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Abstract:
Complex technical systems, e. g. chemical plants, are prone to equipment failures. To ensure
the safe operation of such systems, the occurrence of a fault has to be reliably detected. Set-
based validation and identification methods are well suited for this problem as they are flexible
with respect to modeling uncertainties and as they can provide guaranteed results. One of the
main challenges of set-based approaches is, however, the complexity of underlying computations.
Simplifying the problem formulation via a suitable approximation of the model is one way to
reduce the computational effort. However, to retain the ability to diagnose faults, the underlying
structure of the model has to be taken into account. We present a method to reduce the
problem formulation based on causal reasoning and lifting technique that orders the system
states according to the effects of occurring faults. We present an approach to derive such a
reduction and illustrate its application considering two 5-tank configurations.

Keywords: Estimation and fault detection; Problem reduction; Fault detection and isolation;
Process control applications.

1. INTRODUCTION

Fault diagnosis is important to ensure a satisfactory and
safe operation of complex technical processes in many
application fields. In chemical plants, for instance, fault
diagnosis can prevent failures or the shutdown of the
complete plant or its parts. The task of fault diagnosis
has been studied extensively in the last decades, surveys
of commonly used detection and diagnosis methods can be
found i. a. in (Patton et al., 1989; Blanke et al., 2006).

In addition to ease design and guaranteed diagnosis re-
sults, fault diagnosis approaches need to be robust against
uncertainties. Furthermore, fault diagnosis methods have
to be fast enough to be able to initiate counter measures
in time. The increase of safety or precision requirements
on process control typically leads also to an increase in the
model complexity. Thus fault diagnosis becomes even more
difficult. We propose a method to reduce the complexity of
fault diagnosis within the set-based framework presented
in (Rumschinski et al., 2010; Savchenko et al., 2011) for
polynomial hybrid discrete-time systems.

The proposed reduction is related to two concepts that
have been successfully employed in the context of fault
diagnosis: residual generation and causal relations.

Residual generation, clearly a corner stone of model-based
fault diagnosis, provides the criterion to decide whether a
process behaves fault-free or faulty. In the simplest case
this criterion (or residual) is a comparison of the measure-
ments and the model output (Gertler, 1991). There are
several methods available in literature to generate residu-
als appropriate for fault diagnosis. For instance, in (Frisk,
2000) a residual generator for polynomial systems based on

elimination theory and Gröbner bases was proposed, see
(Staroswiecki and Comtet-Varga, 2001) for a discussion of
diagnosability issues related to polynomial systems. For
a comparison of knowledge-based residuals and residuals
derived from analytical redundancies see (Frank, 1990).

Causal relations are an abstract description of the influ-
ence of model variables, e. g. states and inputs, on other
model variables (Fagarasan et al., 2004). There are ba-
sically two different approaches to define such relations,
taking either the faulty model or the fault-free model as
a point of reference. If the faulty system is considered,
the faults are connected to observable changes in the
system dynamics. For this reason, a model of the process is
constructed that includes the relationship between a fault
and its symptoms. Such a model is typically expressed as
a fault-symptom tree and diagnosis consists of connecting
the observed symptoms backwards to their possible causes.
Alternatively, causal relations are defined starting with the
nominal system behavior as for most classical diagnostic
approaches. A structured way of building such relations
was presented e. g. in (Heim et al., 2002). In (Aslund
et al., 2011), diagnosability of continuous-time systems was
investigated based on the concept of causal relations.

In this contribution, we present a problem reduction
method for the set-based approach for polynomial hybrid
discrete-time systems presented in (Rumschinski et al.,
2010; Savchenko et al., 2011). The fault diagnosis task
is formulated in terms of a nonlinear (mixed-integer)
feasibility problem and relaxed into a convex semidefi-
nite or linear program. The main advantages of such a
formulation are the easy incorporation of unknown-but-
bounded uncertainties as, for instance, resulting from noise
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or model-plant mismatch, and rigorous proof of model
inconsistency. The major drawback of the approach is the
increasing computational effort for larger model sizes. To
limit the needed effort to solve the diagnosis problem,
we propose a procedure based on the concepts of causal
reasoning and residual generation to reduce the size of
the feasibility problem. At first, we determine the causal
relations of the fault signatures and the model variables
based on the model description. Then, using projections
similar to residual generation, we define a smaller set of
variables by aggregating the variables that are not needed
to diagnose a specific fault. This approach differs from
standard model reduction approaches, (Antoulas et al.,
2001; Moore, 1981), since we employ the information on
the states of the system in form of uncertain bounds in-
stead of truncating (almost) unobservable/uncontrollable
states. In principle, this procedure is an alternative re-
laxation based on the model structure. We illustrate the
approach considering two 5-tank configurations and give a
detailed comparison between the results achieved with the
complete and reduced feasibility formulations.

