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Abstract: Most of the microalgae growth models are based on modified Monod kinetics, which often 

involve many parameters to identify. Some fundamental questions about the validity of such empirical 

growth rate still remain. On the other hand, flux balance analysis (FBA) can compute a steady-state flux 

distribution of metabolic networks within a feasible flux space constrained by fundamental laws 

including mass balances. This work proposes how to set up various constraints as boundary conditions in 

FBA, relate the resulting flux distribution to the growth rate, and dynamically simulate the microalgae 

growth kinetics. In order to relate mass balances of the bioreactor to the FBA solution, accumulation 

rates as well as uptake and production rates are used. Dynamic simulations were performed by modifying 

pseudo-steady state assumption for FBA and integrating the ordinary differential equations for bioreactor 

model over time, leading to a two-time scale description. The proposed scheme can reduce the number of 

parameters and explain adaptation to the changing environment. A Chlamydomonas reinhardtii culture 

system is illustrated to present the applicability of the proposed scheme. 
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1. INTRODUCTION 

As the global warming has become a major issue, energy 

resources from biomass are receiving more attentions. In 

particular, biodiesel production using microalgae is 

considered promising because of their local utilization and 

production efficiency. Although the biodiesel from 

microalgae is not economically more attractive than biodiesel 

from conventional sources at present, its competitiveness can 

be improved by increasing the growth rate and oil 

accumulation capability (Suriesetty, 2010).  There have been 

a large number of studies to improve the yield of oil 

production from microalgae from the perspective of both 

genetic manipulation and operational optimization. 

Operational optimization include optimal control of nutrient 

feeding, geometrical shaping of reactor, light regulation etc. 

As an effort for operational optimization, many growth 

models for various kinds of algal species have been suggested 

until recently. For example a fed-batch bioreactor model for 

the fresh-water green microalgae Auxenochlorella 

protothecoides is proposed (Suriesetty, 2010). The model 

consists of 12 parameters, 11 equations and 9 state variables. 

The 11 equations involve 6 differential equations of mass 

balance and 5 constitutive equations including substrate 

uptake rates and the growth rate. In these equations, 

especially growth rate equation is of an empirical nature. It is 

known that the microalgal growth rate depends on the 

intracellular nitrogen concentration (Q) or nitrogen cell quota 

(q) and external carbon source concentration (S2) (Suriesetty, 

2010). A general hyperbolic function for the growth rate on Q 

and S2 can be written as: 
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where    is the half saturation constant of nitrogen quota for 

growth,    is the half saturation constant of carbon source for 

growth,    is minimum cell quota for supporting growth, and 

   is the maximum growth rate of biomass. 

Such empirical growth rate equation has some limitations. 

First, it involves many parameters to estimate;   ,   ,   , 

  . Second, it cannot explain various biological phenomena 

such as sudden growth phase change or influence of light, 

because it is just an empirical equation for explaining data 

within the experimental range. 

On the other hand, flux balance analysis (FBA) can compute 

a steady-state flux distribution of metabolic networks using 

mass balance equations and constraints of whole metabolites 

of the organism. These flux distributions also include growth 

rate information as a flux or reaction rate per dry biomass 

weight. Thus if the constraints of each flux can be set up from 

concentration information, the growth rate can be computed 

without any empirical equation. This study proposes an 

integrated dynamic simulation framework that computes the 

growth rate from FBA and integrate it into the microalgal 

growth kinetics for dynamic simulation. This simulation is 

performed by modifying the conventional FBA, which 

assumes a steady-state, and integrating the ordinary 

differential equations for bioreactor model over time, leading 

to a two-time scale description. 

 

2. MICROALGAE GROWTH MODEL 

2.1 Monod and Droop model 
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There are various types of bioreactor models. Their mass 

balance equations are identical; however, growth rates or 

nutrient uptake and releasing rates are different. For example, 

the Monod equation relates the growth rate to the 

concentration of limiting nutrient in medium: 

     
 

    

 

Here,    is the theoretical maximal growth rate of the 

species,    is the half maximal concentration of nutrient, and 

S is the concentration of limiting nutrient in medium. It 

seems a quite simple expression of growth rate; however, the 

maximal growth rate is a function of other variables like pH, 

temperature or the length of day. 

