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Abstract: A data-driven Bayesian framework for real-time performance assessment of inferen-
tial sensors is proposed. The application of the proposed Bayesian solution does not depend on
the identification techniques employed for inferential model development. The effectiveness of
the proposed method is demonstrated through a simulation case study.
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1. INTRODUCTION

Real-time analysis of process quality variables constitutes
an essential prerequisite for advanced monitoring and con-
trol of industrial processes. However, on-line measure-
ment of such variables may involve difficulties due to
the inadequacy of measurement techniques or low relia-
bility of measuring devices. Therefore, there has been a
growing interest in the development of inferential sensors
to provide real-time estimates of quality variables based
on their correlation with other process measurements. In
many industrial applications, complete and comprehensive
knowledge of involved processes is often not available. In
such cases, inferential models are developed on the basis
of first principles analysis as well as process data analysis.

In order to maintain the reliability of an inferential sensor,
it is important to assess the accuracy of its on-line pre-
dictions. Model uncertainty (plausible alternative model
structures/parameters) is one of the major sources of pre-
diction uncertainty (McKay et al., 1999). In the context of
process industries, deviations from design operating con-
ditions are the main factors resulting in the model uncer-
tainty and thus deterioration in performance of inferential
sensors. In most of the classical identification methods,
the objective is to minimize prediction errors pertaining
to the identification data-set. Therefore, the generaliza-
tion performance of the resulting inferential sensors are
not guaranteed. In such cases, significant changes in the

⋆ Financial support from Syncrude Canada Ltd., Suncor Energy
Inc., Alberta Innovates - Technology Futures (AITF), and the
Natural Sciences and Engineering Research Council of Canada in the
form of Industrial Research Chair in Control of Oil Sands Processes
is gratefully acknowledged.

operating space in which the model has been identified
would contribute to the model uncertainty.

Therefore, the conditional dependence of the reliability
of inferential sensor predictions on characteristics of the
input space and reliability of the empirical process model
should be thoroughly assessed in order to develop an on-
line performance measure. From the application point of
view, a desired performance measure has two essential
characteristics. First, it should effectively estimate any sig-
nificant deterioration in the prediction performance when
process operates outside the valid inferential region. Sec-
ond, implementation and interpretation of a performance
metric should be simple enough for practitioners to use.
Therefore, designing a proper performance index is not
straightforward. Although inferential sensors have been
widely used in process industries, there are only a few
publications providing a methodology to assess their on-
line performance. In Nomikos and MacGregor (1995) and
Vries and Braak (1995), approximate confidence intervals
have been developed to assess the accuracy of PLS pre-
dictions based on the traditional statistical properties.
The principal limitation of these approaches is that the
internal empty regions within the identification data (i.e.
the internal regions that do not contain any identification
data points) cannot be diagnosed (Soto et al., 2011).
Kaneko et al. (2010) proposed a distance-based method
to quantify the relationship between applicability domains
and accuracy of inferential sensor predictions. The au-
thors discussed that a larger Euclidean distance of an
observation to the center of identification data and to
its nearest neighbors would indicate a lower prediction
accuracy. This method suffers from two major drawbacks.
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First, variability of the input variables is not taken into
account when determining the Euclidean distance from
the center. Second, the different effects of input variables
on the prediction uncertainty are ignored by correlating
the prediction accuracy with a general distance measure.
Yang et al. (2009) applied an ensemble method to evalu-
ate the uncertainty of inferential sensor predictions. The
basic idea is to repeatedly generate bootstrap samples of
the identification data-set to re-estimate inferential model
parameters. With this multitude of models, the model
variation and the average model bias can be estimated.
Depending on the identification procedure used, however,
this method could be computationally intensive and would
not be suited for on-line applications. Kaneko and Funatsu
(2011) proposed to develop a multi-model inferential sen-
sor based on the time difference of input variables in order
to combine the information included in a set of local sub-
models into a global predictive model. Furthermore, the
accuracy of global predictions has been estimated using
empirical models describing the relationship between stan-
dard deviation of local predictions and standard deviation
of prediction errors. The major problem of this method is
that small variation in local predictions does not neces-
sarily imply a small prediction error. The proposed metric
only reflects the degree of similarities between the predic-
tion performance of different models and does not contain
any information about the reliability of each individual
model.

