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Abstract: An approach to distributed multi-rate control for large-scale systems, and in
particular process networks, is presented. Where the local measurements, local control and
controller communication are allowed to operate at different sampling rates. Dissipative systems
theory is used to facilitate stability and performance analysis of the process network, based upon
dynamic supply rates which have been lifted into a global sampling rate. Quadratic difference
forms are used as supply rates and storage functions, which facilitate less conservative stability
and performance conditions as compared to classical types of supply rates.
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1. INTRODUCTION

Control of chemical process networks is characterized by
their scale, interactions and differing dynamics of each
process unit Skogestad [2004]. The scale of the problem
means that centralized control approaches, whilst poten-
tially offering high performance, may be impractical or
even infeasible. A logical alternative may be decentralized
control. A difficulty of this approach, however, is that the
interaction effects between process units are not explicitly
captured, thus leading to potentially conservative results.
These deficiencies motivate distributed control strategies,
wherein local controllers communicate with one another to
improve performance of the process network.

The focus of the current work is to address the issue
of distributed multi-rate control of process networks in
a discrete-time setting. The motivation for this develop-
ment is that many process units may have different time
constants, thus requiring multiple sampling rates to avoid
over or under sampling. Additionally, it may be preferable
to sample critical variables at a higher rate than non-
critical ones to decrease capital costs. Sensor limitations
may require such an approach, for example, concentra-
tion measurement by online chromatography may only be
capable of sampling rates in the tens of minutes, whilst
thermocouples are capable of sub-second sampling rates.

Dissipativity-based control design approaches include Moy-
lan and Hill [1978], Xu and Bao [2011], the latter of which
considers multi-rate control. These approaches are scal-
able, as the dissipativity properties of the process network
may be determined as a linear combination of that of
the individual processes and controllers. As dissipativity is
fundamentally an input-output property of systems, this
approach allows for interaction effects to accounted for.

1 This work is partially supported by the ARC Discovery Project
DP130103330. The first author would like to acknowledge the finan-
cial support of the APA scholarship as well as the ESA and UNSW
Excellence Awards provided by UNSW.

The proposed approach is based on dissipativity theory,
and as such, shares these advantages with aforementioned
approaches. It differs, however, in that a more general
type of dissipativity is considered, that is, using quadratic
difference forms (QdFs) as supply rates and storage func-
tions, Thus providing sharper stability results, Tippett
and Bao [2011].

Some notation used in the remainder of this paper is
introduced. diag(A1, . . . , An) denotes the formation of a
block diagonal matrix with Ai as its ith block diagonal
entry. ϕ(ζ, η) ∈ Rn×m(ζ, η) denotes an n×m dimensional
two variable polynomial matrix in the indeterminates ζ
and η, with real coefficients. The degree of such a matrix,
denoted by deg(ϕ) is defined as the maximum power of ζ
or η. The inertia of a matrix is (q−, q0, q+), the number
of negative, zero and positive eigenvalues. ρ denotes the
forward shift operator.

2. MOTIVATING EXAMPLE

As way of motivation, we consider a linearized and dis-
cretized version of the heat exchanger network given in
Rojas et al. [2009]. The heat exchanger network is shown
diagrammatically in Figure 1, the objective of the network
is to cool down a hot process stream, stream 1, using
two other process streams, streams 2 and 3. To facilitate
this, an additional utility stream is also used (the external
input to HEX 2), the temperature of this utility stream is
treated as a disturbance to the process network. The heat
exchanger network is designed to maximize steady state
efficiency, however, due to the recycle/feedback structure
of the process network, the disturbance will be propagated
to all units in the network, thus motivating a distributed,
as opposed to decentralized, control approach.

The heat exchangers have differing designs with different
volumes and heat transfer areas (the models of the equa-
tions are given in Section 5), as such, they have differ-
ent time constants, this motivates the multi-rate control
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Fig. 1. Heat exchanger network under study

approach presented in this work. As the local controllers
sampling rates may be tuned to that of their respective
processes. HEX 1 and 3 have a sampling period of 1 sec,
whilst HEX 2 has a sampling period of 3 sec and HEX 4
a rate of 2 sec. The following sections detail the proposed
distributed control design methodology.