Another well-known equation for growth rate is the Droop 

model. This equation relates the growth rate to the cell quota 

of the limiting nutrient. 

    
     

  

 
  

Here,   
  is the maximal growth rate which is different from 

the above maximal growth rate expression of Monod 

equation.   is the intracellular nutrient quota; that is, if X is a 

total biomass concentration and Q is an intracellular nutrient 

concentration, 

  
 

 
 

   is the minimal necessary cell quota of the nutrient for 

growth. If the cell quota of limiting nutrient or q is lower than 

  , the growth rate becomes zero. Besides the growth rates, 

the uptake and releasing and producing rates of nutrient are 

expressed similarly according to the types of equation. There 

are many experimental evidences that verify each of 

equations. However, in the case of microalgae the Droop 

equation is recognized as the best fitted model. 

2.2 Flux Balance Analysis 

Flux balance analysis (FBA) is a method for searching for the 

growth rate or other intracellular reaction rates by using 

metabolic information of the organism and the scheme of it is 

summarized as follows: 

 Set the mass balance equations of each metabolites 

 Assume the steady state 

 Combine the whole equations as matrix form like S*v=0 

 Set the upper and lower bounds of fluxes(reaction rates) 

 Set an objective function and solve the above equation 

A popular objective function as a hypothesis is maximizing 

active biomass (organelles of cell) production rate, because 

the organism changes the intracellular metabolisms for 

increasing its offspring. Although there are various objective 

functions like minimizing ATP or maximizing carbon source 

yield, the most commonly used one is maximizing active 

biomass production rate. If the objective function is set as 

maximizing active biomass production rate, it becomes a 

linear program, which  can be easily solved. The resulting 

output is a set of whole fluxes or reaction rates of the 

organism under a particular boundary condition. 

Because nutrient uptake rates are dominant factors for 

determining the growth rate, the uptake rate equations as 

boundary conditions are needed. These equations are 

expressed as either Monod or Droop equation form. We 

incorporate these into the flux balance analysis as constraints 

as well. 

2.3 Integrating FBA into the bioreactor model 

As mentioned above, the growth rate can be computed by 

using flux balance analysis. Using the equations that are used 

in previous work (Suriesetty, 2010), the equations of 

uptake/producing rate and mass balance equations can be 

constructed  as in Table 1. 

 

Table 1. Continuous bioreactor model 

 

         

    (  
  

  
)
   

 
 

 
 

    

  

     

(  
  

 
)  

 

 
 

  

  
        

   
  

         

   

  
 ( 

 

   
      

 

   

  )       

  

  
 (  

 

   
  )       

   

  
        

 

In the above proposed equations, X is the total biomass 

weight concentration,   is the nitrogen source uptake rate per 

dry weight of biomass,   is the lipid production rate per dry 

weight of biomass,   is the active biomass weight 

concentration,    is the nitrogen source weight concentration 

in media,    is the carbon source weight concentration in 

media, Q is the intracellular nitrogen source weight 

concentration, and    is the intracellular lipid weight 

concentration.    is the molar weight of each substrate for 

changing the unit of equations from mmol to gram. 

Whereas conventional FBA uses steady state hypothesis, our 

proposed scheme allows for accumulation of metabolites like 
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lipid and nitrogen source within the cell. This is reflected as 

steady state assumptions for metabolites except for the 

accumulated metabolites. The accumulation rate equations of 

intracellular nitrogen source and lipid can be derived from 

several established equations easily. First the intracellular 

nitrogen source accumulation rate is expressed as: 

    
 

   
  

The lipid accumulation rate is more difficult to set up than the 

first one, because there are many variants of triacylglycerol 

(TAG) in the organism. We use the information of fatty acid 

compositions and compute the relative amounts of TAGs 

(Siaut, 2011). These relative amounts of TAGs are combined 

together as accumulation rate of each TAG: 

        

In this equation    represents the relative quota of each TAG 

species and the summation of    equals to 1. Thus by using 

these equations and modified flux balance analysis, the 

growth rate of organism can be calculated and it can be used 

to solve other differential equations above. 

