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Abstract:
Model Predictive Control (MPC) and its first order approximation, the Neighboring Extremals
(NE) have been used for real-time optimal control in the presence of model uncertainties
for several decades. Traditionally, both MPC and NE would only correct for deviations in
states considering the underlying model to be nominal - a procedure that is valid for additive
disturbances. However, in the presence of model uncertainties, a simple illustrative example in
this paper shows that such a MPC scheme or a NE controller could cause corrections in the
wrong direction, thereby deteriorating performance. The paper, thus, addresses reformulating
NE feedback considering sensitivities with respect to the model parameters. The feedback
then has two components - one based on state deviations and the other based on parameter
deviations. Note that this formulation also requires some primitive form of parameter
estimation. The illustrative example shows the efficacy of this approach and the importance of
incorporating the knowledge of parameter variations in real-time optimal control.

Keywords: Neighboring Extremal; Model Predictive Controller; Necessary Conditions of Opti-
mality; Parametric Uncertainty

1. INTRODUCTION

Real-time optimal control of batch processes under the
presence of model uncertainty has been posing as an in-
vincible challenge to the control community. Traditionally,
open-loop optimal trajectory based on a nominal offline
model is employed for control of batch processes. In the
presence of uncertainties, robust optimal trajectory that
minimizes either the worst case deviation of the batch-
end performance index or the variance of the objective
around the nominal value (caused by the uncertainty in the
parameters) is used (Nagy and Braatz, 2004). Also, run-
to-run adaption strategies with repetitive identification of
the uncertain parameters towards the end of the batch
have been developed in the literature (Lee and Lee, 2007,
2003).

With the advent of the Model Predictive Control (MPC)
real-time optimal control by repetitive optimization of the
dynamic formulation is made possible. The MPC formu-
lation uses a nominal model along with state feedback
in order to find the future optimal input moves (Eaton
and Rawlings, 1990). Even though, MPC is a proven tech-
nology in process industries, the huge computation cost
involved in solving the formulation can make it formidably
unattractive for the control of batch processes. Thus,
measurement based optimization schemes that track the
NCO have been developed (Srinivasan et al., 2003), which
characterize the nominal solution using boundary and
interior arcs, apply simple constraint-tracking techniques

for the boundary arcs and use suitable approximations for
the interior arcs. The current study, explores the NCO
tracking based controller for the interior arcs by designing
a Neighboring Extremal (NE) Controller. NE controller
is a first-order approximation of the MPC where the
deviation of the input is obtained from the deviation of
the states (Bryson and Ho, 1969). It is a computationally
efficient solution for small variations and for processes that
are not heavily nonlinear.

Traditionally, the nominal model is used as a basis for
designing both MPC and NE controller. Parameters of
the model are typically not adapted due to the absence
of persistency of excitation and the corrective actions
for the input are based only on the state deviations.
Such an approach is valid in the presence of additive
uncertainty, i.e., state and process noise. However, when
state deviations are caused by model uncertainties, the
correction should depend not only the state deviations (the
effect), but also on the model uncertainties (the cause). So,
the objective of the paper is to emphasize the importance
of incorporating the model uncertainty information in the
correction. Incorporating model uncertainty information
in the MPC based control strategy needs prudence, since
adapted parameter values with poor confidence would
cause the input to chatter. So, a safer bet would be to use
the NE feedback law that incorporates corrections based
on both state and parameter variations.
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2. MODEL PREDICTIVE CONTROL VS
NCO-TRACKING BASED CONTROL

2.1 MPC formulation

Design of Model Predictive Control for batch processes,
typically involves repetitive optimization based on an of-
fline model and the necessary states information obtained
from the measurements (Chin et al., 2000). Considering
the state feedback at time, tk to be xk, an optimization
problem is formulated as follows,

min
u[tk,tf ]

J = Φ(x(tf )) +

∫ tf

tk

L(x(t), u(t)) dt (1)

s.t ẋ(t) = F (x(t), u(t)), x(tk) = xk (2)

where tf is the batch time, Φ(x(tf )) is the terminal cost
function and L is the integral cost function, while J is
the cost function to be minimized. x is the state vector
with the initial conditions for solving state equations from
time tk to tf as xk and F describes the system dynamics.
However, instead of this scheme that requires the explicit
solution of the above formulation at each sampling time,
Measurement Based Optimization (MBO) schemes have
been developed in the literature (Welz et al., 2008; Gros
et al., 2009a,b). One among such approaches is the NCO-
based tracking control, which can be understood as a first
order (linear) approximation of the MPC formulation.