To address the aforementioned issues, this paper provides a
data-driven Bayesian framework for real-time performance
assessment of inferential sensors. Such Bayesian frame-
works utilizing discrete probability distributions have
proven to be useful for a variety of fault diagnosis problems
such as diesel engine fault diagnosis (Pernest̊al, 2007) and
control loop performance diagnosis (Qi et al., 2010). The
major contribution of the present work is to formulate
and solve the problem of inferential sensor performance
assessment under a Bayesian framework utilizing discrete
probability distributions. The main focus is to character-
ize the effect of the operating space on the prediction
accuracy in the absence of target measurements. The
proposed method has the following attractive features:
(1) A priori knowledge of process operation and underly-
ing mechanisms can be easily incorporated in a Bayesian
scheme so as to identify the criteria that might affect on-
line performance of the designed inferential sensor. (2)
Since probability density functions would reflect the actual
data distribution, empty regions within the identification
data-set can be identified. (3) Correlations between input
variables are taken into account. (4) Contribution of each
input variable in prediction uncertainty is studied. (5) Its
application does not depend on the identification tech-
niques employed for inferential model development. (6) Its
real-time implementation is computationally efficient.

The remainder of this paper is organized as follows. The
problem of real-time performance assessment of inferential
sensors is explained in Section 2. In Section 3, the problem
of reliability analysis of real-time predictions is rigorously
formulated under a Bayesian framework. In Section 4,
the effectiveness of the proposed Bayesian approach is
demonstrated through a simulation case srudy. Section 5
summarizes this paper with concluding remarks.

2. PROBLEM STATEMENT

Consider a class of inferential models given by

ŷt = g(ut; Θ) (1)

where ŷt denotes the predicted value of query variable
inferred from the real-time measurements of influential
process variables, ut = {uk,t}Kk=1.

Evaluating the performance of an inferential sensor often
amounts to analyzing the characteristics of prediction
errors. Prediction error, also known as residual, is defined
as the difference between the actual and predicted values
of query variable. That is, et = yt − ŷt, where yt denotes
the actual value of the query variable.

The absolute value of the prediction errors can be used
to identify the events that would affect the reliability
of the inferential model. Suppose that the performance
of the inferential sensor at each time instant, rt, can
take Re reliability statuses, i.e. rt ∈ {r1, ..., rRe}. For
instance, different degrees of reliability can be assigned
to the inferential sensor predictions as follows:

rj =

{
Reliable 0 < |et| ≤ 2σe

Moderately reliable 2σe < |et| ≤ 3σe

Unreliable Otherwise
(2)

where the thresholds are considered as design parameters
reflecting the tolerable amount of prediction error, and
need to be adjusted based on the requirements of each
application.

If yt is observed, calculation of the performance index
is straightforward. During on-line implementation of an
inferential sensor, however, such real-time measurements
are often not available frequently and regularly. Therefore,
the main challenge is to assess the reliability of the
inferential sensor predictions in the absence of actual
values. Mathematically, the objective is to evaluate the

conditional probability mass function f
(
et|ut, ŷt;σe

)
.

3. REAL-TIME PERFORMANCE ASSESSMENT OF
INFERENTIAL SENSORS

Given the training data-set D = {(ut, yt)}Nt=1, an infer-
ential sensor provides a real-time prediction, ŷt, on the
basis of real-time measurements of k input variables, ut =
{uk,t}Kk=1. It is noteworthy that the identification data-
set contains both input and output measurements that
are typically available from plant tests and/or historical
plant operations at lower sampling frequency. Therefore,
the model prediction errors within the identification data-
set, {et}Nt=1, can be directly calculated from {(ut, yt)}Nt=1.

A set of indicator variables, {Qt}Nt=1 = {qu1
t , . . . , quk

t }Nt=1 ∈
RK×N , is introduced to partition the operating space
into multiple modes. Suppose that each real-time input
measurement, uk,t, can take Ouk

operating statuses. Prior
knowledge of process operation (e.g. normal or unusual
operating conditions) can be incorporated to properly
partition the operating range of each process variable as
well as the operating space of a set of process variables. In
the absence of a priori knowledge, statistical analysis of
operational and laboratory data may guide the choice of
partitions. For instance, if it can be assumed that the input
variables are Gaussian distributed random variables such
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that uk ∼ N (µk, σ
2
k), then different operating statuses

may be assigned to the input measurements as follows:

quk
t =

{
Normal 0 < |uk,t − µk| ≤ 2σk

High 2σk < |uk,t − µk| ≤ 3σk

Abnormal 3σk < |uk,t − µk|
(3)

where the thresholds are considered as design parameters
chosen to provide adequate coverage of the operating
space. Moreover, the generalization performance of the
inferential sensor may guide the assignment of operating
statuses. We would like to emphasize that our proposed
method does not require any assumption about the prob-
ability density function (PDF) of input variables.