2.4 Two-time-scale dynamic simulation using FBA-based 

bioreactor model 

To use this proposed new bioreactor model, the iterative 

algorithm is needed because of growth rate. In other words, 

the carbon source uptake rate equation and intracellular 

nitrogen accumulation rate equation, which contain the 

growth rate term, are also needed to get growth rate. So the 

converged value of growth rate should be computed, and the 

proposed scheme is summarized as follows: 

At time    

1. Obtain the value of   from the previous time      

2. Calculate the nutrient uptake rates and accumulation 

rates 

3. Apply these into flux balance analysis 

4. Obtain a new value of   and compare it with previous 

one 

5. Iterate this algorithm and obtain a converged value of    

With a computed value of   at   , growth kinetic equation is 

integrated to estimate macroscopic variables such as 

concentrations of substrates at     . In this way the 

concentrations and growth rate can be attained marched 

forward over time. 

We note that the growth rate is considered constant during 

one time interval of numerical integration . The rationale 

behind this idea is that the intracellular metabolism reaches a 

new steady state much faster (fast-time scale phenomena) 

compared to the overall change in the macroscopic variables, 

which act as boundary conditions for the intracellular 

changes in metabolism. In the previous works on Escherichia 

coli or Shewanella oneidensis, the time interval for numerical  

integration is usually order of hour (Varma 1994, Feng 2012). 

The growth rate change of Clamydomonas reinhardtii is 

slower than other organism’s growth rate changes. Thus it is 

a reasonable to choose 1 hour for the time interval. 

 

3. CASE STUDY 

The model organism is the microalgae, Chlamydomonas 

reinhardtii. This species is one of the most well studied 

organism and the only microalgae that has the reconstruction 

of metabolic networks available (Roger, 2011).  

There are also existing experimental data of Chlamydomonas 

reinhardtii harvesting in batch and fed-batch reactor (Zhang, 

1999). In that work the microalgae was harvested in 

heterotrophic way (without light). The feed consists of 

acetate as carbon source and nitrate, ammonium and urea as 

nitrogen source.  

For validation of the proposed scheme, we used the data 

where the nitrogen source is only nitrate and the reactor is run 

in a batch mode. 

The first simulation case (Fig. 1) is that nitrogen source or 

nitrate in media is not used up during the period of simulation. 

In this case the total biomass and acetate concentration are  

linear. In other words, though the initial and final values are 

matched with experimental data, the other values are not. So 

in this way, the error beween data and simulation result is too 

big to assure that the proposed model is correct or not. 

 

a 

b 

Fig. 1 Case 1: Nitrogen source in media is not used up. The 

time courses of total biomass concentration (a) and carbon 

source or acetate concentration (b) in heterotrophic batch 

reactor. Red dot for experimental data and solid line for 

simulation result of proposed model. 
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b 

Fig. 2 Case 2: Nitrogen source in media is used up. The time 

courses of total biomass concentration (a) and carbon source 

or acetate concentration (b) in heterotrophic batch reactor. 

Red dot for experimental data and solid line for simulation 

result of proposed model. 

 

The second simulation case (Fig. 2) is that nitrogen source in 

media is used up in the middle of the period of simulation. 

The complete consumption up to minimal limit of nitrate is 

occurred at 52 hours. In this case the total biomass 

concentration is similar with the experimental data. In other 

words the biomass grows exponentially at first and the 

growth rate decreases gradually then it converges to the 

steady state at final. The simulation result of total biomass 

concentration in early phase is not well matched with the 

experimental data, which has a capital S form. This seems to 

be caused by mismatch in  growth rate as shown in Fig. 4.  