2.2 Necessary conditions of optimality

Consider the formulation of the unconstrained optimal
control problem as follows,

min
u[0,tf ]

J = Φ(x(tf )) +

∫ tf

0

L(x(t), u(t)) dt (3)

s.t ẋ(t) = F (x(t), u(t)), x(0) = x0 (4)

Furthermore, assuming that if all the functions in Eqs. (3)
and (4) are continuously differentiable with respect to
their arguments, then there exists optimal control u∗(t)∀t,
0 ≤ t ≤ tf for the nominal parameter values. Note that
this solution profile consists of only interior (sensitivity-
seeking) arc. Furthermore, in order to be operated in an
optimal fashion, the NCO are tracked .i.e., first order par-
tial derivatives of the Hamiltonian function with respect
to the input profile must always be zero, at any given time.

Based on Pontryagin’s Minimum Principle (PMP), the
problem of optimizing the scalar cost functional J in
Eqs. (3) and (4) can be reformulated by defining the
Hamiltonian function H(t) as (Bryson and Ho, 1969):

H(x, u, λ) =L(x, u) + F (x, u)Tλ (5)

and the necessary conditions of optimality give

Hu = Lu + Fu
Tλ = 0 ; Huu > 0 , (6)

where λ represents the adjoint vector function given as

λ̇ = −Hx = −Lx − FxTλ ; λ(tf ) = Φx(x(tf )) (7)

Therefore, the solution of Eq. (6) gives the optimal input
profile even in the presence of process disturbances and un-
certainties. During the implementation of the NCO track-
ing based control, boundary arcs can be easily tracked.
However, in order to push the path sensitivities to zero,
approximate methods such as neighboring extremal con-
trol must be employed (Gros et al., 2009b).

2.3 Design of neighboring extremal controller for non-
singular systems

As the optimal control profile u∗(t), 0 ≤ t ≤ tf is designed
based on the initial condition x0, any slight variation δx0

in the initial states requires the modification of the entire
profile. For the case of unconstrained problems or when the
constraints remain inactive, the first-order approximation
of the optimal trajectory for the perturbed control is
considered as

u(t; η) = u∗(t) + ηδu(t) + o(η) (8)

and the correction δu is computed as the solution of the so-
called accessory minimum problem, .i.e., the minimization
of the second-order variation of the cost functional subject
to the linearized dynamics (Breakwell et al., 1963),

min
δu(t)

δ2J =
1

2
δx(tf )TΦ∗xx(δx(tf ))

+
1

2

∫ tf

0

(
δx
δu

)T (
H∗xx H

∗
xu

H∗ux H
∗
uu

)(
δx
δu

)
dt (9)

s.t δẋ(t) = F ∗x δx+ F ∗uδu, δx(0) = δx0 (10)

Thus, when the problem of (9) and (10) has a solution,
it can be shown that there exists an optimal control
trajectory u(t; η), in the neighborhood of η = 0. Therefore,
the correction δu satisfying the strengthened Legendre-
Clebsch condition H∗uu(t) > 0 along the nominal solution
u∗(t), x∗(t), λ∗(t), is then given by

δu(t) = −(H∗uu)−1[H∗uxδx(t) + F ∗
T

u δλ] (11)

Furthermore, a NE state feedback law that enforces the
necessary conditions of optimality can be designed via
backward sweep method that assumes linear relation
between the states and adjoint variables as δλ(t) =
Sx(t)δx(t) (Gros et al., 2009b).

