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Abstract: We demonstrate that the normal vector method for robust optimization of nonlinear
systems with uncertain parameters can be extended to systems with delays. A first-order
exothermic irreversible reaction carried out in a CSTR with recycle stream serves as example
for the broad class of nonlinear delay differential equations (DDE) with uncertain parameters.
The stability boundaries that must be taken into account in the robust optimization consist
of Hopf bifurcation points in this case. We show that (i) an unstable steady state of operation
results if stability boundaries are neglected and (ii) a conservative optimal steady state results
if the delay is ignored.
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1. INTRODUCTION

Unconverted reactants are often separated from products
and recycled back to the reactor in chemical plants. A
combination of reaction and separation steps may be re-
quired, for example, to obtain the desired purity of a
product stream. Several authors have studied stability
properties of reactor-separator systems with recycle with
numerical bifurcation techniques (see Engelborghs et al.
(2002) and references on bifurcation theory of systems with
delays therein). Pushpavanam and Kienle (2001) analyzed
the stability of the steady states of a reactor-separator
system, where a first-order exothermic irreversible reaction
is carried out in a CSTR. Kiss et al. (2002) investigated
the stability of CSTR-separator systems with recycle for
polymerization reactions. In both studies, the impact of
time delay associated with the recycle loop was neglected,
however. A time delay naturally arises from a transporta-
tion lag between the units in the recycling process.

Balasubramanian et al. (2003) showed that it is impor-
tant to take time delays into account when studying the
stability of reactor-separator systems. The authors demon-
strated that for some control strategies a time delay may
cause instability of a first-order isothermal irreversible re-
action in CSTR-separator systems with recycle. However,
stability properties are independent of the delay if the
fresh feed flow rate is flow controlled, the reactor holdup
is constant, and the reactor is operated isothermally. For
an exothermic first-order irreversible reaction in a non-
isothermal CSTR, small delays even have a stabilizing
effect (Balasubramanian et al., 2005; Gangadhar and Bal-
asubramanian, 2010).

Matallana et al. (2011) optimized the capital cost of
a CSTR-separator system operated under nonisothermal
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conditions. The authors seek the stable steady state with
the largest domain of attraction. A two-level optimization
approach involving nonsmooth functions was proposed.
The economic objective is optimized in the first level. In
the second level stability constraints are introduced and
the domain of attraction is maximized. The effect of a
time delay was neglected.

We consider a CSTR-separator system with delay. A first
order exothermic irreversible reaction is carried out in
the CSTR, which is operated nonisothermally. We opti-
mize the production rate. We propose to use the so-called
normal vector method, which ensures stability in a finite
neighborhood around the optimal point, where the neigh-
borhood can be chosen to account for uncertain model
parameters (see. Sect. 4). The normal vector method was
originally developed for the robust optimization of steady
states of nonlinear ordinary differential equation systems
(ODE) (Mönnigmann and Marquardt, 2002; Mönnigmann
et al., 2007). It is the purpose of the present paper to
demonstrate that the method can be applied to nonlinear
DDE with uncertain parameters by applying it to the
example outlined above.
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Fig. 1. Reactor-separator system with recycle.
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Table 1. Notation for parameters of model (1).

V = reactor volume [m3]
k0 = kinetic constant [s−1]
E = activation energy of reaction [J mol−1]
R = ideal gas constant [J mol−1 K−1]
∆H= heat of reaction [J mol−1]
ρ = molar density [mol m−3]
Cp = heat capacity [J mol−1 K−1]
U = heat transfer coefficient [W m−2 K−1]
A = heat transfer area [m2]

2. REACTOR-SEPARATOR SYSTEM MODEL

We consider the simple reactor-separator process with
recycle shown in Fig. 1. An exothermic first order reaction
A → B takes place in the cooled CSTR. The effluent of
the reactor is fed to a separator, where the unconverted
reactant species A are separated from the product species
B. The unconverted species A are mixed with the fresh
feed and recycled back to the CSTR. We consider a process
model that consists of the following material and energy
balance equations (Lehman et al., 1994)

dCA(t)

dt
=
σF

V
CAf −

F

V
CA(t) +

(1− σ)F

V
CA(t− τ)

−k0e−
E

RT (t)CA(t)
(1)

dT (t)

dt
=
σF

V
Tf −

F

V
T (t) +

(1− σ)F

V
T (t− τ)

+
(−∆H)

