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Abstract: Self-optimising control is a useful concept to select optimal controlled variables from a set of 

candidate measurements in a systematic manner. In this study, use self-optimizing control tools and apply 

them to the specific features of sewer systems, e.g. the continuously transient dynamics, the availability 

of a large number of measurements, the stochastic and unforeseeable character of the disturbances 

(rainfall). Using a subcatchment area in the Copenhagen sewer system as a case study we demonstrate, 

step by step, the formulation of the self-optimising control problem. The final result is an improved 

control structure aimed at optimizing the losses for a given control objective, here the minimization of the 

combined sewer overflows despite rainfall variations.   
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1.  INTRODUCTION 

Sewer systems are essential part of urban water management 

which collects the sewage (both rain water as well as 

domestic wastewater) and transport it to centralized 

wastewater treatment plants for purification, before 

discharging to surface waters. Control and operation of sewer 

systems is a challenging problem characterized by stochastic 

disturbances (rain events) and transient dynamics. In 

addition, the EU water framework directive (2000) requires a 

reduction in the combined sewer overflows (CSOs) generated 

in urban environments. The practical difficulties of 

undergoing a structural modification of the system itself, due 

to the high capital costs and organizational problems related 

to civil works in dense populated areas, has forced to look for 

improvements of the system operation performance, rejecting 

major design modifications. 

Current research in sewer system control focuses mainly on 

model development of the sewer systems (Breinholt et al. 

2011) and on their application by predictive control and/or 

offline optimisers (Duchesne et al. 2001, Ocampo-Martinez 

2010). In contrast, the design of the regulatory layer in sewer 

system control has received little or no attention to the best of 

our knowledge. In this contribution, we adapt and apply the 

ideas of self-optimising control strategies to the design of a 

control structure that will keep the system close to the control 

objective. 

Self-optimising control, first formulated by Skogestad and 

co-workers (Skogestad 2000), is based on the selection of 

controlled variables (CVs) which, kept with constant 

setpoints, lead to an acceptable operation given a defined 

objective. In practice, this is achieved defining a “loss 

function” that depends on the CVs of the control structure. 

The self-optimising structure corresponds to the set of CVs 

that minimise the “loss function”. Further developments of 

self-optimising control have formulated the CVs as linear 

combinations of a several measurements, leading to a control 

structure more robust towards disturbances (Halvorsen et al. 

2003). Hence, this method is particularly relevant for sewer 

systems where the number of candidates for CV (the system 

measurements) generally exceeds the number of actuators. 

Self-optimising control tools can be effectively applied to 

control design of sewer systems provided that some certain 

problems specific to sewer systems are addressed, namely: 1) 

transient dynamics especially lack of steady-state at sewer 

systems, prevent from defining one or several nominal 

operating points; 2) key parts of the sewer systems are the 

storage basins which, as integrators, cannot be evaluated at 

steady state (or very low frequencies); and 3) the availability 

of too many measurements as alternative candidate for CVs 

leading to the combinatorial nature of the resulting 

optimisation problem. 

We illustrate the applicability of self-optimising control to a 

case study based on a the design of a control for minimisation 

of CSOs in a subcatchment area in the Copenhagen sewer 

system.  

2. METHODS 

The aim of self-optimising control is to minimise the loss of 

the objective function taking into account disturbances, 

sensor noise and implementation errors. It can be proven 

(Halvorsen et al. 2003) that minimising the loss of the 

objective function is equivalent to minimise the maximum 

singular value of the matrix M defined as:  

  (     )           

 
 (   

           )       

        
                        (1) 

where      ;       
 

 and       
 

.  

The plant gain matrix (  ) and the disturbance gain matrix 

(  
 

) relate respectively the available measurements with the 
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MVs and the disturbances; the uncertainty matrix    

represents the maximum expected magnitude of each 

disturbance and   
 

 the implementation error for all the 

available measurements;     and     are the second 

derivatives of the cost function with respect to the MVs (u) 

and the disturbances (d). To define the previous elements a 

number of tools and methods were used. They are provided 

here below. 