δu(t) = −Kxδx(t) (12)

Kx(t) = (H∗uu)−1(H∗ux + F ∗u
TSx(t)) (13)

Ṡx(t) = −H∗xx − Sx(t)F ∗x − F ∗xTSx(t)

+ (H∗xu + Sx(t)F ∗u )Kx(t) ; with Sx(tf ) = Φ∗xx (14)

3. NEIGHBORING EXTREMAL CONTROL IN THE
PRESENCE OF MODEL UNCERTAINTIES

3.1 Reformulation of neighboring extremal feedback in the
presence of model uncertainties

In the presence of model uncertainties, the unconstrained
optimal control problem as described using Eqs. (3) and
(4), can be reformulated as follows:

min
u(t)

J = Φ(x(tf )) +

∫ tf

0

L(x(t), u(t), θ) dt (15)

s.t ẋ(t) = F (x(t), u(t), θ), x(0) = x0 (16)

The Hamiltonian function H(t) for the above formulation
can thus be derived as,

H(x, u, θ, λ) =L(x, u, θ) + F (x, u, θ)Tλ (17)

while the accessory minimum problem will be,
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min
δu(t)

δ2J =
1

2
δx(tf )TΦ∗xx(δx(tf ))

+
1

2

∫ tf

0

(
δx
δu
δθ

)T(
H∗xx H

∗
xu H

∗
xθ

H∗ux H
∗
uu H

∗
uθ

H∗θx H∗θu H∗θθ

)(
δx
δu
δθ

)
dt

(18)

s.t δẋ(t) = F ∗x δx+ F ∗uδu+ F ∗θ δθ, δx(0) = δx0 (19)

Thus, when the problem of (18) and (19) has a solution,
it can be shown that there exists an optimal control
trajectory u(t; η), in the neighborhood of η = 0. Therefore,
the correction δu satisfying the strengthened Legendre-
Clebsch condition H∗uu(t) > 0 condition along the nominal
solution u∗(t), x∗(t), λ∗(t), is then given by

δu(t) = −(H∗uu)−1[H∗uxδx(t) + F ∗
T

u δλ+H∗uθδθ] (20)

Furthermore, by assuming a linear relationship as δλ(t) =
Sx(t)δx(t) + Sθ(t)δθ (Gros et al., 2009b).

δu(t) = −Kxδx(t)−Kθδθ (21)

Kx(t) = (H∗uu)−1(H∗ux + F ∗u
TSx(t)) (22)

Kθ(t) = (H∗uu)−1(H∗uθ + F ∗u
TSθ(t)) (23)

Ṡx(t) = −H∗xx − Sx(t)F ∗x − F ∗xTSx(t)

+ (H∗xu + Sx(t)F ∗u )Kx(t) ; with Sx(tf ) = Φ∗xx (24)

Ṡθ(t) = −H∗xθ − Sx(t)F ∗θ − F ∗xTSθ(t)

+ (H∗xu + Sx(t)F ∗u )Kθ(t) ; with Sθ(tf ) = 0 (25)

Remark: The gains of the neighboring extremal controller,
Kx and Kθ, are obtained by solving the Riccati equation
within the unconstrained arcs. However, in cases where
the analytical expression for the nominal input trajectory,
u∗(t), is known, the above procedure can be avoided.
Instead, as the gains represent the input sensitivities to
the states and model parameters, they can be derived as,

Kx(t) = −∂u
∗

∂x
(26)

Kθ(t) = −∂u
∗

∂θ
(27)

Although, the reformulated NE feedback incorporates the
input sensitivities with respect to the model parameters,
the information regarding the deviations in the model
parameters is not readily available. Hence, methods for
parameter identification based on online state feedback
have to be incorporated into this framework.

3.2 Online estimation of deviations in model parameters
from state feedback

In the case of steady state processes, it has been shown
that the deviations in model parameters can be estimated
via output feedback (Gros et al., 2009a). On the other
hand, in the case of unsteady state processes, this can be
done only when reliable methods for estimating the deriva-
tive component are available. The equation governing the
system is described as,

ẋ = F (x, u, θ), x(0) = x0 (28)

where x and F represent the states and state dynamics,
respectively. u is the input and θ represents the model
parameters. Consider process operation around a nominal

operating trajectories, ẋ∗ = F (x∗, u∗, θnom) and a pertur-
bation is made in the model parameters, δθ = θ − θnom
from the nominal parameters. Let δuk = uk − u∗k be the
corrective action made at each instant in order to be at the
optimality. Thus, the deviations from θnom and u∗k induce
change in the system states as, δxk = xk − x∗k. Hence,
the linearization around the nominal operating trajectories
results in,

δẋk = Fxδxk + Fuδuk + Fθδθ, ∀k (29)

Thus, based on the state feedback, the deviations in the
model parameters are estimated as,

δθ = F †θ (δẋk − Fxδxk − Fuδuk) (30)

However, the limitation concerning the online estimation
of δẋk due to the causality issues, in both discrete and
continuous time, discourages its further implementation.