ρCp
k0e

− E
RT (t)CA(t)− UA

V ρCp
(T (t)− Tc),

where CA [mol m−3] is the reactant concentration and
T [K] is the reactor temperature. F [m3 s−1] denotes the
total reactor flow rate. Note that the process model does
not include the separator dynamics, but we merely assume
that the desired separation ratio σ [-] can be obtained. The
separation ratio attains values σ ∈ [0, 1], where σ = 0 and
σ = 1 correspond complete recycle and no recycle at all,
respectively. The fresh feed to the reactor is provided with
flow-rate σF [m3 s−1], concentration CAf [mol m−3], and
temperature Tf [K]. The time delay associated with the
recycle loop is denoted by τ [s]. The recycle stream is fed to
the reactor with flow rate (1−σ)F [m3 s−1], concentration
CA(t − τ) [mol m−3], and temperature T (t − τ) [K]. A
cooling jacket with the constant temperature Tc [K] is
considered. The meaning of the remaining parameters of
model (1) are explained in Tab. 1.

Following Lehman et al. (1994), we state the model (1) in
dimensionless variables as

dx1(t∗)

dt∗
= x10 −

1

σ
x1(t∗) + (

1

σ
− 1)x1(t∗ − τ∗)

−Dae
x2(t∗)

1+ 1
ε
x2(t∗)x1(t∗)

(2)
dx2(t∗)

dt∗
= x20 −

1

σ
x2(t∗) + (

1

σ
− 1)x2(t∗ − τ∗)

+BDae
x2(t∗)

1+ 1
ε
x2(t∗)x1(t∗)− β(x2(t∗)− x2c).

The dimensional quantities of the model (2) are collected
in Tab. 2. C0 [mol m−3] and T0 [K] in Tab. 2 denote
a reference concentration and temperature, respectively.
The symbols t∗ and τ∗ denote the dimensionless time
and delay. The dimensionless reactant concentration and
dimensionless reactor temperature are denoted by x1 and

Table 2. Dimensional quantities of model (2).

t∗=σF
V
t x1=CA

C0
x20=

Tf−T0

T0
ε Da=k0

V
σF

e−ε

τ∗=σF
V
τ x10=

CAf
C0

x2c=
Tc−T0
T0

ε B=
(−∆H)C0ε
ρCpT0

ε= E
RT0

x2=T−T0
T0

ε β= UA
CpρσF

x2, respectively. We assume that the following parameters
are fixed in the model (2): x10 = 1, x2c = 0, σ = 0.25,
ε = 12, β = 2.4, B = 20, and τ∗ = 0.4. The dimensionless
feed temperature x20 and Damköhler number Da are
unknown uncertain parameters that will be subject to
optimization.

The reactor-separator model (2) belongs to the class of
DDE of the form

dx(t)

dt
= f(x(t), x(t− τ1), . . . , x(t− τm), α), (3)

where x(t) ∈ Rnx , α ∈ Rnα , and τk ∈ R+, k =
1, . . . ,m, denote state variables, uncertain parameters and
delays, respectively. The function f maps from some open
subset of R(m+1)nx × Rnα into Rnx and is assumed to
be sufficiently smooth. For the considered model (2) the
number of variables, uncertain parameters, and delays in
(3) are nx = 2, nα = 2, and m = 1.

3. REFERENCE OPTIMIZATION WITHOUT
STABILITY CONSTRAINTS

We would like to find an optimal and stable steady state of
the reactor-separator model (2) that is robust with respect
to parameter variations in a sense explained in detail
further below. For reference, however, we first find a steady
state solution of (2) without imposing any constraints on
stability and robustness. The optimization problem that
needs to be solved for this purpose has the form

max
x(0),α(0)

φ(x(0), α(0))

s.t. 0 = f(x(0), x(0), . . . , x(0), α(0)) (4a)

0 ≤ h(x(0), α(0)), (4b)

where x(0) ∈ Rnx and α(0) ∈ Rnα refer to the optimal
steady state and the optimal point in the parameter
space, respectively. The function h : Rnx × Rnα 7→ Rnh ,
which defines feasibility constraints (4b), is assumed to be
sufficiently smooth. The objective function φ : Rnx×nα 7→
R models a profit that is to be maximized. The function
φ is also assumed to be sufficiently smooth.