2.1. System analysis and objective definition.  

We performed an analysis of the variables in the system in 

order to evaluate the number of manipulated variables (MVs) 

(i.e. the control degrees of freedom), available measurements 

(Ys) and disturbances (ds). The user should define objective 

of the control system and, thereby, the objective function 

(OF).  

Given the large number of variables, it is also convenient to 

define the number of measurements available for the 

optimisation (nSubset) and the number of measurements on 

which the controlled variables would depend (nY). 

2.2. Definition of scenarios and trajectory of actuators.  

The evaluation scenarios are defined setting inputs and 

disturbances to the system and when the linearisation takes 

place. Disturbances in a sewers system are basically the dry 

weather flow and the rain input. In particular, designed 

storms (e.g. by the Chicago method (Keifer, Chu 1957)) are 

useful, as one can create a synthetic rain event with the main 

characteristics of historical rain events for a given return 

period. This type of synthetic rain events are widely applied 

as they are used in sewer system design. 

For a given set of inputs, the trajectories of the actuators are 

defined so that the objective function is optimised. Hence, it 

can be ensured that the controller will tend to drift the system 

towards its optimal trajectory. 

Basins are the key component in sewer systems control. If the 

in- and outflow of a basin are independent of the degree of 

filling, as it is often the case, the transfer function relating the 

levels and the MVs contain pure integrating modes. As 

steady-state gains cannot be evaluated in this case, a range of 

frequency must be defined that covers the range of operation 

of the control system.   

Finally, the evaluation scenarios must be defined. In effect, in 

contrast with the original formulation of self-optimising 

control, aimed at continuous chemical processes, sewers 

systems are characterized by transient dynamics lacking a 

relevant steady state. Furthermore, the relation between the 

variables in the system is highly nonlinear leading to different 

behaviours depending on the state of the system. Hence, a 

scenario based analysis is carried out as follows: the system 

is evaluated at different “points of operation” or scenarios, 

i.e. empty basins, first overflow, full basins. For a given 

input, each scenario is related to a certain state or the 

variables and evaluation time (ti) which is subsequently used 

for linearisation.  

 

2.3 Linearization and determination of objective function 

derivatives.  

The plant gain matrix (  ) and the disturbance gain matrix 

(  
 

) must be determined by linearising around a certain 

operating point and evaluating the transfer function at the 

defined range of frequency. As the condition number of    is 

subsequently used for measurement screening,    must be 

appropriately scaled (Skogestad, Postlethwaite 2005). The 

uncertainty matrices    and   
 

 are defined as positive 

diagonal matrices in which each element is related to a 

certain measurement or disturbance. The cost function 

derivatives (   ,    ) are also determined at this stage. 

2.4. Screening of measurements.  

In large systems, the number of measurements can be very 

high. A fraction of the measurements in the system can be 

ruled out without affecting the final solution. Thus, the size 

of the problem is reduced and the subsequent optimisation 

becomes more manageable. First, a measurement is discarded 

when the manipulated variable does not have any influence in 

the measurement for the evaluation time analysed (reflected 

as a row of zeros in   . After this first screening, 

combinations of the resulting    with the dimensions fixed 

by nSubset, are generated. The sets of combinations are 

ranked given a certain condition. In this case, the minimum 

condition number was used as a controllability criterion 

(Skogestad, Postlethwaite 2005). Only the measurements that 

form the set with the minimum condition number are kept for 

the next steps. 

2.5. Determination of the controlled variables.  

The determination of the controlled variables (CVs) is carried 

out through a minimisation of the loss function. As 

previously described, this is equivalent to minimising the 

maximum singular value of the M matrix (eq.1). Hence, the 

controlled variables are defined by the measurement 

combination matrix H obtained by the minimisation defined 

as: 

      
 

   

 
 ( )                 (2)  

This procedure is done for all the possible measurement 

combinations. The Hopt selected is the one that provides the 

minimum loss value. 

