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Abstract: In order to realize stable production in the steel industry, it is important to
control molten steel temperature in a continuous casting process. The present work aims to
develop a gray-box model that predicts the molten steel temperature in the tundish (TD
temp). In the proposed approach, two parameters in the first-principle model, i.e., overall
heat transfer coefficients of ladle and tundish, are optimized for each past batch separately,
then the relationship between the two parameters and measured process variables is modeled
through random forests (RF). In this inner gray-box model, the statistical models update the
physical parameters according to the operating condition. To enhance the accuracy of TD temp
estimation, another RF model is developed which compensates errors of the inner gray-box. The
proposed approach was validated through its application to real operation data at a steel work.

1. INTRODUCTION

The steel industry faces a stiff competition in the global
market, and each steel company has to realize stable
and efficient operation and produce high quality products
satisfying various customer demand. In the steel making
process, whose process diagram is shown in Fig. 1, molten
steel temperature in the tundish (TD temp) is one of the
key factors to realize stable operation. The tundish is a
vessel used for delivering molten steel from a ladle to a
mold in the continuous casting process. For example, if
TD temp is too high, breakouts may occur and cause
tremendous increase in maintenance cost and productivity
loss. However, no effective manipulated variable is avail-
able in the continuous casting process to control TD temp.
To realize the target TD temp, therefore, it is necessary
to adjust the molten steel temperature in the Ruhrstahl-
Heraeus degassing process (RH degasser) at the end of
its operation (RH temp). To control TD temp by ma-
nipulating RH temp, a model relating TD temp and RH
temp needs to be constructed. In the past, various mod-
els such as first-principle models, see for example Austin
et al. (1992), Xia et al. (2001), Zabadal et al. (2004),
Jormalainen et al. (2006) and Belkovskii et al. (2009),
statistical models (Sonoda et al. (2012)), and gray-box
models, see for example Gupta et al. (2004) and Okura

et al. (2012), have been proposed. The gray-box models
which integrate a first-principle model and a statistical
model have been the most efficient modeling approaches;
they are more accurate than one dimensional first-principle
models, more intuitive than the statistical models, and
faster and less complicated than the computational fluid
dynamics (CFD) models. However, first-principle models
do not necessarily describe phenomena of target processes
with sufficient accuracy. For instance our previously de-
veloped gray-box model (Okura et al. (2012)) is good at
predicting the TD temp but it cannot accurately model
heat loss during the transportation and the continuous
casting process because parameters of the first-principle
model are fixed for all batches.

The present work aims to overcome such deficiency. A
first-principle model is used to estimate TD temp. Two
parameters, i.e., overall heat transfer coefficients of ladle
and tundish, of the first-principle model are optimized
for each batch separately. The optimized parameters are
related to measured process variables through a statistical
modeling method, i.e., random forests (RF). As a result,
the physical parameters of the the first-principle model
can be updated according to the operating condition. To
enhance the estimation accuracy of TD temp, another RF
model is developed to compensate errors of the gray-box
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Fig. 1. Process flow diagram of the steel making process

Fig. 2. Generalized framework of gray-box modeling

model. The statistical modeling method, i.e., RF, was used
on the basis of its best performance in our preliminary
study and previous work (Okura et al. (2012)).

2. GENERALIZED FRAMEWORK FOR THE
GRAY-BOX MODELING

A generalized description of the gray-box models discussed
in this paper is shown in Fig. 2. The first-principle model
ffp is used to estimate TD temp using some process vari-
ables xfp, which are a part of available process variables
x. θ denotes physical parameters. Two types of statistical
models are shown in Fig. 2; fin is used to update the
parameters θ of ffp for each batch while fout is used to
compensate errors of ffp. Based on various combinations of
ffp and statistical models, three types of gray-box models
are developed; 1) the outer gray-box model: a sum of ffp
and fout, 2) the inner gray-box model: an integration of
ffp and fin, and 3) the combined gray-box model: a sum
of inner gray-box model and fout. ŷfp, ŷouter, ŷinner and
ŷcombined represent the predicted TD temp by the first-
principle model, the outer gray-box model, the inner gray-
box model and the combined gray-box model, respectively.

3. FIRST-PRINCIPLE MODEL

In this section, the first-principle model to predict TD
temp is explained. This first-principle model consists of
two parts; the first one models phenomena during the
transportation period from the secondary refining to the
continuous casting, and the second one models phenomena
during the casting period. In this model, the degradation
of ladles is taken into account.