3. BACKGROUND MATERIAL

First introduced in Willems [1972], a discrete time dynam-
ical system with input, output and state u ∈ Rp, y ∈ Rq
and x ∈ Rn respectively is dissipative if there exists a
function defined on the input and output variables, the
supply rate s(u, y) and positive semi-definite function, the
storage function V (x(t)) such that:

V (x(t+ 1))− V (x(t)) ≤ s(u(t), y(t)) ∀t ≥ 0. (1)

The following ‘(Q,S,R)’ supply rate is commonly used:

s(u(t), y(t)) = yT (t)Qy(t) + 2yT (t)Su(t) + uT (t)Ru(t).
(2)

Quadratic differential forms were first introduced in
Willems and Trentelman [1998] for continuous time sys-
tems, this framework was then adapted to the discrete time
case in Kojima and Takaba [2005]. A quadratic difference
form (QdF) may be written in terms of extended inputs
and outputs. Defining ûT (t) = ( uT (t) uT (t+1) ... uT (t+ñ) ),
and ŷT (t) = ( yT (t) yT (t+1) ... yT (t+m̃) ), a QdF supply rate,
denoted Qϕ, is defined as follows:

Qϕ(y, u) =

(
ŷ(t)
û(t)

)T (
Q̃ S̃

S̃T R̃

)(
ŷ(t)
û(t)

)
. (3)

Essentially, a QdF is a quadratic form similar to (2),
extended to include future inputs and outputs. This allows
for a more detailed description of the system. Defining
ŵ(t) = [ŷ(t)T , û(t)T ]T , a QdF in (3) can be written in a

compact form as Qϕ(y, u) =
N∑
k=0

N∑
l=0

ŵT (t + k)ϕklŵ(t + l),

where N is called the degree of supply rate, which is the
maximum number of forward steps in the supply rate. In
the supply rate given in (3), N = max{ñ, m̃}. Such a
QdF is induced by the symmetric two variable polynomial

matrix ϕ(ζ, η) =
N∑
k=0

N∑
l=0

ϕklζ
kηl.

Here ϕkl is the (k, l)th coefficient matrix of ϕ(ζ, η) and the
indeterminates ζ and η represent a forward step in time
on the left and right of ϕ(ζ, η) respectively. The coefficient

matrix of ϕ(ζ, η), ϕ̃, is a matrix with (k, l)th block ϕkl.

In this work, QdFs are used for both supply rates and
storage functions. The dissipation inequality with supply
rate Qϕ, and storage function Qψ, is as follows:

∞∑
t=0

Qϕ(w(t)) ≥ Qψ(w(t)). (4)

If∇ is defined as the rate of change of a QdF,∇Qϕ(w(t)) =
Qϕ(w(t+ 1))−Qϕ(w(t)), then a useful property of QdFs
is that the rate of change of a QdF is itself a QdF, i.e.,
∇Qϕ = Q∇ϕ. That is, the rate of change of the QdF
induced by ϕ(ζ, η) is itself a QdF induced by ∇ϕ(ζ, η),
where ∇ϕ(ζ, η) = (ζη − 1)ϕ(ζ, η). Equation (4) may then
be written as Qϕ(w(t)) ≥ Q∇ψ(w(t)), ∀t ≥ 0.

Some results underlying dissipativity and its links to
stability in this framework are reproduced below.

Theorem 1. (Kojima and Takaba [2005]). A discrete time
linear time-invariant (LTI) system is asymptotically stable
if there exists a symmetric two variable polynomial matrix
ψ(ζ, η) ≥ 0 and ∇ψ < 0 for all input and output satisfying
the system equations.

Proposition 1. (Tippett and Bao [2013b]). A discrete time
LTI system with state space representation (A, B, C, D)
is dissipative with the supply rate and (positive semidefi-
nite) storage function pair induced by ϕ(ζ, η) and ψ(ζ, η)

respectively, with the corresponding coefficient matrices ϕ̃

and ψ̃ partitioned as ϕ̃ =
(
ϕ̃Q ϕ̃S

ϕ̃S
T
ϕ̃R

)
and ψ̃ =

(
ψ̃X ψ̃Y

ψ̃Y
T
ψ̃Z

)
,

if and only if the following LMIs are satisfied:(
T11 T12

TT12 T22

)
≥ 0; (5)

ψ̃ ≥ 0. (6)

With

Ĉ =


C
CA
...