2. FAULT DIAGNOSIS

Given a process subject to a number of abrupt faults, we
consider an implicit discrete-time model of the form

M :

{
g(x(k + 1), x(k), w(k), p, s) = 0,
h(y(k), x(k), w(k), p, s) = 0.

representing the faulty and nominal cases. Here, x(k) ∈
Rnx × Zdx denotes the system states, p ∈ Rnp × Zdp the
model parameters, w(k) ∈ Rnw×Zdw the measured inputs
and y(k) ∈ Rny × Zdy the outputs. Note that all these
variables can contain continuous and discrete parts. The
time index is denoted by k ∈ N.

The functions g and h represent the aggregated hybrid
dynamics and the model output, respectively. The vari-
able s ∈ Zds links the models of all considered fault
scenarios F = {f0, f1, . . . , fnf

}, where f0 corresponds
to the faultless case. For each fault scenario the value
s = sf , f ∈ F provides a unique fault signature. We
assume the functions g and h to be polynomial or rational.
Note that other nonlinearities can be approximated by
such functions to an arbitrary precision, see (Hasenauer
et al., 2010) and references therein. Note also that we
use here for notational simplicity an implicit discrete-time
model formulation, however, considering instead explicit
integration schemes is straightforward.

To account for process uncertainty, we assume the param-
eters p to be unknown-but-bounded, i. e. p ∈ P ⊆ Rnp ×
Zdp . We also assume to have prior knowledge on the
unknown-but-bounded states of the system derived from
initial conditions, physical meaning of the states, or from
conservation principles. Furthermore, the measurements
are assumed to be unknown-but-bounded and we collect
all information in the form

X = { Xk ⊂ Rnx×Zdx , tk ∈ T },
Y = { Yk ⊂ Rny ×Zdy , tk ∈ T },
W = {Wk ⊂ Rnw×Zdw , tk ∈ T },

within a certain time window T = {t0, t1, . . . , te}. This
time window denotes the time instances at which a mea-
surement is taken. We denote with T − the set of all time
instances except the last one, i. e. T − = T \ {te}.

For shorthand of notation, we write x ∈ X (resp. y ∈ Y,
w ∈ W) meaning x(k) ∈ Xk (resp. y(k) ∈ Yk, w(k) ∈ Wk)
for each tk ∈ T . Also, with some abuse of notation, we will
write k ∈ T meaning tk ∈ T .

The employed fault diagnosis method checks consistency
of the model with the measurement data, which can be
formalized in the following way:

Definition 1. (Consistency). The model M for the fault
scenario f is said to be consistent with the input measure-
ments W and the output measurements Y if there exists
p ∈ P, x ∈ X such that w ∈ W, y ∈ Y and s = sf . �

Definition 2. (Fault candidate). A fault scenario f ∈ F
is said to be a fault candidate if M is consistent for s = sf .

�

Essentially the goal of model-based fault diagnosis is to
determine possible fault candidates, or more formally:

Problem 1. (Fault detection). Determine if M is consis-
tent for f0. �

Problem 2. (Fault isolation). Determine all fault candi-
dates within F \{f0}. �

Clearly, solving Problem 1 and 2 is challenging, espe-
cially in the considered unknown-but-bounded case. We
proposed in (Rumschinski et al., 2010; Savchenko et al.,
2011) a set-based approach to solve these problems based
on (mixed-integer) nonlinear feasibility problems. For the
sake of completeness, we provide next a short review of
the approach as the basis for our later considerations.