Fig. 3. Update of molten steel temperature in ladle Tm

3.1 First-Principle Model for Transportation Period

Molten Steel in Ladle It is assumed that the ladle is a
cylinder of radius Ri. On the basis of the CFD simulation
results, indicating that thermal stratification is formed
vertically in the standing ladle due to natural convection
(Austin et al. (1992)), the molten steel temperature is
modeled as a function of time t and position z from the
bottom of the ladle.

Tm(z, t) = Tm(t) + k(t)

(√
z

Hm
− 2

3

)
(1)

where Tm is the molten steel temperature, Tm is the
average molten steel temperature, k denotes the difference
between the molten steel temperature at the top and the
bottom of the ladle, and Hm is the depth of the molten
steel in the ladle.

The results of CFD simulations have shown that the
temperature difference is a function of time (Austin et al.
(1992)), thus it is modeled with parameter a.

k(t) = at (2)

The method of calculating the time evolution of the molten
steel temperature Tm is shown in Fig. 3. First, the average
molten steel temperature Tm(t+∆t) is calculated through
the heat balance equation.

ρmcmπR
2
iHm

dTm(t)

dt
= −2πRi

Hm∫
0

Uw(Tm(z, t)

−Tam)dz − πR2
iUb(Tm(0, t)− Tam)− πR2

i h1(Tm

(Hm, t)− Tsl(t)) (3)
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where ρm and cm are the density and the heat capacity of
the molten steel, respectively. Ub and Uw are the overall
heat transfer coefficients of the ladle bottom and the ladle
wall, respectively. Tam and Tsl are the ambient temper-
ature and the slag temperature, respectively. In addition,
h1 denotes the heat transfer coefficient between the molten
steel and the slag. The left side of “(3)”represents the time
change of the molten steel enthalpy. The first, second, and
third terms of the right side represent the heat conduc-
tion from the molten steel to the ladle wall, to the ladle
bottom, and to the slag, respectively. The initial molten
steel temperature is assumed to be homogeneous and the
same as RH temp because the molten steel in the ladle is
properly stirred. The temperature difference between the
top and the bottom is calculated through “(2)”

Ladle Degradation Due to the repeated use of the ladle,
the walls of the ladle gradually degrade. The effect of ladle
degradation on the heat conduction flux from the molten
steel to the external environment has been discussed in the
literature. One study (Fredman (2002)) describes the fac-
tors which cause degradation of ladle while another study
(Tripathi (2012)) develops a CFD model to relate the heat
losses from ladle with the reduction in ladle walls and
bottom thickness. To avoid computational complexity and
build a simple model, it is assumed that the overall heat
transfer coefficients gradually increase with the number
of repeated usage, n. Furthermore, the ratio of increase
of the overall heat transfer coefficient of the ladle wall is
the same as that of the ladle bottom. In addition, it is
assumed that the temperature difference between the top
and the bottom of ladle increases with the increase of n.
The relations are expressed by

Uw(n) = ηUb(n) (4)

Ub(n) = Ub0 + α
√
n (5)

a(n) = a0 + β
√
n (6)

where Ub0, a0, α, β, and η are constants.

3.2 First-Principle Model for Casting Period

Molten Steel in Ladle It is assumed that volumetric flow
Q from the ladle to the tundish is constant and the depth of
the molten steel in the ladle decreases by ∆Hm during ∆t.
In addition, the outflow temperature is assumed to be the
average temperature Tin(t) within 0 ≤ z ≤ ∆Hm. It is also
assumed that the increase of the temperature difference
k(t) stops at the end of transportation period. On the other
hand, the heat radiation continues and Tm(t) decreases to
Tm(t + ∆t). This decrease in Tm(t) corresponds to the
parallel shift from Tm(z, t) to Tm(z, t + ∆t): −∆Hm in z
axial direction and ∆Tm in Tm axial direction as shown in
Fig. 4. The Tm(z, t) distributes over the following region:

− Q

πR2
i

(t− t1) ≤ z ≤ Hm −
Q

πR2
i

(t− t1) (7)

where t1 is the time at the end of transportation.