CAN

 (7)

D̂=


D 0 . . . 0 0
CB D . . . 0 0
...

. . .
. . .

. . .
...

CAN−1B CAN−2B . . . CB D

 (8)

(9)

T11 = ĈT [ϕ̃Q − ν̃X ]Ĉ

T12 = ĈT [ϕ̃Q − ν̃X ]D̂ + ĈT [ϕ̃S − ν̃Y ]

T22 = D̂T [ϕ̃Q − ν̃X ]D̂ + D̂T [ϕ̃S − ν̃Y ]

+[ϕ̃S − ν̃Y ]
T D̂ + [ϕ̃R − ν̃Z ],

where N is the degree of the supply rate and ν(ζ, η) =
∇ψ(ζ, η).

4. MAIN RESULTS

The individual processes are shifted into a common sam-
pling rate, in which the dissipativity properties of the
process network are studied. Controllers are then designed
in this sampling rate such that the closed-loop process
network satisfies certain dissipativity properties, which in
turn imply desired stability and performance bounds. In a
separate step the controllers are realized individually.

Suppose that the np processes and nc controllers have
sampling periods given by

(
∆t1, . . . ,∆tnp+nc

)
, without

loss of generality the units of the sampling instants are
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such that min
(
∆t1, . . . ,∆tnp+nc

)
≥ 1. Define a network

sampling period as ∆T = lcm
(
∆t1, . . . ,∆tnp+nc

)
. In the

∆T sampling rate the i-th subsystem is:

x(k +m∆ti) = Am∆tix(k)+

(Am∆ti−1B ··· AB B )

 u(k)

...
u(k+m∆ti−2)
u(k+m∆ti−1)

 , (10)

 y(k)

...
y(k+m∆ti−2)
y(k+m∆ti−1)

 =

 C
...

CAm∆ti−2

CAm∆ti−1

x(k)+

 D 0 ··· 0
CB D ... 0
...

. . .
. . .

...
CAm∆ti−2B CAm∆ti−1B ··· D


 u(k)

...
u(k+m∆ti−2)
u(k+m∆ti−1)

 . (11)

Where ∆T = m∆ti. Defining ŷ(k) =

 y(k)

...
y(k+m∆ti−2)
y(k+m∆ti−1)

 and

û(k) =

 u(k)

...
u(k+m∆ti−2)
u(k+m∆ti−1)

, the i-th system is then

x(k +∆T ) = Âx(k) + B̂û(k) (12)

ŷ(k) = Ĉx(k) + D̂û(k) (13)

The dissipativity of the system in the ∆T sampling
rate is found using Proposition 1 using the description
(Â, B̂, Ĉ, D̂). The following result shows how a QdF may
be converted from the ∆ti sampling rate to the ∆T sam-
pling rate and visa versa.

Lemma 1. A QdF defined in the sampling rate ∆t, in-
duced by ϕ(ζ, η), and one defined in the ∆T sampling rate,
induced by Φ(ζ, η), are related by:

Φij = ϕ̃ij =

 ϕ(im)(jm) · · · ϕ(im)(jm+m−1)

...
. . .

...
ϕ(im+m−1)(jm) · · · ϕ(im+m−1)(jm+m−1)

 ,

(14)
where m∆t = ∆T .

Proof. QΦ(û, ŷ) may be represented as:

Qϕ(ŵ) =

N∑
k=0

N∑
l=0

ρk∆T ŵ
T (t)Φklρ

l
∆T ŵ(t), (15)

where ρ∆T is the forward shift operator in the ∆T sam-
pling rate. Consider the QdF induced by Φkl, QΦkl

(ŵ) =
ρk∆T ŵΦklρ

l
∆T ŵ. By the definition of ŵ and w, along with

ρ∆T = ρm∆t it is clear that this may be written as:

QΦkl
(w) =

m−1∑
i

m−1∑
j

ρkm+i
∆t w(t)Φklρ

lm+j
∆t w(t), (16)

Qϕkl(w) =
m−1∑
i

m−1∑
j

N∑
k

N∑
l

ρkm+i
∆t w(t)ϕklijρ

lm+j
∆t w(t), (17)

where

Φkl =

ϕkl00 · · · ϕkl0N
...

