
mildly nonlinear. Figure 3 illustrates the entire model
configuration and Table 1 presents the simulation and
optimization parameters. There are a total of 13240 active
grid blocks.

Fig. 3. Permeability distribution, where red indicates high
permeability zones while blue shows low permeability
zones, of the reservoir model. The red line indicates
the production well location, the blue line on the right
corresponds to injector well 1 and the blue line on the
left corresponds to injector well 2.

Parameter Value Unit

r∗o 630 USD/m3

r∗w 10 USD/m3

r∗i 10 USD/m3

b 10 %

∆r∗o 100 USD/m3

µo 5 × 10−3 Pa.s

µw 1 × 10−3 Pa.s

ρo 859 Kg/m3

ρw 1014 Kg/m3

pint 200 bar

Table 1. Simulation and Optimization Param-
eters.

300

400

bhp injection well 1 (bar)

500

1000

1500

Injection rate well 2 (m
3
/day)

500 1000 1500
100

200

time step(day)

bhp production well (bar)

Fig. 4. Solution of the long-term optimization problem by
applying the line search method, which uses adjoints
to calculate the gradient.

The long-term horizon is 5 years. The control actions are
the injection rate of the first injector well and the bhp of
the second injector well and the production well. The lower
and upper bounds on the bhp are set equal to 100 bar and
400 bar, respectively. The lower and upper bounds on the
injection rate are set to 400m3/day and 5000m3/day, re-
spectively. The control actions are piecewise constant and
change every 25 days. Open loop production optimization
is implemented by using MATLAB Reservoir Simulation
Toolbox (MRST (2012)). Figure 4 illustrates the long-term
optimization results. We observe that the bhp of injection
well 1 starts from its upper bound, while the injection rate
of well 2 is equal to its lower bound at the beginning. This
stems from higher permeability in the neighborhood of the
injection well 2. As expected, the bhp of production well
initializes at its lower bound, which results in maximum
production rate.

As mentioned earlier the model is nonlinear, hence, we
identify a set of local linear models instead of one linear
model. By inspection of the long-term solution we divide
the 5 year period into 6 intervals at the following times:
80, 105, 250, 500 and 840. The order of the first model
is 5 while the others are second order models. The model
order choice is based on an assessment of a misfit measure.
To identify the local models, the control actions are
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Fig. 5. First 75 days of exciting control actions (red line)
and long-term optimization solution(blue line)
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Fig. 6. Comparison between the liquid production rates
from the simulator and the error of the identified
model

constructed by superimposing PRBS signals onto the long-
term optimization solution. The minimum switching time
is 1 day. This is a reasonable choice even though a longer
switching time, e.g. 3 days, would also work. The standard
deviation in the PRBS signal for bhp of the first injector
well and the production well is 5bar and 20% of the long-
term solution for the injection rate of the second injector
well. The PRBS signal may result in violations of the
bound constraints on the problem. This problem is solved
by moving the average value away from the constraint,
as illustrated in Figure 5. The exciting control actions
are applied to the simulator to identify the local models;
Figure 5 shows the exciting control actions for the first 75
days. The accuracy of replacing the simulator by the local
linear models in the short-term optimization procedure is
verified by applying the exciting inputs to the simulator,
and the output of the simulator and the error of the local
linear models are compared in Figure 6.

The MPC has a prediction horizon of 25 days. The weights
of the short- and long-term objectives are obtained using
(18)- (20). The other variables are normalized according to
their ranges. The MPC control actions are determined by
changes around the nominal control action obtained from
the long-term optimization solution.

The method is implemented for 10 different oil price sce-
narios where the oil price may change every 5 days, and
it is tested on the high fidelity reservoir simulator. Figure
7 compares the NPVs for half of the scenarios for both
methods, the open loop long-term optimization method
and the method developed here. The developed method is
superior to the open loop long-term optimization method
for all of the different scenarios; therefore the developed
method is concluded to be robust with respect to oil
price variations. Applying the solution of the long-term
optimization and the developed method to the model for
5 years yields average NPV values for the 10 scenarios of
1.37 × 108$ and 1.43 × 108$, respectively. Consequently,
the average increase in profit equals 3.8%. Figure 8 shows
the production rates for the first oil price scenario. The
production rates track the references when the oil price
is close to the predicted oil price for the long-term opti-
mization problem while the rates vary from the long-term
solutions for any deviation of the oil price from the long-
term predicted prices.

Figure 9 illustrates the difference between the oil produc-
tion rate of applying the developed method and the open
loop optimization solution divided by the nominal rate for
the first scenario (∆qo = (qo−q∗o)/q∗o) versus the difference
between the oil price of the aforementioned scenario and
the nominal oil price (∆ro = ro − r∗o). The big picture is
that the oil rate increases when the oil price increases and
vice versa. However, the dependency is clearly not linear.
Further, there are even circles in the second and fourth
quadrant; meaning that production rate may decrease
when the oil price is above the nominal value and vice
versa. The circles that are near to the horizontal axis are
related to situations where there are significant oil prices
variations within the 25 day MPC prediction horizon.

6. CONCLUSIONS

A new production optimization method is presented where
the time-varying oil price is the key variable for mak-
ing decisions. Both long-term and short-term objectives
are incorporated into a balanced objective function, the
balance being determined by the oil price. The long-term
and short-term objectives are optimized using a long-term
and a short-term oil price prediction, respectively. MPC is
applied as a reference tracking method where the reference
is the long-term optimized solution. Local linear models
are developed to decrease the computation time in the
short-term optimization problem. The simulation results,
using a high fidelity reservoir simulator, with different oil
price scenarios verify that the method can indeed be useful
when there is considerable short-term variations in the oil
price. If better control performance is required regardless
of the computational time, nonlinear MPC applied to the
nonlinear model may be an option.
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