Guaranteed set-based fault diagnosis via relaxation

Problem 1 and 2 can be addressed by determining for
which fault signatures sf the following (semi-)algebraic
equations admit a solution.

F (T ,S) :


g(x(k + 1), x(k), w(k), p, s) = 0, k ∈ T −,
h(y(k), x(k), w(k), p, s) = 0, k ∈ T ,
(x, y, w) ∈ (X ,Y,W),
p ∈ P, s ∈ S.

Here, P, X , W and Y correspond to the unknown-but-
bounded data as defined before, and the set S = {sf ∈
{0, 1}ds | f ∈ F̃ ⊆ F} denotes the subset of fault

signatures corresponding to fault scenarios F̃ .

Checking whether F (T ,S) admits a solution is a nonlin-
ear mixed-integer feasibility problem. The solution set of
F (T ,S) consists of all values of the variables that satisfy
the given constraints. The projection of this set onto the
subspace of variables s provides a set of its admissible
values, hence solving Problem 1 and 2. In other words, if
this projection does not include a specific fault signature
then the corresponding fault is not a fault candidate.
The set of fault candidates is, therefore, determined by
excluding all faults that are inconsistent with the data.

Determining the solution set of F (T ,S) is generally a diffi-
cult task. For systems of moderate size it can be efficiently
approximated by semidefinite or linear relaxations (Rum-
schinski et al., 2010; Savchenko et al., 2011). However, for
larger systems the corresponding relaxed problems become
computationally demanding. For this reason, we present
in this work a suitable problem reduction approach. We
formalize the requirements for such a reduction next.
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Problem reduction for set-based fault diagnosis

The needed computational effort to solve the semidefinite
or linear relaxation of F (T ,S) scales with the number of
variables (or monomials) and the number of associated
constraints in F (T ,S). Thus we introduce the following
concept of problem reduction for fault diagnosis.

Problem 3. (Problem reduction). Find a feasibility for-
mulation equivalent to F (T ,S) that allows solving Prob-
lem 1 and 2 with less computational effort. �

The presented approach is based on projections similar
to the idea of residual generation, see e. g. (Frisk, 2000).
However, instead of generating residuals solely to solve the
fault diagnosis problems, we employ them to simplify the
problem structure and, thus, limit the needed computa-
tional effort. We choose appropriate residuals based on the
concept of causality relationships (also called parity rela-
tions or relevance relations), see e. g. (Svärd and Nyberg,
2008; Aslund et al., 2011).

3. REDUCED FEASIBILITY FORMULATION
In this section we present an adapted concept of causal
relations and residuals to reduce the amount of variables
in the feasibility problem discussed in the previous section.

Causal reasoning

To derive a simpler representation of the feasibility prob-
lem that estimates the admissible values of the fault sig-
natures s, we have to determine which parts of the model
M are affected by a specific fault.

The idea of causal reasoning from the field of Artificial
Intelligence provides the means to analyze relations be-
tween variables within a system. It was employed for the
problem of fault diagnosis e. g. in (Travé-Massuyès and
Pons, 1997; Fagarasan et al., 2004). We propose here a
framework adjusted to our setup.

Definition 3. (Causal relation). In the model M the
change in the state xi(k) is said to be causally related to
the variable σ (e. g. another state or an input) if there is
an equality gj that contains both xi(k) and σ. �

This definition is the discrete-time analog to the notion of
differential causality used in (Aslund et al., 2011).

To determine the states of the model M that are affected
by the occurrence of the fault f ∈ F \ {f0} according to
Definition 3, we consider only the subspace of variables
s ∈ Zds for which the values of fault signatures sf and sf0
differ. In more technical terms, we introduce two sets of
indices Ĵ and J̃ such that

Ĵ = {j ∈ {1, . . . , ds} | sfj 6= sf0j}, J̃ = {1, . . . , ds} \ Ĵ .
Therefore, we can split the vector s into two parts: ŝ =
{sj | j ∈ Ĵ} and s̃ = {sj | j ∈ J̃}, where sj denotes the
j-th element of s. To simplify notation we define

Ŝ = {ŝf , ŝf0}.
This means, by setting s̃f ≡ s̃f0 we obtain the restriction
of F (T ,S) to the fault f as follows

Ff (T , Ŝ):


g(x(k + 1), x(k), w(k), p, s̃f0 , ŝ) = 0,k ∈ T −,
h(y(k), x(k), w(k), p, s̃f0 , ŝ) = 0, k ∈ T ,
(x, y, w) ∈ (X ,Y,W),

p ∈ P, ŝ ∈ Ŝ.