Molten Steel in Tundish It is assumed that the inflow
to the tundish is equal to the outflow from the tundish
and also the depth of the molten steel in the tundish is
constant. The CFD simulations have indicated that TD

temp is distributed in the flow direction (Odenthal (2010)).
Thus, the tundish is modeled as a compartment model
consisting of Nt isothermal baths connected in series as
shown in Fig. 5. The heat balance of the k-th bath is

ρmcmWH
L

Nt

dT
(k)
t (t)

dt
= ρmcmQT

(k−1)
t (t)

−ρmcmQT (k)
t (t)− StUt(T

(k)
t (t)− Tam)

−W L

Nt
εmol−linσ((T

(k)
t (t))4 − T 4

a2)

−W L

Nt
h3(T

(k)
t (t)− Ta2) (8)

St =


W

L

Nt
+ 2H

L

Nt
+WH (k = 1, Nt)

W
L

Nt
+ 2H

L

Nt
(k = 2, 3, · · · , Nt − 1)

(9)

where W , H, and L denote the width, the height, and
the length of molten steel in the tundish, respectively.

T
(k)
t is TD temp in the k-th bath. St denotes the contact

area between the molten steel and the tundish, Ut the
overall heat transfer coefficient of the tundish, εmol−lin the
emissivity of the molten steel, and h3 the heat transfer

coefficient between the molten steel and the air. T
(0)
t (t)

is equal to Tin(t) because the molten steel poured from
the ladle flows into the first bath. The left side of “(8)”
represents the time change of the molten steel enthalpy.
The first to fifth terms of the right side represent the
inflow enthalpy, the outflow enthalpy, the heat conduction
from the molten steel to the tundish wall, the radiation
from the molten steel to the tundish wall and the heat
conduction from the molten steel to the air in the tundish,
respectively. The tundish wall temperature is assumed to
be equal to the air temperature Ta2, which is assumed to
be constant. In addition, the influence of former batch on
the measurement of TD temp is assumed to be negligible.

3.3 Parameter Fitting

The first-principle model contains eleven parameters to
be identified, i.e., a0, h1, h2, h3, Ta1, Ta2, Ub0, Ut, α, β,
and η. The first ten of these parameters were estimated
through the least squares algorithm using real process
data. The η was given a fixed value because the other
term accompanying η, i.e., Ub(n), was indirectly estimated
through Ub0 and α. A total of 1270 samples were used
for parameter estimation. The input variables of the first-
principle model were the number of ladle usage, the weight
of the molten steel, RH temp, transportation time, and
casting time.

4. RANDOM FORESTS (RF)

RF is an ensemble classifier that consists of many decision
trees (Breiman (2001)). RF combines Breiman’s bagging
idea and the random selection of split features, proposed
in (Ho (1995)) and (Ho (1998)). Bagging is a mechanism to
improve stability and accuracy of classification and regres-
sion models. Given a training set D of size N , bagging gen-
erates M new training sets D∗m(m = 1, 2, · · · ,M), whose
size is N , by random sampling from D with replacement.
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Fig. 4. Model of molten steel temperature in ladle during casting period

Fig. 5. Compartment model of molten steel in tundish

The set D∗m is expected to have about two-third of the
unique datasets in D and the rest is duplicated. The newly
created training datasets are called bootstrapped samples
while the fraction of original data that is not bootstrapped
is termed out-of-bag (OOB) data. In addition, at each
node, feature variables, i.e., split features, are randomly
selected and splitting is performed using these features one
by one to find the best split. RF creates multiple trees; each
tree is trained by using the bootstrapped samples. RF for
regression is formed by growing trees on (x, y) ∈ D∗m such

that the predictions f̂(x) are numerical values as opposed
to class labels in classification. OOB data is used for error
calculation of the respective trees.

Suppose OOB data DOOB of size NOOB such that
(xj , yj) ∈ DOOB(j = 1, 2, · · · , NOOB) and there are Kj

trees that did not use sample xj during their construction.
Averaging predictions at xj over Kj trees, the RF OOB
prediction is derived:

f̂OOB(xj) =
1

Kj

K∑
k=1

f̂k(xj)I[(xj , yj) ∈ DOOB] (10)

where I is the indicator function. The integrated mean-

squared prediction error for f̂OOB is

mspe[f̂OOB] =
1

NOOB

NOOB∑
j=1

(yj − f̂OOB(xj))2 (11)

For validation data V of size Nv such that (xv, yv) ∈
V (v = 1, 2, · · · , Nv), the RF prediction at xv is the average
prediction of K trees.

f̂(xv) =
1

K

K∑
k=1

f̂k(xv) (12)

5. GRAY-BOX MODELS

In the outer gray-box modeling method (Okura et al.
(2012)), TD temp TTD is predicted through the first-
principle model ffp and then the error e of ffp is predicted
through a statistical model fst. In other words, TD temp
is predicted by adding the output of the statistical model
to that of the first-principle model.