The on-line performance assessment of the inferential
sensor amounts to evaluating the posterior probability
distribution of rt given the operating status of the current
measured inputs with reference to the historical data. The
maximum a posteriori (MAP) estimate of reliability status
is thus obtained from the following expression:

r̂t = argmax
rt

p(rt|Qt,D) (4)

Applying Baye’s rule, the posterior probability of r given
reliability status of the current measured inputs and out-
put can be written as

p(rt|Qt,D) = γp(Qt|rt,D)p(rt) (5)

where γ is a normalizing constant.

The random variable rt is a categorical variable and can
be modelled by

p(rt) =

Re∏
j=1

p(rt = rj)[rt=rj ]

=

Re∏
j=1

(
ϖe

j

)[rt=rj ]
(6)

where the operation [rt = rj ] evaluates to 1 if rt = rj and
evaluates to 0 otherwise.

Each input indicator variable is a random categorical
variable. As a result, the vector of indicator variables
Qt is an assembly of K random categorical variables.
Given the reliability status of the inferential sensor, Qt

can thus be modelled by a joint multinomial distribution

with S =
∏K

k=1 Ouk
points in its sample space (i.e.

Qt ∈ {Q1, ..., QS}):

p(Qt|ϖQ
j , rt = rj ,D) =

S∏
s=1

p(Qt = Qs|rt = rj ,D)[Qt=Qs]

=

S∏
s=1

(
ϖs|j

)[Qt=Qs]
(7)

where ϖQ
j = {ϖs|j}Ss=1 is a set of hyperparametrs charac-

terizing the likelihood function in (5).

Since the hyperparameters are typically not known a
priori, the likelihood function is evaluated by integrating
over the hyperparametrs’ space:

p(Qt|rt = rj ,D) =

∫
p(Qt|ϖQ

j , rt = rj ,D)

× p(ϖQ
j |rt = rj ,D)dϖQ

j (8)

The first term in the above integral is given by (7).
Besides, Bayes’ rule can be applied to derive an explicit
expression for the second term. Therefore, the posterior
probability distribution of the hyperparameters given the
identification data D = {(Qt, et)}Nt=1 can be written as:

p(ϖQ
j |rt = rj ,D) = ξp(D|ϖQ

j , rt = rj)p(ϖQ
j |rt = rj) (9)

where ξ is a normalizing constant.

The chain rule of probability theory is used to factorize
the likelihood function in (9):

p(D|ϖQ
j , rt = rj) =

Nj∏
t=1

p(Qt|ϖQ
j , rt = rj)

=
S∏

s=1

(
ϖs|j

)νs|j (10)

where Nj =
∑S

s=1 νs|j denotes the number of samples in
the identification data-set for which the reliability status of
inferential sensor predictions was rj . Equation (10) holds
true only if it is reasonable to assume that the indicator
variables are time-wise statistically independent.

Furthermore, the following Dirichlet distribution is consid-
ered as the hyperprior in (9) to assure generality:

p(ϖQ
j |rt = rj) =

Γ
(∑S

s=1 αs|j
)∏S

s=1 Γ(αs|j)

S∏
s=1

(
ϖs|j

)αs|j−1
(11)

where {αs|j}Ss=1 are the Dirichlet parameters specified

such that Aj =
∑S

s=1 αs|j denotes the number of prior
samples for which the reliability status of inferential sensor
predictions was rj . Also, Γ(x) = (x − 1)! for all positive
integers x. The fact that the Dirichlet distribution is the
conjugate prior to the multinomial distributions justifies
the choice of the Dirichlet hyperprior.