Furthermore, based on the notion of causal relations we
introduce the term causal order.

Definition 4. (Causal order). The state xi(k) is called a
state of first causal order for the fault f ∈ F \ {f0}, if it
is causally related to ŝ. The state xi(k) is called a state of
n-th causal order (for n > 1), if it is causally related to
any state of (n− 1)-th causal order. �

Assuming that in the model M no decoupled dynamics are
present, we clearly have for n ≥ nx all states included in
the n-th causal order.

Next we show how to employ the notion of causal order
to generate a feasibility formulation that estimates the
values of fault signature ŝ, but is of smaller size with
respect to F (T ,S). To provide complete fault diagnosis
(under the assumption that all faults are known), we must
ensure that no actual fault is excluded from the list of fault
candidates. In other words, the estimates of admissible
values of the variables in ŝ should relate to the estimates
of F (T ,S). Hence our goal is to ensure that the resulting
estimates outer approximate the solution obtained by
solving F (T ,S). To do so we employ a method similar to
lift-and-project algorithms widely used in mixed-integer
linear programming (Balas et al., 1991).

Lifting of the variable space

For a given fault f and chosen causal order n we divide
the variables (x(k), x(k+1), w(k), y(k), p) for a single time
step k ∈ T into two vectors. Note, that it is sufficient
to consider a single time step for the proposed relaxation
procedure since the model M is time-invariant. The vector
ξ consists of variables up to n -th causal order, while
the rest form the vector ζ. In these terms the problem
F ({k}, {sf0 , sf}) can be written as

Ff ({k}, Ŝ) :


a(ξ, ζ, ŝ) = 0,

(ξ, ζ)∈ (X1,X2),

ŝ∈ Ŝ,
where a represents the constraints equivalent to g and h
in the new variables ξ, ζ.

Next we introduce a new set of lifting variables η, the lift
function η = l(ξ, ζ) and the constraints â, such that we
can reformulate the feasibility problem in the form

F̂f ({k}, Ŝ) :


â(ξ, η, ŝ) = 0,

η= l(ξ, ζ),
(ξ, ζ)∈ (X1,X2),

ŝ∈ Ŝ.

One possibility to ensure that the formulation F̂f ({k}, Ŝ)

is equivalent to Ff ({k}, Ŝ) is to demand the following
equivalence relation to hold â(ξ, l(ξ, ζ), ŝ) ≡ a(ξ, ζ, ŝ).
Throughout the rest of this paper we only consider lifting
procedures that satisfy this relation. There are numerous
ways for creating suitable lift functions. In this work
we use a method similar to the aggregation of variables,
introduced in (Simon and Ando, 1961).

We express ai(ξ, ζ, ŝ) via a sum of its monomials

ai(ξ, ζ, ŝ) =
∑ni

j=1mi,j(ξ, ζ, ŝ).

We write σ|mi,j if mi,j depends on σ. If mi,j only depends
on σ, we write mi,j(σ).
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As stated in Problem 3, we are interested in lift functions,
that simplify the structure of the polynomials in â com-
pared to a. An adequate measure of complexity/simplicity
for general polynomial problems is the overall amount
of involved variables or monomials and the polynomial
degree. To ensure the former we require that the dimension
of η is smaller than the dimension of ζ. For the latter, we
pose the following constraint on each monomial m̂i,j of â:

deg(m̂i,j(ξ, η, ŝ)) ≤ deg(m̂i,j(ξ, l(ξ, ζ), ŝ)).

The construction of appropriate lift functions can then be
done with the help of Algorithm 1. The variables η created
this way only depend on ζ, however, depending on the
structure of the system, including elements of ξ can lead
to a more significant size reduction.