T̂fp = ffp(TRH,xfp) (13)

e = TTD − T̂fp (14)

ê = fst(xst) (15)

T̂TD = T̂fp + ê (16)

where T̂fp denotes TD temp predicted through the first-
principle model. RH temp TRH and xfp are input variables
for the first-principle model. xst is input variables for
the statistical model, whose output is the predicted error
ê; it includes measured variables of processes from the
converter to the tundish.

In the inner gray-box model, statistical models are used
inside the first-principle model to estimate two parameters,
i.e., overall heat transfer coefficients of ladle and tundish,
for each batch separately. The two out of ten parameters
were selected on the basis of effectiveness in reducing
the error. A positive error e shows that the heat loss
calculated by the first-principle model is larger than the
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actual heat loss in the plant. Thus Ub and Ut are decreased
for positive error e and increased for negative error e. xRF,
the measured variables of processes from the converter to
the tundish excluding RH temp, was used to construct
random forests (RF) models fRF1 and fRF2 that estimate
Ub and Ut, respectively.

Ûb = fRF1(xRF) (17)

Ût = fRF2(xRF) (18)

For a certain dataset, Ûb and Ût estimated by the RF
models are better than the fixed values; the prediction
error was decreased significantly. In order to compensate
the remaining error er, a combined gray-box model is
developed with another RF model fRF3. Finally, TD temp
is predicted by adding the output of fRF3 to the output
T̂ op
fp of the inner gray-box model.

T̂ op
fp = ffp(TRH,xfp, Ûb, Ût) (19)

er = TTD − T̂ op
fp (20)

êr = fRF3(xRF) (21)

T̂TD = T̂ op
fp + êr (22)

The symbols θ, y and x used in Fig. 2 can be defined as
follows:

θ = {Ub, Ut} (23)

y = TTD (24)

x = {TRH,xRF} (25)

5.1 Model Validation

TD temp prediction performance of the first-principle
model, statistical model developed with RF, the outer
gray-box model, the proposed inner gray-box model, and
the proposed combined gray-box model was compared
by applying them to real process data. The number of
samples was 1588; 1270 samples (80 %) were used for
modeling and the other 318 samples (20 %) were used
for validation. For each validation sample, the parameters
Ub and Ut, and the error of the first-principle model and
the inner gray-box model were estimated through the
statistical models fRF1, fRF2 and fRF3, respectively. Fig. 6
shows the prediction results. In addition, the results of
five models are summarized in Table 1. The prediction
performance was evaluated on the basis of the root-mean-
square error (RMSE) and the correlation coefficient (r)
between reference TD temp and predicted TD temp.

The performance of the proposed combined gray-box
model is superior to the other models. The combined gray-
box model achieved the highest prediction accuracy and its
RMSE is 37 %, 17 %, 6 % and 4 % smaller than that of the
first-principle model, the statistical model, the outer gray-
box model and the inner gray-box model, respectively. In
particular, it is important that the prediction performance
of the RF model alone was lower than the gray-box model,
in which the RF model was used to estimate the values
of Ub, Ut and er. Although RF can build a nonlinear
process model, its direct application is not always the best

Table 1. Prediction results of TD temp

Modeling method RMSE r

First-principle model 2.73 0.74
Statistical model (RF) 2.08 0.86
Outer gray-box model 1.84 0.88
Inner gray-box model 1.81 0.88
Combined gray-box model 1.73 0.89

approach because of its weaker interpretability than the
gray-box models.

6. CONCLUSIONS

In the present work, a new gray-box model to predict the
molten steel temperature in a tundish (TD temp) in a
steel making plant was proposed and was applied to the
real process data. In the proposed approach, statistical
technique, i.e., random forests (RF), was used to estimate
two parameters in the first-principle model, i.e., overall
heat transfer coefficients of ladle and tundish. The use of
the statistical models for the parameters update makes
the first-principle model able to model the heat losses
during transportation and casting periods, more precisely.
Another RF model was used to compensate the error of the
inner gray-box model. The results in TD temp prediction
show the advantage of the proposed gray-box model over
the first-principle model, the statistical model and the
conventional gray-box model.
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