. . .
...

ϕklN0 · · · ϕklNN

 . (18)

Applying (17) and (18) ∀k, l, The QdF Qϕ(w) is given by:

Qϕ(w) =

N∑
k

N∑
l

Qϕkl(w). (19)

Upon expanding:

Φij = ϕ̃ij =

( ϕ(im)(jm) ··· ϕ(im)(jm+m−1)

...
. . .

...
ϕ(im+m−1)(jm) ··· ϕ(im+m−1)(jm+m−1)

)
∀i, j.

(20)

Following Tippett and Bao [2013a], once all processes
are transformed into the plant-wide sampling rate, the
process network is decomposed into individual process
units. Consider a network with n subsystems. Partition-
ing the input to each process unit into: the input from
interconnected processes up, external disturbances d and
manipulated input uc. Similarly, the inputs and outputs
of the controllers are partitioned into local uL, yL and
remote uR, yR inputs and outputs, respectively. Define
P̃ as the diagonal stacking of each process, with inputs
and outputs uc = (uc1 , . . . , ucn), up = (up1 , . . . , upn),

d = (d1, . . . , dn) and y = (y1, . . . , yn), respectively. C̃ may
be defined analogously, the closed-loop process network
is shown in Figure 2. The matrices Hp and Hc capture
the process and controller network topologies, respectively.
Fp and FI are matrices which select which signals are
interconnecting flows and measured variables, respectively.

~

Hp

Fp

P1

Pn

C1

Cn

FI

d

uP

uL

y

uCyL

Hc

yR uR

P

~
C

Fig. 2. Closed-loop process network

Suppressing the dependence on ζ and η, the i-th process
has supply rate induced by:

ϕi =

Qi Sci Spi Sdi
⋆ Rcci Rcpi Rcdi
⋆ ⋆ Rppi Rpdi
⋆ ⋆ ⋆ Rddi

 , (21)

and the i-th controllers supply rate is induced by:

ϕci =

(
Qci Sci
⋆ Rci

)
. (22)

Where Qci =

(
Qll

ci
Qlr

ci

⋆ Qrr
ci

)
, and Sci, Rci are similarly

partitioned. The supply rates of P̃ and C̃ are induced
by Φ and Θ respectively, and are structured in a similar
way to (21) and (22) with Q = diag(Q1, . . . , Qn) and
other submatrices similarly defined. The storage functions
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of P̃ and C̃ are induced by Ψ and Σ, respectively, and
are formed from that of the individual processes and
controllers by diagonal stacking in an analogous manner.
The supply rate of the closed-loop process network is given
below.

Lemma 2. (Tippett and Bao [2013a]). Consider the inter-
connected system as shown in Figure 2. If the collection
of process units P̃ is dissipative with respect to supply
rate QΦ and storage function QΨ, and the collection of
controllers C̃ is dissipative with respect to the supply rate
QΘ and storage function QΣ, then the process network
from all disturbances d to all process output and controller

output ypw =
[
yT ,yL

T ,yR
T
]T

, is dissipative with storage
function Qν = QΨ+Σ and supply rate Qµ and induced by

µ(ζ, η) =

(
Γ11(ζ, η) Γ12(ζ, η)
ΓT12(ζ, η) Γ22(ζ, η)

)
, (23)

Γ11(ζ, η) =

(X11 X12 X13

⋆ X22 X23

⋆ ⋆ X33

)
,

Γ12(ζ, η) =

Sd + FTp H
T
p Rpd

RT
pd

0

 ,

Γ22(ζ, η) = Rdd,

with

X11 =Q+ SpHpFp + FTp H
T
p STp + FTp H

T
p RppHpFp,

+FTI Rll
c FI ,

X12 = SL + FTp H
T
p RT

cp + FTI Sll
T

c ,

X13 = FTI

(
Srl

T

c +Rlr
c Hc

)
,

X22 =Rcc +Qll
c ,

X23 =Qlr
c + Slrc Hc,

X33 =Qrr
c + Srrc Hc +HT

c Srr
T

c +HT
c Rrr

c Hc.