Alternatively, an integral approach is employed in this
study, for online estimation of the deviations in model
parameters based on state feedback. Using the nominal
model along with the values of the current inputs and
states, the future state values are predicted as,

˙̂x = F (x, u, θnom)− γ(x̂− x); x̂(k) = xk (31)

Here, as the current states and inputs are used, the
linearized model can be represented as,

δ ˙̂x = ˙̂x− ẋ = −Fθδθ − γ(x̂− x); δx̂(k) = 0 (32)

where γ acts as a filter avoiding the integral to become
too large. Besides, it also acts as a forgetting factor for the
predicted states. In order to estimate the deviations in the
model parameters using the state feedback, the sensitivity
of the δx̂ with respect to θ at each instant, Mk, have to be
computed. Thus,

∂(δ ˙̂x)

∂θ
=
∂( ˙̂x− ẋ)

∂θ
= Ṁ = −Fθ − γM ; M(0) = 0 (33)

δθ = M†k(x̂k − xk), ∀k (34)

By simultaneously solving the coupled equations .i.e.,
Eqs. (31) and (33), the deviations in the model parameters
can be repeatedly estimated based on Eq. (34). Further-
more, in order to avoid the issue concerning the inversion
of M(0) = 0 in Eq. (34), we can use M(0) = −1. Also,
by choosing the value of γ sufficiently large, the effect
of choosing a non-zero initial condition for solving the
sensitivity equations is damped over time.

4. ILLUSTRATIVE EXAMPLE

4.1 Process model

The isomerization reaction system A ↔ B in a batch
chemical reactor is considered in this study. This example
represents a non-input-affine system and thus serves as
non-singular system. Species A is initially present in the
reactor and B is the desired product. A simple dynamical
model is derived for the system based on mass-balance
principles as,

˙cA = −k1cA + k2(cA,0 − cA), cA(0) = cA,0 (35)

where cA represents the concentration [mol L−1] of species
A, k1 and k2 are the kinetic coefficients [hr−1] and cA,0 is
the initial condition. As there are no additional species,
the concentration of species B will be, cB = cA,0−cA. The
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Table 1 Parameters used in the model

Parameter Symbol Value Units

Initial cA,0 5 mol L−1

concentration

Batch time tf 1 hr

k1,0 5× 103 hr−1

k2,0 7× 1016 hr−1

Kinetic E1 2× 104 J mol−1

parameters E2 1× 105 J mol−1

k̄1,0 1 −
k̄2,0 0.0224 −
α 5 −

Gas constant R 8.314 J mol−1 K−1

kinetic coefficients are represented using an Arrhenius type
equation as,

ki = ki,0 exp

(
− Ei
RT

)
, where, i = 1, 2. (36)

By considering α = E2/E1, the equations for the kinetic
coefficients are further scaled as,

k1 = k̄1,0u and k2 = k̄2,0u
α (37)

where u = k1,0 exp

(
− E1

RT

)
(38)

k̄1,0 = 1 and k̄2,0 = k2,0

(
1

k1,0

)α
(39)

With an objective to maximize the conversion of species
A, the optimal control problem can thus be formulated as:

min
u(t)

J = Φ(x(tf )) = −
(

1− cA
cA,0

)∣∣∣∣
tf

(40)

where tf represents the final batch time. The nominal val-
ues of the parameters used in the above model expressions
are provided in Table 1.

4.2 Characterization of the nominal solution

As presented in Eqs. (35) - (40), the open-loop optimal
control problem is unconstrained. Thus, the Necessary
Conditions of Optimality according to Eq. (6) must hold
good and hence,

Hu = λ(−k̄1,0cA + k̄2,0(cA,0 − cA)αuα−1) = 0 (41)

Thus, the analytical solution for the optimal input trajec-
tory, u∗(t), is obtained as,

u∗ =

(
k̄1,0cA

k̄2,0(cA,0 − cA)α

)( 1
α−1 )

(42)

4.3 Design of neighboring extremal controller

The Neighboring Extremal Controller makes use of the
information regarding the deviations in the states and
model parameters (uncertainty) from their corresponding
nominal values, in order to make a corrective action to
the input from the nominal trajectory. For designing the
NE controller, the only state x = cA is assumed to
be measurable. As the system has only one state (or

measurement), parametric uncertainties existing in more
than one parameter cannot be obtained, due to rank
deficiency. Hence, perturbations in the parameters, θ =
[k̄1,0, k̄2,0, α], are considered individually, but not expected
to occur simultaneously. In this example, as the analytical
expression for the input trajectory is known, the NE
controller gains can be derived based on Eqs. (26) - (27).