Combining (9), (10) and (11), the posterior probability of
the hyperparameters then becomes (DeGroot, 1970),

p(ϖ|rt = rj ,D) =
Γ(Aj +Nj)∏S

s=1 Γ(αs|j + νs|j)

S∏
s=1

ϖ
νs|j+αs|j−1

s|j

(12)

Substituting (7) and (12) into (8), the posterior predictive
distribution can be further expressed as

p(Qt|rt = rj ,D) =

∫ S∏
s=1

(
ϖs|j

)[Qt=Qs]+νs|j+αs|j−1
dϖQ

j

× Γ(Aj +Nj)∏S
s=1 Γ(αs|j + νs|j)

(13)

Hence,

p(Qt = Qd|rt = rj ,D) =
Γ(Aj +Nj)Γ(αd|j + νd|j + 1)

Γ(Aj +Nj + 1)

×
∏S

s̸=d Γ(αs|j + νs|j)∏S
s=1 Γ(αs|j + νs|j)

=
αd|j + νd|j

Aj +Nj
(14)

Finally, (6) and (14) can be combined to obtain an explicit
expression for the posterior probability distribution of (5):
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p(rt = rj |Qt = Qd,D) = γϖe
j

αd|j + νd|j

Aj +Nj
(15)

The above posterior probability distribution can be eval-
uated to obtain the MAP estimates of the qualitative
reliability status of the inferential sensor (see (4)). As
illustrated in Fig. 1, rt = rj implies that bj−1 < |yt −
ŷt| ≤ bj , where bj−1 and bj are the lower and upper
boundaries of |et|, respectively. Note that an expression
similar to (15) has also been derived by Qi et al. (2010)
assuming that each discrete random variable can only take
two values (e.g. faulty and normal). In this work, however,
(15) applies to multiple values of the discrete random
variables.

In order to quantify the real-time performance of inferen-
tial sensors, it is proposed to associate a numerical value
to each reliability status in the light of the historical
probability distribution of prediction errors. Suppose that
F (ẽt|ut, yt) denotes the cumulative distribution function
(CDF) of the absolute value of prediction error, ẽt = |yt−
ŷt|. As the final stage of the training process, a quantifiable
measure of reliability can be defined based on the CDF of
the random variable ẽt as follows:

rj , p(ẽt > bj)

p(ẽt > b1)
=

1− F (bj)

1− F (b1)
for j = 1 · · ·Re (16)

where p(ẽt > b1) is a normalizing constant.

Moreover, F (bj) = p(ẽt < bj) is the historical probability
of the inferential model resulting in a prediction error
smaller than bj . Alternatively, rj ∝ p(ẽt > bj) is the

historical probability of the inferential model resulting in
a prediction error greater than bj . The values of rj satisfy
the following conditions:

r1 = 1 and rRe → 0 as bRe → ∞ (17)

where r1 and rRe corresponds to the highest and lowest
performance of the inferential sensor, respectively. To
illustrate, the following reliability statuses can be specified
with reference to the cumulative distribution function
shown in Fig. 2:

rj =


1 0 < ẽt ≤ b1

1− F (bj)

1− F (b1)
b1 < ẽt ≤ bj

0 bRe−1 < ẽt

(18)

Finally, a reliability index (RI) can be assigned to each
real-time prediction such that,

RIt , E[rt] =
∑
j

p(rt = rj |Qt = Qd,D)rj (19)

where RIt ∈ [0, 1].

3.1 Design Procedure

To summarize our discussion thus far, the procedure
followed to design a Bayesian performance assessment
framework is outlined below:

1. Include the prior knowledge of process operation to
properly partition the operating range of each process
variable as well as the operating space of a set of
process variables. In the absence of relevant prior
information, the operating range of the kth input
variable may be partitioned as follows:
1.1. Approximate the CDF of the kth input, Fk(.),

based on the identification data.
1.2. Specify the operating range of each input variable

as F−1
k (b)−F−1

k (a), where a, b ∈ [0, 1] and b > a.
Note that a and b are design parameters chosen
based on the quality of identification data. For
instance, a = 0.05 and b = 0.95 can be selected
to reduce the effect of outlying observations.

1.3. Decide on the number of operating statuses, Ouk
,

to be considered.
1.4. Partition the operating range of uk into equal-

width intervals, i.e. the width of each interval
would be equal to (F−1

k (b)− F−1
k (a))/(Ouk

− 2).
It should be noted that any other data-driven ap-
proach can be used to partition the operating space
(see (3)).

2. Specify a set of indicator variables to denote the
operating status of each input variable.

3. Calculate the model prediction errors within the
identification data-set.

4. Specify possible reliability statuses of inferential sen-
sor predictions by analyzing the PDF of the absolute
value of prediction error (see (2)).

5. Assign a numeric value to each reliability status based
on the CDF of the absolute value of prediction error
(see (16)).

6. Determine the prior distribution of reliability sta-
tuses, {ϖe

j}
Re
j=1 , based on the expected prediction

performance of the inferential sensor as well as the
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misclassification costs involved in inaccurately pre-
dicting the reliability of predictions.