Using this supply rate formulated in the ∆T sampling rate,
the following gives conditions for plant-wide stability.

Theorem 2. Consider the process network with control as
described above. Assume that the process network with
external disturbances d and all process and controller out-

puts ypw =
[
yT ,yL

T ,yR
T
]T

is dissipative with respect to
the supply rate Qµ(w) induced by the polynomial matrix

µ(ζ, η) =
(

Γ11(ζ,η) Γ12(ζ,η)

ΓT
12(ζ,η) Γ22(ζ,η)

)
(as per Lemma 2) and storage

function Qν(w). Then the process network is asymptoti-
cally stable with finite L2 gain from the extended variable
of the disturbance, d̂, to the extended variable of the
process network output, ŷpw, i.e.

∥ŷpw∥2 ≤ γ∥d̂∥2 (24)

with γ = ∥Γ̄− 1
2

11 ∥2
(
∥Γ̄− 1

2
11 Γ̃12∥+ α

)
and α being a positive

constant satisfying α2I ≥ Γ̃22 + Γ̃T12Γ̄
−1
11 Γ̃12 and Γ̄11 =

−Γ̃11 if the following conditions are satisfied:

(1) Γ̃11, the coefficient matrix of Γ11(ζ, η), is negative
definite and

(2) ν(ζ, η) ≥ 0.

Proof. The dissipativity of the process network implies
that:

k∆T∑
t=0

Qµ(d(t),ypw(t)) ≥ Qν(d(t),ypw(t)). (25)

For vanishing disturbance
k∆T∑
t=0

Qµ(0,ypw(t)) ≥ Qν(0,ypw(t)), (26)

k∆T∑
t=0

QΓ11(ypw(t)) ≥ Qν(0,ypw(t)), (27)

QΓ11(ypw(t)) ≥ Qν(0,ypw(t))−Qν(0,ypw(t−1)), ∀t ≥ 1,
(28)

QΓ11(ypw(t)) ≥ ∇Qν(0,ypw(t− 1)). (29)

Using Γ̃11 < 0 =⇒ Γ11(ζ, η) < 0, this implies Qν acts
as a Lyapunov function for the process network in the ∆T
sampling rate, thus, implying asymptotic stability of the
outputs. asymptotic stability of the states is ensured by
the assumption of zero state detectability. This alone does
not imply Lyapunov stability of the i-th sub-system in its
∆ti sampling rate, as if ∆ti < ∆T the storage function
of the i-th sub-system may increase within the longer ∆T
time step. This is rectified as follows, from the dissipation
inequality of the process network,

k∆T∑
t=0

Qµ(d(t),ypw(t)) ≥ Qν(d(t),ypw(t)). (30)

Suppressing time dependence, for vanishing disturbance
k∆T∑
t=0

Qµ(0,ypw) ≥ Qν(0,ypw), (31)

as Qν = Qψ1 + · · ·+Qψn , and Qψj ≥ 0 for all j.

k∆T∑
t=0

Qµ(0,ypw) ≥ Qψi(0,ypw), (32)

k∆T∑
t=0

Qµ(0,ypw)−
k∆T−∆ti∑

t=0

Qµ(0,ypw) ≥ ∇Qψi(0,ypw).

(33)
Now, Γ11 < 0 implies that Qµ(0,ypw(t)) < 0, and

therefore that
N∑
t=0

Qµ(0,ypw(t)) is non-increasing for all

N . As such 0 > ∇Qψi(0,ypw(t)). Therefore, Qψi does not
increase within the ∆T time step.

Performance bounds on the process network, in the form
of weighted norm bounds, can be determined in a similar
way to the above stability result.

Theorem 3. Consider a process network P̃ with a supply
rate of Ψ ≥ 0 with control. If the process network
from external disturbances, d, to combined process and

controller outputs, ypw =
(
yT yTL

)T
, is dissipative in the

∆T sampling rate with respect to supply rate Qµ, and

µ =
(

Γ11 Γ12

ΓT
12 Γ22

)
with Γ11 < 0, then the minimum process

network performance level

∥Wypw∥2 ≤ ∥d∥2 (34)
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is guaranteed. Choosing

W (z) =
1

p(z)
Γ̂

1
2
11(z),

with σ(W (jω)) ≥ 1
γ ∀ω ∈ [0, 2π] and a scalar p(η)

such that its coefficient column vector, p, satisfies pT p ≥
max

(
σ̄(Γ22 + ΓT12Γ̂11Γ12), σ̄(Γ

T
12Γ̂11Γ12)

)
, we have:

∥ypw∥2 ≤ γ∥d∥2 (35)

where σ̄ and σ denote the maximum and minimum singu-
lar values respectively.