Kx = − cA,0u
∗

cA(α− 1)(cA,0 − cA)
(43)

Kθ1 = − u∗

(α− 1)k̄1,0
(44)

Kθ2 =
u∗

(α− 1)k̄2,0
(45)

Kθ3 =
u∗

(α− 1)

(
log(u∗) +

1

α

)
(46)

These analytical expressions can also be derived from
Eq. (20) using the higher order partial derivatives of the
Hamiltonian function H(t).

4.4 Results and discussions

By considering various scenarios of uncertainties in model
parameters, a comparative study on the performance of
different versions of NE controller is carried out.

k̄′1,0 = k̄1,0(1 + ∆θ1) (47)

k̄′2,0 = k̄2,0(1 + ∆θ2) (48)

α′ = α(1 + ∆θ3) (49)

where ∆θ1 and ∆θ2 are the uncertainties in the scaled
kinetic coefficients k̄1,0 and k̄2,0, respectively, while ∆θ3

is the uncertainty in α. Thus, ∆θi = 0, i = 1, 2 and 3,
represent the nominal parameters. The focus of this study
is to understand the effect of each of the gains on the
corrective action made in the input trajectory and thus,
its consequence on the product quality values. Hence, for
comparison, the information regarding the state, cA and
the uncertainty in the model parameter, ∆θi are assumed
to be precisely known. Different case studies as given in
Table 2 were considered during this study.

During the implementation, three different versions of the
NE controller are considered depending on the feedback
available. The first among them is the traditional NE
controller with (i) only Kx with δx feedback (NE-δx).
Assuming that the deviations in the parameters are pre-
cisely known, NE controller gain corresponding to input
sensitivity with respect to the parameters, Kθ is kept
active along with Kx. Thus, the second version of the
NE controller with (ii) both Kx and Kθ with δx and
known δθ feedback (NE-δx-δθ) is considered during this
study in order to account for the optimality loss that can
be recovered with the inclusion of Kθ. However, as δθ
values are not readily availables, the estimated deviations
in the parameters (δθpred) are obtained using a repeti-
tive estimation method (as discussed in Section 3.2) by
choosing γ = 100. Thus, the results obtained through the
implementation of NE controller with (iii) both Kx and
Kθ with δx and estimated δθpred feedback (NE-δx-δθpred)
is also included. Additionally, two versions of the MPC
formulation (iv) with only δx feedback (MPC-δx) and
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(v) with both δx and estimated δθpred feedback (MPC-
δx-δθpred) are included for this comparative study. Not to
mention, the version of MPC that requires the feedback of
both δx and known δθ gives the results corresponding to
the true optimal solution.

Figures 1(a) represents the input profiles resulting from
the implementation of all the three versions of the NE con-
troller along with the two versions of the MPC formulation
for Case 1. For comparison, assuming that the uncertainty
is precisely known the true optimal input profile for Case
1 is also provided. Besides, the nominal input profile is
also shown in the plot as it serves as a benchmark to
realize the performance of both NE controller and MPC
formulation. With all the profiles being very close to each
other, a part of the plot is magnified for a better view (in
the inset). As can be seen from the plots, the traditional
NE controller with only Kx gain and δx feedback (NE-
δx) and the the MPC formulation with only δx state
feedback (MPC-δx) make corrective actions to the nominal
input towards a wrong direction. On the other, the NE-
δx-δθ seeks the correct direction, however, leads to over-
compensation for the perturbation introduced. Towards
this end, model parameter is identified very well as shown
in Figure 1(b). Thus, NE-δx-δθpred provides the corrective
actions that track an input profile that is closer to NE-δx-
δθ. While, in the case of MPC-δx-δθpred, the input profile
moves towards the right direction and reaches very close
to the true optimal profile. Thus, in the presence of model
uncertainties, the true potential of NE controller and MPC
formulation is realized when they are designed in a full
fledged fashion incorporating the deviations in both states
and model parameters.