The state variables and parameters are x = (x1, x2)T

and α = (Da, x20)T , respectively, for the reactor-separator
system (2). We impose constraints of the type (4b) on the
dimensionless feed temperature x20 and the dimensionless
reactor temperature x2. These constraints read x20 ≤ 3
and x2 ≤ 10, respectively. We maximize the production
rate of species B in the reactor-separator system. The pro-
duction rate of B corresponds to the amount of converted
species A and reads σF (CAf − CA). Since Da is propor-
tional to V/(σF ), the profit function to be maximized is
chosen to be

φ(x, α) = cφ
x10 − x1
Da

, (5)

where a scaling factor cφ is introduced to assign the
value φ = 1 to the solution of the reference optimization
problem (4). The optimal solution of (4) reads

(Da(0), x
(0)
20 ) = (0.065, 3). (6)
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Fig. 2. Step response (solid) and steady state (dashed) for
the parameters (6).
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Fig. 3. Characteristic roots λj (7) evaluated at optimal
point (6). Part (b) is an enlargement of diagram (a).

The corresponding scaling factor cφ is set to cφ = 1
10.3 . We

obtained (6) and all other optimization results discussed
below with the numerical optimization solver NPSOL (Gill
et al., 2001).

Figure 2 shows a time series of (2) evaluated for the
optimal parameters (6). The time series results after a
step increase of the initial value x2(0) by 5%. Sustained
oscillations arise and the solution converges to a limit
cycle. The steady state that corresponds to (6) is unstable.
This steady state is shown as a dashed line in Fig. 2.

3.1 Robust stability and feasibility

The stability properties of a steady state of the nonlinear
DDE (3) are characterized by the real parts of the roots λj
of the characteristic equation of the linearized DDE evalu-
ated at that steady state. The characteristic equation reads

det(λI − J0 −
m∑
k=1

Jke
−λτk) = 0, (7)

where I ∈ Rnx×nx is the identity matrix, J0 and Jk,
k = 1, . . . ,m, are the Jacobian matrices with respect to
variables x(t) and x(t − τk), respectively. The Jacobians
J0 and Jk are evaluated at the steady state solution,
i.e., J0 := J0(x(0), α(0)) and Jk := Jk(x(0), α(0)). The
characteristic equation (7) has an infinite number of roots
λj , j ∈ N. If all λj satisfy Re(λj) < 0 for the steady state
of interest, then this steady state is a stable steady state of
the system of nonlinear DDE (3) (Hale and Verduyn Lunel,
1993, Chap. 5).

Fig. 3 illustrates the rightmost characteristic roots of (7)
for the reference optimization result (6) in the complex
plane. The characteristic roots were obtained with DDE-
BIFTOOL (Engelborghs et al., 2002). From Fig. 3b it is
apparent that there exists a pair of complex characteristic
roots with a positive real part. Continuation of steady
states of (2) reveals that the reference optimal point

Da

2x
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unstable

stable

reference

optimal point

(a)

Da

2x

unstable

stable

reference

optimal point

(b)

Fig. 4. Continuation of steady states of (2) for x20 = 3.
Solution (6) corresponds to the unstable steady state.
Part (b) is an enlargement of diagram (a).
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Fig. 5. Reference optimal point and regions with distinct
dynamical properties of (2) in the space of uncertain
parameters (Da, x20).

is located on an unstable branch of steady states. The
transitions from stable to unstable steady states in Fig. 4
correspond to Hopf bifurcations (see Engelborghs et al.
(2002) and references therein for Hopf bifurcations of
DDE).

We consider the dimensionless feed temperature x20 and
the Damköhler number Da to be uncertain parameters in
the sense that they cannot be fixed to precise values, but
they may drift within certain error bars. Specifically, we
assume

(Da, x20) ∈[Da(0) −∆Da,Da(0) + ∆Da]×
[x

(0)
20 −∆x20, x

(0)
20 + ∆x20],

(8)

where ∆Da = 0.02 and ∆x20 = 0.2 for the example
treated here. Admittedly, (8) is a crude description of
uncertain parameters. More precise descriptions, such as
probability distributions, are rarely available in engineer-
ing applications, however.

3.2 Sketch of the main idea

Figure 5 shows the reference optimal point (6) in the
space of the uncertain parameters (Da, x20). The square
centered at the optimal point marks the uncertainty region
(8). The stability boundaries in Fig. 5 are obtained by
continuation of the Hopf bifurcation points. We call a can-
didate steady state robust, if it is stable and feasible and
if it remains stable and feasible as long as the parameters
drift in the uncertainty region (8). We can enforce robust
stability by guaranteeing the characteristic roots to remain
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in the open left half of the complex plane. This must be
enforced for all steady states that can be attained in the
neighborhood of the candidate steady state as the param-
eters are varied in the uncertainty region (8). Similarly, we
can enforce robust feasibility by guaranteeing these steady
states in the neighborhood of the candidate steady state
to be feasible. These two robustness conditions are fulfilled
if the robustness region marked by the square in Fig. 5 is
located in the gray area. It is apparent from Fig. 5 that
this is not the case for the reference point (6).