Proof. The proof follows the same lines as Theorem 3 in
Tippett and Bao [2013b].

Suitable controller dissipativity properties may be formu-
lated in the ∆T sampling rate to meet stability and perfor-
mance criteria. To realize the controllers their dissipativity
properties must be shifted back into the ‘native’ sampling
rate, this may be achieved using Lemma 1.

To realize a controller which is dissipative with respect to
the required supply rate, we perform a J-spectral factor-
ization of the controller supply rate, and subsequently use
the parameterization of J-dissipative systems presented
in Pendharkar and Pillai [2009] to augment a seed sys-
tem. A general method of performing discrete J-spectral
factorization is presented in Stefanovski [2004] based on
the solution of an associated discrete algebraic Riccati
equation, a sufficient condition for the existence of such a
J-spectral factorization is that ∂ϕc(e

−jω, ejω) has constant
inertia ∀ω ∈ [0, 2π). The following result gives a LMI
condition for ∂ϕc(e

−jω, ejω) to have constant inertia.

Lemma 3. Consider a QdF induced by ϕ(ζ, η) which (per-
haps after pre- and post-multiplication by a permutation
matrix P ) may be represented as:

PTϕ(ζ, η)P =

(
X(ζ, η) 0

0 Z(ζ, η)

)
. (36)

It has constant inertia if
n∑
i=0

Xii ≥ 2k1

n∑
i=1

Xi,i−1 + 2k2

n∑
i=2

Xi,i−2 + . . .+ 2knXn0

(37)
n∑
i=0

Zii ≤ 2k1

n∑
i=1

Zi,i−1 + 2k2

n∑
i=2

Zi,i−2 + . . .+ 2knZn0.

(38)
and Xij = Xji, Zij = Zji. Where ki cycle through every
value of ±1 and n = deg ϕ(ζ, η).

Proof. Omitted due to space constraints.

The above results may be combined to design distributed
controllers in two distinct steps: (1) Determination of
required controller dissipativity properties. (2) Synthesis
of suitably dissipative controllers. The special case of
decentralized controllers are realized by setting Hc = 0,
that is no communication between controllers.

Theorem 4. Consider a process network with external dis-
turbances, d, and outputs consisting of all process and
controller outputs ypw = [yT ,yL

T ,yR
T ]T in the ∆T

sampling rate. The i-th process and i-th controller are
dissipative with positive semidefinite storage with sup-

ply rates ϕi(ζ, η) =
(
Qi(ζ,η) Si(ζ,η)

ST
i (ζ,η) Ri(ζ,η)

)
and ϕci(ζ, η) =(

Qci(ζ,η) Sci(ζ,η)

ST
ci(ζ,η) Rci(ζ,η)

)
respectively for all i. There exists an in-

ternally stabilizing distributed multi-rate controller, which
ensures the process network satisfies the norm bound
∥Wypw∥2 ≤ γ∥d∥2 if the following conditions are satisfied:

Γ̃11 ≤ −ÑT Ñ (39)

Γ̃12 = 0 (40)

Γ̃22 ≥ γ2d̃T d̃I (41)

Stability and performance bounds
n∑
i=0

Xiii ≥ 2k1

n∑
i=1

Xi,i−1i + 2k2

n∑
i=2

Xi,i−2i

+ . . .+ 2knXn0i (42)
n∑
i=0

Ziii ≤ 2k1

n∑
i=1

Zi,i−1i + 2k2

n∑
i=2

Zi,i−2i

+ . . .+ 2knZn0i (43)

Controller existence conditions.

Where ϕci(ζ, η) =
(
Xi(ζ,η) 0

0 Zi(ζ,η)

)
+ DT

i (ζ)Di(η) and

W (z) = 1
d(z)N(z).