 

a 

b 

Fig. 3 The time courses of intracellular nitrogen source or 

nitrate concentration (a) and triacylglycerol (TAG) 

concentration (b) in case 2. 

 

On the basis of second simulation result of case 2, the 

dynamics of other materials can be also simulated. Especially 

the concentration of intracellular TAG which is the objective 

product of biodiesel optimization can be obtained from this 

simulation (Fig. 3. b). According to this proposed model, the 

intracellular TAG concentration is similar with the one of 

total biomass concentration. 

 

Table. 2 Parameters for each case 

 

 Case 1 Case 2 

   0.1 0.8 

    1/35 1/55 

   0 0 

    1/35 1/55 

   0.075 0.05 

   1.00 1.07 

    1/3.073 1/3.055 

   0.005 0.01 

 

The meanings of the parameters are as follows;    for 

maximum uptake rate of nitrogen source,     for biomass to 

substrate yield,    for maintenance constant,     product to 

substrate yield,    for maximum oil production rate,    for 

half saturation constant for oil production,     for biomass to 

substrate quota yield and    for threshold nitrogen source 

concentration. 

 

4. DISCUSSION 
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Fig. 4 Time courses of growth rate in case 2. Red dot for 

experimental data and solid line for simulation result of 

proposed model. 

 

As mentioned above, the simulation results are well matched 

with experimental data at initial and end points; however, at 

the other points they are not well matched. It seems to be  

caused by computed growth rate from FBA; simulated 

growth rate is much bigger than the experimental one at early 

phase, so their exponential growth is exaggerated at this 

phase (Fig 2. a). And then the simulated growth rate is just 

decreased continuously to the end. On the other hand, the 

actual growth rate is smaller than the simulated one at the 

early phase, but it increased until the middle phase and then 

decreased to the end (Fig 4). 

Then how can this mismatching be improved? First, the 

objective function of FBA should be changed according to 

the external conditions. Actually the organisms react to the 

changes of environmental conditions like substrate 

concentration or light intensity by changing the metabolic 

flux distribution. So it is not correct to assume that the 

organism always changes its metabolic flux distribution for 

maximizing biomass production; in some conditions it may 

put maximization of ATP producing fluxes or minimization 

of carbon source consumption before maximization of 

biomass production (Schuetz, 2007). Thus to improve the 

capability of FBA, it is needed to find the best matching 

objective function according to the external conditions. 

Second, uptake and production rate equations should be 

improved. The computed growth rate from FBA is a function 

of uptake, production and accumulation rates of substrates so 

if these equations are not matched with experimental data as 

shown in (Fig 5. b), they may cause the mismatching when 

calculating the growth rate by FBA. There have been some 

studies for improvement of these equations (Linkés, 2012), 

so by using these equations the growth rate can be computed 

more correctly. Third, the hypothesis for intracellular 

nitrogen source storage may not be correct. In this work, it is 

assumed that the nitrogen source stored in the cell maintains 

its original form by Droop model; nitrate, ammonium or urea. 

But these nitrogen sources may be stored as different forms 

like carbon source storage; TAGs. So this nitrogen storage 

form should be identified first, then the metabolic 

information of that component can be applied into FBA and 

other equations above.    

a 

 

b 

Fig. 5 Time courses of nitrogen source (a) and carbon source 

(b) uptake rate. Red dot for experimental data and solid line 

for simulation result of proposed model. 

 

5.  CONCLUSION 

In this work a new dynamic modelling for microalgae 

bioreactor using FBA is proposed. The simulation results are 

compared with the existing experimental data and the 

parameters of the model are estimated. By using metabolic 

flux distribution information, the number of parameters of 

model to be estimated is decreased and the usefulness of 

dynamic model is increased. Although there are some 

shortcomings like necessity of flux distribution information, 

this method can be utilized in various ways. 
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