Note that the points at which a characteristic root moves
from the left half into the right half of the complex
plane are the bifurcation points of the dynamical system.
Essentially, the normal vector constraints introduced in
the following section restrict the optimization to the steady
states that are robust by enforcing a back-off distance from
bifurcation points and feasibility boundaries.

4. NORMAL VECTOR METHOD

The normal vector method is based on the geometric inter-
pretation of stability and feasibility boundaries sketched
in Sect. 3.2. Dobson (1993) proposed to characterize
steady states by their distances to bifurcation bound-
aries measured along normal vectors in the parameter
space. Mönnigmann and Marquardt (2002) showed that
this characterization of the distance to stability and fea-
sibility boundaries can be used to implement robustness
constraints for the optimization of steady states of ODE
systems. The approach has been extended to the robust
optimization of fixed points of nonlinear discrete time
systems (Kastsian and Mönnigmann, 2010), of periodically
operated systems (Kastsian and Mönnigmann, 2012), and
to the optimization of transient modes of operation of
nonlinear continuous time systems (Gerhard et al., 2008).

We briefly summarize the idea of the normal vector con-
straints. As a preparation, we introduce a simple metric
that measures each of the uncertain parameters αi in units
of its admissible uncertainty ∆αi. This is equivalent to
scaling the parameters according to αi → αi/∆αi and

α
(0)
i → α

(0)
i /∆αi. The hyperrectangular uncertain region

(8) becomes a hypersquare under this scaling. It reads

αi ∈ [α
(0)
i − 1, α

(0)
i + 1] for i = 1, . . . , nα. (9)

The uncertainty region (9) can conveniently be over-
estimated by an nα-dimensional hypersphere of radius√
nα. Figure 6 shows a two-dimensional uncertainty region

(nα = 2) and its overestimation by the circle of radius
√

2.
We refer to the interior of the hypersphere as robustness
region.

Consider a single stability or feasibility boundary of the
type shown in Fig. 5. We sketch such a boundary along
with a shaded region of parameter values that correspond
to stable and feasible steady states in Fig. 6. We explained
in Sect. 3.2 that any candidate optimal point α(0) and
its uncertainty region (9) has to lie in this shaded region.
Figure 6 illustrates how to use the normal vector to the
critical boundary to enforce this requirement. The normal
vector constraints guarantee that the distance of α(0) to
the critical boundary is equal to, or larger than, the radius√
nα of the robustness region. Formally, the normal vector

constraints read

11 / αα ∆

2

2

α

α

∆

region with desired

system dynamics

uncertainty region

normal vector r

)0(
αcandidate optimal point

}1
)(c

α

}

parametric distance d

critical boundary

Fig. 6. A candidate optimal point α(0) can be forced to lie
in the region with desired system dynamics with the
constraints on the parametric distance d.

α(0) = α(c) + d
r

‖r‖
, d ≥

√
nα, (10)

where r ∈ Rnα , α(c) and ||·|| denote the normal vector, the
closest point on the critical boundary and the Euclidean
norm, respectively. If multiple critical boundaries exist, cf.
Fig. 5, a normal vector constraint (10) must be stated for
each critical boundary.

In order to implement the constraints (10), the normal
vector r must be calculated as a function of the candidate
optimal point α(0). Mönnigmann and Marquardt (2002)
presented a schema for deriving the normal vector sys-
tems (11) from the so-called augmented systems of the
bifurcation points that are used in parameter continuation
methods. This derivation is based on characterizing the
normal space to the manifolds of bifurcation points in the
space of the state variables x and uncertain parameters
α, and on selecting the particular vector in this normal
space that has no contribution in the state space. Since
these steps are quite technical, we omit details here and
report the resulting system for Hopf bifurcations of DDE
in the appendix. In general the systems of equations for
the calculation of normal vectors have the form

G(c)(x(c), x̄(c), α(c), r) = 0, (11)

where (x(c), α(c)) refers to a bifurcation point, x̄(c) denotes
a vector of auxiliary variables, and the superscript c is used
to indicate the particular type of bifurcation point (Hopf
throughout this paper). Similar systems of equations can
be derived for normal vectors to feasibility boundaries. We
refer to Mönnigmann and Marquardt (2002) for details.
One feasibility and two stability boundaries due to Hopf
bifurcations of DDE arise for the reactor-separator model
with delay treated here.