Algorithm 1 Lifting using first causal order

in ξ place the states xi of first causal order w.r.t. ŝ; in ζ
the remaining variables of (x(k), x(k + 1), w(k), y(k), p)
set â = a
while ∃âi with m̂i,j(ζ) do

set ηi =
∑
j∈J m̂i,j(ζ) for J = {j | m̂i,j(ζ)},

replace
∑
j∈J m̂i,j(ζ) with ηi in â

end while
if ∃r0, r1, . . . , rn, n ≥ 1 such that for each monomial m̂
of â ζr0 |m̂⇒ ζri |m̂ ∀i = {1, . . . , n} then

set ηr = ζr0 · ζr1 · . . . · ζrn
replace ζr0 · ζr1 · . . . · ζrn with ηr in â

end if
for each ζj that still exists in â set ηi = ζj and replace
them in â

Remark 1. Note that the introduced lift functions l can
be viewed as residuals, however for the proposed approach
they do not immediately indicate a fault. Rather, they are
employed to simplify the model structure. �

Problem reduction

After the lifting variables η are chosen, we divide the
feasibility problem into two parts. This procedure is called
a projection, since we effectively restrict the space of the
problem to only include variables ξ, η and ŝ.

From the formulation F̂f ({k}, Ŝ) we construct two prob-
lems of the form:

Lift(X1,X2) :

{
η= l(ξ, ζ),

â2(η) = 0,
(ξ, ζ)∈ (X1,X2),

P roj(Z, Ŝ) :


â1(ξ, η, s) = 0,

(ξ, η)∈ (X1,Z),

ŝ∈ Ŝ.
Only those constraints â appear in Proj(Z, Ŝ), that de-
pend on ξ. Notice, that by definition of causal order, â2
does not contain elements of ŝ. The set Z represents the
feasible set corresponding to η.

The following theorem connects these problems to the
original feasibility formulation.

Theorem 1. (Reduced feasibility problem). For the pre-
sented reduction procedure the following inclusion holds

F̂f ({k}, Ŝ) ⊆ Proj(Lift(X1,X2)η, Ŝ). �

Proof: Let (ξ∗, ζ∗, η∗, ŝ∗) ∈ F̂f ({k}, Ŝ). Then (ξ∗, ζ∗, η∗) ∈
Lift(X1,X2) by construction, as its constraints are taken

directly from F̂f ({k}, Ŝ).

If we now define Z = Lift(X1,X2)η, the point (ξ∗, η∗, ŝ∗)

is a valid solution of Proj(Z, Ŝ), since â1(ξ∗, η∗, ŝ∗) = 0,

ŝ ∈ Ŝ and ξ ∈ X1 for F̂f ({k}, Ŝ), and we have already
shown that η∗ ∈ Z. 2

The problem Lift(X1,X2) is structurally simpler, and the

problem Proj(Z, Ŝ) is of lower dimension compared to
F ({k},S). Therefore, Theorem 1 implies a less compu-
tationally demanding solution for estimating the set of
admissible fault signatures sf for one time step. Since the
model M is time-invariant, we can extend Theorem 1 to
the whole time-window T , hence solving Problem 3.

Remark 2. The computational effort can be further re-
duced, as the explicit formulation of l allows the use of
computationally inexpensive methods for outer approxi-
mating the feasible set Z, e. g. via interval arithmetics. It
easily follows from Theorem 1 that Proj(Z, Ŝ) provides

an outer approximation of the set F̂f ({k}, Ŝ). �

Remark 3. Theorem 1 guarantees that each solution of
the initial problem is also a solution of the reduced prob-
lem. However, solving Lift(X1,X2) first might increase the

solution space of Proj(Z, Ŝ). �

Remark 4. If the reduced problem leads to unsatisfac-
tory results, one can choose a higher causal order at the
initial step of Algorithm 1 or increase the length of the
considered time window T . �

4. EXAMPLES

We illustrate the presented reduction method considering
two 5-tank system configurations, depicted in Fig. 1 and 2.

Fig. 1. Sequential 5-tank system.