3. CASE STUDY 

Self-optimising control has been applied to a case study 

consisting of a subcatchment area of the Copenhagen sewer 

system (fig. 1). This system is modelled by the virtual tank 

(VT) approach, which represents subcatchments defined by a 

certain surface area and pipe volume. Other elements include 

basins, represented by their level (L), pumps (P) and weirs 

(Ocampo-Martinez 2010). The model was implemented in 

Matlab Simulink and linearisations were performed using 

Matlab Simulink for different scenarios. All the calculations 

in the self-optimising methodology were also implemented in 

Matlab.  

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

709



 

 

     

 

 

Figure 1. Schematic representation of the virtual tank model 

diagram for the Copenhagen sewer system 

 

3.1. System analysis and objective definition.  

The results of the analysis of the available MVs, 

measurements and disturbances are gathered in table 1. The 

number of controlled variables is 3 corresponding to the 3 

available degrees of freedom. To reduce the problem size, the 

number of measurements available for optimisation were set 

as nSubset=6 but this number can be varied depending on the 

needs or preference of the user. In general it represents a 

trade-off between the complexity of the controller (including 

sensor maintenance) and its performance. 

The objective of the sewer systems in this case study is to 

minimise the combined sewers overflow (CSO). Since eq. 1-

2 require that the objective be formulated as a minimisation, 

the cost function is written as follows:   

                                         ∫(∑    

  

   

)  

 

 

                   ( ) 

 

Table 1. Variable analysis of the system, displaying the 

number of measurements (Ys), manipulated variables (MVs) 

and disturbances (ds). 

 Overflows Flows Levels 

Ys 

(n=24) 

UØ17,UØ32,

UØ38,UØ42, 

UØ44 

q1,q2,q3,q4,q5,q6,q7 

ip1,ip2,ip3 

F5 

Fl1,Fl2,Fl3,Fl4,Flout 

L1, L2,L3 

MVs (n=3) Pump flow (vP1, vP2, vP3) 

ds (n=1) Rainfall intensity input 

3.2. Definition of scenarios and trajectory of actuators.  

The rain event chosen as disturbance for this system is a 

synthetic rain event generated by applying the Chicago 

method to real rain data from the Copenhagen area (fig. 2). In 

this method the rain event characterizes global rain behaviour 

in a certain area in terms of intensity, duration and frequency. 

Hence, for every real rain event that takes place a maximum 

average rain intensity value is assigned to each of them. With 

this procedure, a discretization for every real rain events is 

acquired. With these data stored, the Chicago method is able 

to provide a characteristic synthetic rain event for a certain 

return period, duration and average rain intensity in the area 

analysed. For the rain event used in this case study the chose 

values were of 5 years, 240 min and 630 mm/year 

respectively. The pump action during the rain event was set 

as constant throughout the whole rain event. The simulation 

of the rain event can be checked in fig. 3. 

 

Figure 2. Synthetic box rain (return period 5 years) used as an 

input in this case study 

 

Figure 3. Evolution of the main variables in the subcatchment 

area during simulation of the rain event 
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The range of frequency that limits the expected control action 

was estimated conservatively as follows: 

1) The lower bound of the range was taken as the 

inverse of the expected period of a rain event. To 

determine this, the series of two years of rain in the 

Copenhagen area were decomposed with spectral 

analysis. The main mode corresponded to a 

frequency 2 = 0.046 rad min
-1

 (equivalent to 136.5 

min) 

2) The highest bound corresponds to the fastest 

variations in the disturbances (rainfall) that will be 

propagated. Since the virtual tanks are first-order 

systems they act as low pass filters depending on 

their time constant. Hence, the highest bound is 

taken as the frequency that provides an amplitude 

ratio           for the virtual tank with the 

lowest time constant, in this case VT 2. This 

frequency is equal to 1 = 0.59 rad min
-1

 

 

Figure 4. Bode plot for   
 

 for a fast output (VT 2 level) and 

a slow output (Flout) 

To check that the range of frequency covered the main 

dynamics of the system, fig. 4 shows the AR of a fast and a 

slow variable with the rainfall as an input variable. As fast 

variable, the level of VT2 was chosen as it is the virtual tank 

with the lowest time constant. As a slow variable, Flout was 

chosen as a slow variable given that, at open loop, it depends 

of all the virtual tanks. As it can be seen, the range of 

frequency covers the low frequency range until the decrease 

of the AR is significant. For simplicity in the rest of the 

analysis, all the transfer functions were evaluated at the 

lowest bound of the frequency range 2 = 0.046 rad min
-1

. 