It remains to augment the optimization problem (4) with
the normal vector constraints (10). This results in the
following optimization problem

max
x(0),α(0)

φ(x(0), α(0))

s.t. 0 = f(x(0), x(0), . . . , x(0), α(0)) (12a)

0 ≤ h(x(0), α(0)) (12b)

0 = G(c,i)(x(c,i), x̄(c,i), α(c,i), r(i)),∀i ∈ I(12c)

0 = α(0) − α(c,i) + d(i)
r(i)

‖r(i)‖
,∀i ∈ I (12d)

0 ≤ d(i) −
√
nα, ∀i ∈ I. (12e)
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Fig. 7. Optimal point (13) obtained with the normal vector
method for DDE.

Constraints (12a) and (12b) are the same as in (4). We
assume that imax critical boundaries exist. Equations (12c)
describe these boundaries for all i ∈ I := {1, ..., imax}.
The corresponding normal vectors r(i) for all i ∈ I are
stated in (12c). The constraints (12d) and (12e) enforce
the parametric distances d(i) to each critical boundary. If
solving (12) results in d(i) =

√
nα, then the robustness

region touches the ith critical boundary.

We stress that critical boundaries like those shown in
Fig. 5 do not have to be precomputed before solving
optimization problem (12). Their location can be detected
automatically in the course of optimization. We refer to
Mönnigmann et al. (2007) for details.

5. OPTIMIZATION OF THE REACTOR-SEPARATOR
SYSTEM WITH STABILITY CONSTRAINTS

We apply the normal vector method to the optimization of
the reactor-separator system (2). We consider the uncer-
tainty region (8) and state the normal vector constraints
(10) for the Hopf bifurcation boundaries and the feasibility
boundary shown in Fig. 5, i.e., imax = 3 in (12). Maximiz-
ing the profit function φ (5) with the normal vector method
results in the optimal point

(Da(0), x
(0)
20 ) = (0.098, 2.72). (13)

This result corresponds to objective function value φ =
0.81. Figure 7 shows the optimal point (13) in the parame-
ter space. In contrast to the solution shown in Fig. 5, where
constraints on stability were not considered, the optimal
result obtained with the normal vector method is stable
and feasible. Moreover, it is robust in the sense defined in
Sect. 3.2, i.e. a stable and feasible steady state of model
(2) exists for all parameter values in the robustness region
(8). The real parts of all characteristic roots are negative
for the optimal point (13). Figure 8a shows the rightmost
characteristic roots for the optimal point. Figure 8b illus-
trates the location of the optimal point on the steady-state
manifold in a one-parameter bifurcation diagram for the
parameter Da ∈ [0, 0.5]. Note that this figure corresponds
to a cut through Fig. 7. The step response shown in Fig. 4
corroborates that the optimal steady state is stable. The
step response is obtained in the same manner as for Fig.
4, i.e. for an increase of value x2(0) by 5%.

Recall that for the optimal point (13) DDE (2) were
considered with τ∗ = 0.4. To study the effect of the time
delay we repeat the analysis and optimization of (2) for

− − − −

−

−

)Im( jλ

)Re( jλ

(a)

Da

2x

stable

unstable

stable

optimal point

(b)

Fig. 8. Part (a) shows characteristic roots λj (7) evaluated
at optimal point (13). Part (b) shows point (13) and
continuation of steady states for x20 = 2.72.

2
x

∗

t

Fig. 9. Time series evaluated at optimal point (13).

τ∗ = 0. Figure 10 shows the stability boundaries of (2)
for this case. These stability boundaries consist of Hopf
bifurcation points of ODE. The stability boundaries for
the DDE from Figs. 5 and 7 are also shown for comparison.
It is apparent from Fig. 10 that there exists a region which
contains steady states that are unstable if the time delay
is neglected, but stable for τ∗ = 0.4.