Fig. 2. Interconnected 5-tank system.
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Sequential 5-tank system (Fig. 1)

System description: The system consists of five tanks with
areas A connected by valves with the inflow q01 and the
outflow q56. h1, h2, h3, h4 and h5 denote the measured
water-levels. If the maximum allowed height hmax = 1m
for h1 is reached, q01 is set to zero. This switching condition
is modeled using the state-dependent binary variable d01.
For this setup we assume that under operating conditions
and all fault scenarios the plant is in a state where h1 ≥
h2 ≥ h3 ≥ h4 ≥ h5.

We consider two fault scenarios, first when valve V34 gets
clogged and its throughput is reduced by 50 percent. The
second fault is a leakage in the third tank qL3 . These
scenarios are embedded in the aggregated model using the
binary vector s ∈ {0, 1}2.

The discrete-time model of the system is given by the
following nonlinear difference equations

hi(k+1)=hi(k)+∆t(qi−1i(k)−qii+1(k))/A,
h3(k+1)=h3(k)+∆t(q23(k)−q∗34(k)−qL3 (k))/A,

(1)

with i ∈ {1, 2, 4, 5}, ∆t = 5s and

qii+1(k)= cii+1

√
hi(k)− hi+1(k), i∈{1, 2, 3, 4},

q01(k)= q̄01d01(k), qL3 (k) = cL3 d
L
3 (k)

√
h3(k),

q56(k)= c56
√
h5(k), q∗34(k) = q34(k)(1− 0.5s1).

(2)

The binary variables are defined as follows

d01(k)=

{
1, h1(k) ≤ hmax,
0, h1(k) > hmax,

s1 =

{
1, V34 clogged,
0, V34 open,

dL3 (k) =

{
s2, h3(k) > 0,
0, h3(k) ≤ 0,

s2 =

{
1, Tank 3 leaking,
0, Tank 3 sealed.

Note that it can be represented via a set of mixed-integer
linear constraints (Savchenko et al., 2011).

As (2) contains non-polynomial parts, we reformulate
them by introducing virtual states and new constraints:

(∆hi,i+1(k))2=hi(k)− hi+1(k), i ∈ {1, 2, 3, 4}
(Sqhi(k))2=hi(k), i ∈ {3, 5}. (3)

Placing Sqhi(k) and ∆hi,i+1(k) in (2) instead of appropri-
ate square root terms results in a polynomial model.

Problem reduction: We reduce next the diagnosis problem
for the leakage fault. To do so, we restrict the set of
fault switches to s2, setting s1 to zero. The elements
of ξ are then taken from the third equation of (1), so
ξ = (h3(k),∆h2,3(k),∆h3,4(k), Sqh3(k)).

These elements appear in equations 2 − 4 of (1) and (3),
and following Algorithm 1 we substitute the rest of the
elements with new variables

η1 = c23/A, η
2 = c34/A, η

3 = cL3 /A,
η4(k) = h2(k), η5(k) = h4(k),
η6(k) = h2(k + 1)− h2(k)−∆tc12∆h1,2(k)/A,
η7(k) = h4(k + 1)− h4(k) + ∆tc45∆h4,5(k)/A.

(4)

The initial uncertain bounds on the parameters and the
uncertain data for hi(k) are employed to estimate the
feasible bounds on every element of η using interval
arithmetics (cf. Remark 2). These bounds are used as
uncertain initial data to estimate admissible values of s2.

Simulation: We compare the quality of fault diagnosis and
the speed differences between the initial formulation (1)

and the reduced formulation. We relax both problems
following (Savchenko et al., 2011), which results in a
mixed-integer linear formulation. The implementation is
done in the Matlab toolbox ADMIT (Streif et al., 2012).

For simulation we use parameter values cij = 1.232 ·
10−4m5/2s−1, cL3 = 6.16 · 10−5m5/2s−1, q̄01 = 1.5 ·
10−4m3s−1 and A = 1.54 · 10−2m2 and relative tolerance
of ±1 percent is added to represent the unknown-but-
bounded data. Initial water tank levels are chosen as
h0 = (0.6, 0.5, 0.4, 0.3, 0.2) and the relative tolerance of
±5 percent is added to the simulated data.

After 10 time steps the leakage in the third tank is
introduced, and for either model we find the minimal
amount of time steps to uniquely diagnose the fault.