From the inspection of the system evolution during the 

simulation of the rain event, five scenarios or points of 

operation were selected (table 2). These were used 

subsequently for linearisation. 

3.3 Linearization and determination of the objective function 

derivatives.  

   and   
 

 were generated using the linearization tool of 

Matlab Simulink and evaluated at 2 = 0.046 rad min
-1

. The 

elements in the uncertainty matrix   
 

 were defined as the 

measurement error expected for each class of sensor.    

consists of a single element, the maximum value of the 

rainfall intensity, equal for all the VT.     and     were 

determined numerically by applying a second order finite-

difference scheme.  

Table 2. Scenarios selected according to the state of the 

system 

Scenario State of the system Evaluation time 

1 Dry weather t1 = 10 min 

2 Filling t2 = 50 min 

3 Overflow from structures 

with little or no volume 

t3 = 130 min 

4 Overflow from structures 

with large volumes 

t4 = 200 min 

5 Emptying t5 = 400 min 

 

3.4. Screening of measurements.  

The dimensions of   
     were reduced discarding the rows 

related to measurements not affected by the MVs. 

Combinations of 6 row matrices (nSubset value fixed by the 

user) were generated from the resulting matrix    
    . The 

condition numbers (γ) of all of them were calculated. The 

matrix with the minimum condition number [ γ (    
   ) = 

3.82] was selected, giving the 6 measurements further 

investigated for the optimisation ( in this case Fl2, L2, Fl3, Fl1, 

L3 and ip2). This screening procedure reduced the 

optimisation from 2024 to 20 subsets.    

3.5. Determination of the controlled variables. 

The controlled variables were obtained through the 

minimisation of the loss function defined in eq. 1 and 2. 

Table 3 shows the value of H if the number of measurements 

considered vary from 2 to 6 for scenario 3 (see table 2 for a 

definition). The results show a drastic reduction of the loss 

function from when comparing 2, 3 and 4 measurements. The 

use of more measurements to form the CVs only slightly 

reduces the loss function. Furthermore, it can be seen how the 

optimum for 5 measurements is the same as for 6 

measurements, indicating that for the conditions considered, 

the addition of a variable does not provide more information 

to the controller. The cost of a sensor and the complexity of 

the monitoring is not tackled in this paper but it looks 

reasonable that 4 measurements would be a good trade-off 

between performance and simplicity, and would therefore be 

the selected structure   

This analysis, which has been shown for the scenario defined 

in t3, was also carried out for the other scenarios. The 

outcome is five control structures that would depend upon the 

state of the system. The application of these five controllers 

can be done in different ways depending on the complexity of 

the controller and the application. It is indeed possible to 

switch between the relevant control structures, triggering the 

switch by the phenomena described in table 2. A simpler 

solution would be to use only one of the scenarios during the 

rainfall selecting the one where most CSO is expected to take 

place.  
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Table 3. Results of the measurement combination matrix 

(Hopt) that minimises the loss function (Lopt) for different 

number of measurements. 

 

 

4. CONCLUSIONS 

For the first time, to our best knowledge, self-optimising 

control principles were applied in order to design an optimal 

control structure for a given set of sensors and actuators in 

sewers systems. As a result, a set of controlled variables was 

defined as linear combination of measurements that minimise 

the deviation from a previously defined optimum state(s). In 

this case, the optimum was determined with the aim of 

minimising the CSO from the sewer system. 

The immediate  future perspectives of this work is to carry 

out a simulation based study to validate the control structure 

obtained and benchmark it with other control strategies. 

Besides, evaluations for other states of the system (as dry 

weather and emptying scenarios) or for more complex 

objective functions may also be relevant to acquire a deeper 

insight about the available control possibilities. 
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