We repeat the optimization (12) with normal vector con-
straints for the case τ∗ = 0. Note that this case corre-
sponds to an optimization of an ODE system. The normal
vector constraints for DDE given in the appendix also
apply in the ODE case and they coincide with the normal
vector constraints for the ODE published in Mönnigmann
and Marquardt (2002). The optimization with the normal
vector constraints for ODE results in

(Da(0), x
(0)
20 ) = (0.105, 2.72). (14)

The objective function evaluates to φ = 0.77 at this point,
which is 4% lower than the value obtained for optimal

Da

20x

stability boundaries for DDE

optimal point for DDE

infeasible

region stable for DDE

but unstable for ODE

stability boundaries for ODE

optimal point for ODE

Fig. 10. Optimal point (14) obtained with the normal
vector method for ODE (τ∗ = 0). Point (13) for DDE
(τ∗ = 0.4) is shown for comparison.
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point for DDE (13). Both Fig. 10 and the profit function
values reveal that the delay has a small but a stabilizing
effect for the example considered here.

6. CONCLUSIONS

We demonstrated that the normal vector method for ro-
bust optimization of uncertain systems of ordinary differ-
ential equations can be extended to the case of uncertain
systems of delay differential equations (DDE). A simple
reactor-separator system with delay in the recycle served
as an example for the broad class of uncertain DDE. The
optimal steady state of operation is unstable for this exam-
ple. Therefore, a model-based optimization that does not
take stability properties into account fails for this example.
In contrast, a robust optimal point of operation can be
found with the proposed method. We stress that the paper
does not present a complete theory, but only demonstrates
that the normal vector method can be extended to the case
of uncertain DDE by example. In the particular example
treated here, the delay turns out to have a stabilizing
effect, which results in a higher profit function value for
the system with delay than for the system without delay.
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Appendix A. NORMAL VECTOR SYSTEM FOR HOPF
BIFURCATIONS OF DDE

The normal vector system (11) for Hopf bifurcation of DDE is
denoted by

G(Hopf)(x(Hopf), x̄(Hopf), α(Hopf), r) = 0.

It reads as the following system of 6nx + nα + 4 equations

f = 0

J0w
(1) +

m∑
k=1

(
Jkw

(1)ck + Jkw
(2)sk

)
+ ωw(2) = 0

J0w
(2) +

m∑
k=1

(
Jkw

(2)ck − Jkw(1)sk
)
− ωw(1) = 0

w(1)Tw(1) + w(2)Tw(2) − 1 = 0

w(1)Tw(2) = 0

JT0 v
(1) +

m∑
k=1

(
JTk v

(1)ck + JTk v
(2)sk

)
− ωv(2)

+γ1w
(1) − γ2w

(2) = 0

JT0 v
(2) +

m∑
k=1

(
JTk v

(2)ck + JTk v
(1)sk

)
+ ωv(1)

+γ1w
(2) + γ2w

(1) = 0

v(1)Tw(1) + v(2)Tw(2) − 1 = 0
m∑
k=1

(
v(1)T Jkw

(2)τkck − v(1)T Jkw
(1)τksk

−v(2)T Jkw
(1)τkck − v(2)T Jkw

(2)τksk
)

+v(1)Tw(2) − v(2)Tw(1) = 0
m∑
k=1

(
v(1)T Jk0w

(1)ck + v(1)T Jk0w
(2)sk

+v(2)T Jk0w
(2)ck − v(2)T Jk0w

(1)sk
)

+JT0 u+ v(1)T J00w
(1) + v(2)T J00w

(2) = 0

r −
m∑
k=1

(
v(1)T Jkαw

(1)ck + v(1)T Jkαw
(2)sk

+v(2)T Jkαw
(2)ck − v(2)T Jkαw

(1)sk
)

−JTα u− v(1)T J0αw
(1) − v(2)T J0αw

(2) = 0,

where ck := cos(ωτk) and sk := sin(ωτk) are introduced for brevity.
The vector of auxiliary variables x̄(Hopf) collects w(1) ∈ Rnx ,
w(2) ∈ Rnx , v(1) ∈ Rnx , v(2) ∈ Rnx , u ∈ Rnx , ω ∈ R, γ1 ∈ R,
and γ2 ∈ R. The function f : R(m+1)nx × Rnα 7→ Rnx defines the
DDE (3). J0 ∈ Rnx×nx and Jk ∈ Rnx×nx , k = 1, . . . ,m, are the
Jacobian matrices ∂f/∂x(t) and ∂f/∂x(t − τk), respectively. J00 ∈
Rnx×nx×nx and Jk0 ∈ Rnx×nx×nx denote second order derivatives
∂f/(∂x(t)∂x(t)) and ∂f/(∂x(t − τk)∂x(t)). J0α ∈ Rnx×nx×nα and
Jkα ∈ Rnx×nx×nα refer to ∂f/(∂x(t)∂α) and ∂f/(∂x(t− τk)∂α). A
superscript T denotes vector or matrix transposition.
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