7. Determine the prior distribution of hyperparameters

given the reliability status, p(ϖQ
j |rt = rj), based on

the explicit prior knowledge. Note that the prior infor-
mation over hyperparameters can be well-represented
by Dirichlet distributions (see (11)).

8. Characterize the posterior probability distribution of

hyperparameters given the reliability status, p(ϖQ
j |rt =

rj ,D) (see (12)).
9. Characterize the likelihood of indicator variables for

each reliability status, p(Qt|rt = rj ,D), by integrat-
ing over the hyperparametrs’ space (see (13)).

10. Characterize the posterior probability distribution of
each reliability status, p(rt = rj |Qt,D) (see (15)).

4. CONTINUOUS FERMENTATION REACTOR
SIMULATION

The governing equations of a continuous fermentation
reactor (CFR) are given by (Henson and Seborg, 1997):

Ẋ =−DX + µX (20)

Ṡ =D(Sf − S)− 1

YX/S
µX (21)

Ṗ =−DP + (αµ+ β)X (22)

where specific growth rate (µ) is defined as

µ =
µm

(
1− P

Pm

)
S

Km + S + S2

Ki

(23)

Biomass concentration (X), substrate concentration (S)
and product concentration (P ) are state variables of the
system. Dilution rate (D) and feed substrate concentration
(Sf ) are considered as system inputs. Moreover, cell-
mass yield (YX/S), yield parameters (α, β), maximum
specific growth rate (µm), product saturation constant
(Pm), substrate saturation constant (Km) and substrate
inhibition constant (Ki) are model parameters.

The identification data was simulated using the variable
settings presented in Table 1 as well as the non-linear
dynamic model given by (20)-(23). Data are collected at
a relatively slow sampling rate so that data can be con-
sidered at the steady-state. An empirical linear model has
been identified to describe the steady-state relationship be-
tween the input variables, dilution rate and feed substrate
concentration, and the output quality variable, biomass
concentration. Linear models are often used for develop-
ment of inferential sensors in practical applications. In
this case study, however, the identified linear model may
not sufficiently represent the non-linear behavior of the
fermentation process over such a wide operating space.
Due to the inherent structural limitations of the identified
model, the inferential sensor is thus expected to exhibit
a degraded prediction performance in operating regions
with low densities of identification data. Therefore, it is
desirable to estimate the real-time prediction performance
of the inferential sensor as well.

To determine the real-time prediction performance of this
inferential sensor, a set of binary indicator variables is
introduced as {Qt}Nt=1 = {(qu1

t , qu2
t )}Nt=1 ∈ R2×N . Given

Table 1. A summary of the simulated variables

Description Distribution Unit

Dilution rate N (0.165, 0.00045) hr−1

Substrate concentration N (25, 14.15) kg/m3

Table 2. Parameter settings for performance
assessment of the CFR inferential model

Property Parameter Setting

No. of operating statuses of u1 10
No. of operating statuses of u2 10
No. of reliability statuses 3
Reliability statuses Reliable iff

0 < |et| ≤ 1.379
Moderately reliable iff

1.379 < |et| ≤ 2.758
Unreliable iff

2.758 < |et|
Prior probability ϖe = {0.40, 0.48, 0.12}
No. of prior samples A = 22
No. of training samples N = 2000
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Fig. 3. Probability density function of the absolute predic-
tion error obtained from the CFR inferential model

the reliability status of the identified inferential model,
the vector of quality variables Qt has S = 102 points
in its sample space. The proposed Bayesian approach is
used to assess the reliability status of the predictions. The
parameter settings required to design a Bayesian reliability
index are presented in Table 2. The boundaries of each
reliability status have been selected based on the PDF of
the absolute prediction error shown in Fig. 3. Moreover,
the data-driven approach recommended in Section 3.1 was
applied to partition the operating range of each input
variable. Table 3 shows the confusion matrix obtained
based on the reliability analysis results for N = 1000
test samples. The diagonal and cross-diagonal elements
of the confusion matrix shown in Table 3 represent the
number of predictions with correctly and incorrectly iden-
tified reliability status, respectively. The low number of
incorrectly identified instances indicates that the method
could effectively determine the reliability of inferential
model predictions.