Results: The resulting problem sizes as well as the time
needed for the fault diagnosis are reported in Table 1. Both

Table 1. Results of the first setup

Problem Simulation N Var. N Cons. Time steps Time [s]

Full
Faultless 94 259 4 158
Leakage 94 259 4 159

Reduced
Faultless 52 134 5 40
Leakage 43 110 4 32

formulations uniquely diagnose both cases in not more
than 5 time steps, and the reduced problem is around 50
percent smaller in size, which leads to a speedup of 75−80
percent. Although not shown, similar results were achieved
for the clogging fault.

Interconnected 5-tank system (Fig. 2)

System Description: The parameters of the tanks as well
as the throughput of the connecting pipes are as for the
previous example. The pump connecting tank 4 to tank 1
is chosen to not prevent the free water flow.

We consider two fault scenarios, first when valve V34 gets
clogged and its throughput is reduced by 50 percent. The
second fault is a leakage in the third tank qL3 . These
scenarios are embedded in the aggregated model using the
binary vector s ∈ {0, 1}2.

Similarly, the discrete-time model of the system is given
by the following nonlinear difference equations

h1(k+1)−h1(k)−∆t(q4(k)−q1(k))/A=0,
h2(k+1)−h2(k)−∆t(q01(k)−q2(k))/A=0,
h3(k+1)−h3(k)−∆t(q1(k)+q2(k)−q3(k)−qf (k))/A=0,
h4(k+1)−h4(k)−∆t(q34(k)−q4(k))/A=0,
h5(k+1)−h5(k)−∆t(q3(k)−q5(k))/A=0,

with ∆t = 5s and

q01(k) = q̄01d01(k), qi(k) = ci
√
hi(k), i ∈ {1, . . . , 5}

q34(k) = c34(1− 0.5s1)
√
h3(k),

qf (k) = cL3 d
L
3 (k)

√
h3(k) + q34(k).

Binary variables d01(k) and dL3 (k) as well as additional

virtual states for
√
hi(k) are defined as before.

Problem reduction and simulation: Due to a higher num-
ber of connections between the tanks in this setup, the
reduction procedure did not decrease the problem size as
much as for the first setup.
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The unknown-but-bounded parameter values are specified
in the appendix, and the initial water tank levels are h0 =
(0.9, 0.7, 0.5, 0.4, 0.3). The simulation data was acquired
using average values of the parameter bounds, and the
relative tolerance of±5 percent was added to the simulated
water levels data.

Results: The resulting problem sizes as well as the com-
putation times are provided in Table 2. Both formula-

Table 2. Results of the second setup

Problem Simulation N Var. N Cons. Time steps Time [s]

Full
Faultless 114 284 5 153
Leakage 114 284 5 165

Reduced
Faultless 75 198 6 38
Leakage 75 198 6 71

tions uniquely diagnose both cases in not more than 6
time steps, however the reduced model is only 35 percent
smaller in size, which shows, that the second setup is
more interconnected. Nevertheless, the performance im-
provement of the reduced problem was 65− 75 percent.

5. CONCLUSIONS

In this contribution, we proposed an approach to reduce
the complexity of the set-based fault diagnosis framework
presented in Savchenko et al. (2011). The proposed ap-
proach employs the notion of causal order to determine the
states of the model primarily affected by the occurrence of
a fault. This knowledge is then used to relax the dynamics
and structure of the full model, reducing its size without
proportionally increasing the relaxation error.

We presented an approach to construct a relaxed model
formulation. By employing a higher causal order this
approach allows a trade-off between model complexity and
model accuracy. We illustrated the algorithm with two 5-
tank configurations, comparing the resulting model sizes,
execution times and amount of data required for unique
diagnosis of a specific fault.

Although, the relaxed models required generally more time
steps until unique diagnosis of the faults was achieved, the
overall solution time was substantially smaller than that
of the full model with fewer time steps.

Overall, this method is well suited for processes that
contain sequentially connected parts, or if the occurring
faults only affect subsystems.

As the proposed approach introduces an additional layer of
relaxation of the problem formulation, the obtained results
can be conservative. Future research will address the
impact on the quality of the proposed relaxations, as well
as the possibility to retain the property of diagnosability.
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