Also, Figures 2(a) and 3(a) provide the input profiles for
cases 2 and 3, respectively, that infer similar trends in
the performance of the different versions of the controller.
The product quality values obtained towards the end of
the batch for each of the case studies are provided in
Table 3. Clearly, NE-δx-δθ outperforms the rest of them
by resulting in better product quality values. The versions
NE-δx-δθpred and MPC-δx-δθpred try to drive the process
closer to the true optimal. On the other hand, NE-δx
and MPC-δx, compete only in being either close to or
worse than the open-loop nominal performance. Thus, the
important message to be conveyed through this exercise
is that, in the presence of model uncertainties, the MPC
formulation that does not incorporate the deviations in the
model parameters (or, which does not update the model)
shows a performance that is not even to the level that is
delivered by implementing the nominal open loop profile.
The same accounts even for the NE-δx controller. However,
in certain cases, like in Case 2, as the NE controller is
a first order approximation of the MPC, the corrective
actions made by it does not make the input profile deviate
as largely as observed in the case of MPC-δx. This can be
seen in Figures 2(a).

Therefore, this discussion leads us to the most important
insight of incorporating the model parameter deviations
along with the state feedback during real-time optimal
control of batch processes. Precisely, as discussed in the
literature (Eaton and Rawlings, 1990; Agarwal, 1997)),
robust control and real-time optimal operation is possible
when online re-estimation of the model parameters or their

deviations from the nominal values is enabled along with
the state feedback. Hence, in the presence of uncertainty,
repetitive online optimization based only on the state
feedback may be futile.

From the plots in Figures 1(b) and 3(b), it can be in-
ferred that repetitive estimation of the parameters for
this illustrative example performs well for both NE-δx-
δθpred and MPC-δx-δθpred. However, in Case 2 as seen in
Figure 2(b), the issue concerning the simultaneous control
and parameter estimation during real time control of batch
process poses as a hurdle to identify the level of deviations
in the parameters.

5. CONCLUSIONS

Real-time optimal control in the presence of model uncer-
tainties is demonstrated using the Neighboring Extremal
controller. The importance of considering the input sensi-
tivities with respect to the model parameters, apart from
its sensitivities to the states is the major focus of this
study. With the help of a simple illustrative example, it
has been shown that NE controller with both Kx and
Kθ gains (NE-δx-δθ) shows a better performance overall.
In fact, the input and state trajectories corresponding
to the NE-δx-δθ version track the true optimal profiles
very closely. Hence, the necessity and the importance of
reformulating the NE feedback to counter the deviations
in the model parameters has been addressed in this study.
Furthermore, these conclusive remarks also provide the
evidence to prove the limitation of online reoptimization
control technologies, like Model Predictive Control, whose
corrective actions are made based on predictions of the
nominal model along with online state feedback. Thus, it
has to be noted that these control strategies are useful only
in the presence of deviations in the initial states, but fail
to achieve the performance in the presence of deviations in
the model parameters. Evidence from the earlier literature
also stands in support of our statements (Agarwal, 1997).
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Table 2 Product quality values (in conversion) for different cases

Perturbations in NCO tracking MPC

Case model parameters True Nominal controller formulation

∆θ1 ∆θ2 ∆θ3 optimal profile NE-δx NE-δx-δθ NE-δx-δθpred MPC-δx MPC-δx-δθpred

Nominal 0.0 0.0 0.0 0.7581 0.7581 0.7581 0.7581 0.7581 0.7581 0.7581

1 0.0 0.4 0.0 0.7367 0.7342 0.7309 0.7362 0.7362 0.7312 0.7367

2 0.0 0.0 0.2 0.7299 0.7184 0.6931 0.7267 0.7228 0.4252 0.7270

3 0.2 0.0 0.0 0.8126 0.8123 0.8113 0.8124 0.8119 0.8115 0.8120
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Fig. 1 Case 1, with perturbations only in k̄2,0.
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Fig. 2 Case 2, with perturbations only in α.
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Fig. 3 Case 3, with perturbations only in k̄1,0.
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