The entries of the confusion matrix can be used to quan-
tify the performance of the proposed method in terms
of sensitivity, precision, and accuracy (Sokolova and La-
palme, 2009). A summary of the metrics quantifying the
performance of the Bayesian reliability analysis of the CFR
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Table 3. Confusion matrix for the Bayesian re-
liability analysis of the CFR inferential model

Predicted Status
Reliable Mod. Reliable Unreliable

Reliable 432 68 0
Mod. Reliable 20 371 15
Unreliable 0 5 89

Table 4. Performance metrics for the Bayesian
reliability analysis of the CFR inferential

model

Reliability Class Sensitivity Precision Accuracy
(%) (%) (%)

Reliable 86.4 95.6 91.2
Mod. Reliable 91.4 83.6 89.2
Unreliable 94.7 85.6 98.0

Total 89.2 89.2 89.2
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Fig. 4. Cumulative distribution function of the absolute
prediction error obtained from the CFR inferential
model

inferential model is reported in Table 4. The large values
of the sensitivity, precision and accuracy are indicative of
the effectiveness of the proposed method.

Regardless of the distribution of prediction error, a quan-
tifiable measure of reliability can be defined solely based on
the CDF of the absolute prediction error. From the CDF
shown in Fig. 4, it is evident that the prediction error does
not follow a Gaussian distribution in this example. Fig.
5 shows the reliability indices assigned to the inferential
sensor predictions obtained for the test data. It can be
observed that smaller reliability indices are assigned to
larger prediction errors.

5. CONCLUSION

In this paper, a data-driven Bayesian framework for real-
time performance assessment of inferential sensors was
proposed. The main focus was to characterize the effect
of the operating space on the prediction reliability in the
absence of target measurements. The detail of the design
procedure was presented. It was shown that the applica-
tion of the proposed Bayesian solution does not depend
on the identification techniques employed for inferential
model development. Moreover, its real-time implementa-
tion is computationally efficient and simple for practition-
ers to use. The effectiveness of the proposed method was
demonstrated through a simulation case study.
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Fig. 5. Performance assessment of the CFR inferential
model

REFERENCES

DeGroot, M. (1970). Optimal Statistical Decisions.
McGraw-Hill, New York.

Henson, M.A. and Seborg, D.E. (1997). Nonlinear Process
Control. Prentice-Hall Inc., USA.

Kaneko, H., Arakawa, M., and Funatsu, K. (2010). Ap-
plicability domains and accuracy of prediction of soft
sensor models. AIChE Journal, 57(6), 1506–1513.

Kaneko, H. and Funatsu, K. (2011). Improvement and
estimation of prediction accuracy of soft sensor models
based on time difference. In K.G. Mehrotra, C.K. Mo-
han, J.C. Oh, P.K. Varshney, and M. Ali (eds.), Mod-
ern Approaches in Applied Intelligence, volume 6703 of
Lecture Notes in Computer Science, 115–124. Springer-
Verlag, Berlin.

McKay, M.D., Morrison, J.D., and Upton, S.C. (1999).
Evaluating prediction uncertainty in simulation models.
Computer Physics Communications, 117(1-2), 44–51.

Nomikos, P. and MacGregor, J.F. (1995). Multi-way par-
tial least squares in monitoring batch processes. Chemo-
metrics and Intelligent Laboratory Systems, 30(1), 97–
108.

Pernest̊al, A. (2007). A Bayesian Approach To Fault
Isolation With Application To Diesel Engine Diagnose.
Ph.D. thesis, KTH School of Electrical Engineering,
Stockholm, Sweden.

Qi, F., Huang, B., and Tamayo, E.C. (2010). Data-
driven Bayesian approach for control loop diagnosis with
missing data. AIChE Journal, 56(1), 179–195.

Sokolova, M. and Lapalme, G. (2009). A systematic
analysis of performance measures for classification tasks.
Information Processing and Management, 45(4), 427–
437.

Soto, A.J., Vazquez, G.E., Strickert, M., and Ponzoni, I.
(2011). Target-driven subspace mapping methods and
their applicability domain estimation. Chemometrics
and Intelligent Laboratory Systems, 30(9), 779–789.

Vries, S.D. and Braak, C.J.F.T. (1995). Prediction error
in partial least squares regression: A critique on the
deviation used in the unscrambler. Chemometrics and
Intelligent Laboratory Systems, 30(2), 239–245.

Yang, H.Y., Lee, S.H., and Na, M.G. (2009). Monitoring
and uncertainty analysis of feedwater flow rate using
data-based modeling methods. IEEE Transactions on
Nuclear Science, 56(4), 2426–2433.

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

282