Proof. The assumption that each process and controller
has positive semidefinite storage ensures that so to does
the entire process network. Then conditions (39) to (41)
imply that the process network is internally asymptotically
stable, and satisfies the norm bound ∥Wypw∥2 ≤ γ∥d∥2
by Theorem 3. The final of the above conditions ensure

that
(
Xi(ζ,η) 0

0 Zi(ζ,η)

)
admits a J-spectral factorization by

Lemma 3. As DT
i (ζ)Di(η) ≥ 0, then, if a controller is

synthesized to be dissipative with respect to supply rate

induced by
(
Xi(ζ,η) 0

0 Zi(ζ,η)

)
, then it will also be dissipative

with respect to the supply rate induced by ϕci(ζ, η).

Theorem 5. (Controller Synthesis). Consider a QdF sup-
ply rate induced by ϕci(ζ, η) which admits a J-spectral
factorization as

ϕci(ζ, η) = FTi (ζ)JiFi(η). (44)

If a ‘seed’ system, ( vz ) =M(ξ)l, is dissipative with supply
rate induced by J . Then the system

( yu ) = Li(ξ)M(ξ)l (45)

is dissipative with supply rate induced by ϕci(ζ, η). Where
Li(ξ) = adj(Fi(ξ)).

Proof. The proof for the discrete time case follows
analogously as for the continuous time case presented in
Pendharkar and Pillai [2009].

In this way the problem of synthesizing a ϕci-dissipative
system is reduced to that of finding a Ji-dissipative ‘seed’
system, and then augmenting it. This reduced to finding
a ‘seed’ system satisfying either a small gain or minimum
phase condition.

5. ILLUSTRATIVE EXAMPLE

The discrete-time models of the heat exchangers are given
below in their native sampling periods. Note that HEX 1
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HEX 1 Controlled Variable
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HEX 3 Controlled Variable
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HEX 4 Controlled Variable

Fig. 3. Controlled Variables
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Controller 1 Local Output
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Controller 2 Local Output
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Controller 3 Local Output

Fig. 4. Manipulated Variables

and 3 have relative degree zero due to the presence of the
bypass, which is used as a manipulated variable.

(
A1 B1

C1 D1

)
=

(
0.8152 1.335e−4

2.628e−4 0.4096
16.15 1.267e−5

2.812e−3 0.1048
5 0
0 5.63

−437.5 0
0 0

)
(
A2 B2

C2 D2

)
=

(
0.5521 1.93e−4

4.303e−4 0.171
0.07159 6.015e−5
3.05e−5 0.1958

6.25 0
0 4.23

02×2

)
(
A3 B3

C3 D3

)
=

(
0.8 7.774e−5

4.915e−4 0.3705
12.49 7.535e−6

4.183e−3 0.1006
4.504 0

0 6.25
−281.5 0

0 0

)
(
A4 B4

C4 D4

)
=

(
0.8009 2.77e−4

4.634e−4 0.476
12.49 7.535e−6

4.183e−3 0.1006
6.25 0
0 6.34

02×2

)
The controlled variables are the outlet temperatures of
the hot sides (stream 1) of Heat exchangers 1, 3 and 4.
The manipulated variables are the fractions of the cold
streams passing through heat exchangers 1 and 3 and
the flow rate of the utility stream (stream 3) on the
cold side of heat exchanger 4. A distributed multi-rate
controller was synthesized using the approach outlined
above. The individual controllers are designed to have the
same sampling rate as their local processes, the controller
network is chosen to have the same topology as the process
network. The simulation was carried out with a pulse
external disturbance of magnitude 20K from t = 0 to
100 seconds. The controlled and manipulated variables are
shown in Figures 3 and 4 respectively, all variables are
deviation variables.

6. CONCLUSIONS

An approach to distributed multi-rate control design
has been presented, which ensures global stability and
worst case performance bounds. In contrast to existing
dissipativity-based multi-rate control approaches (i.e. Xu
and Bao [2011]), the proposed approach enjoys sharper
results due to the use of QdFs as supply rates and storage
functions and does not require the use of controllers with
switching gain. Thus, leading to simpler analysis.

The control synthesis method that has been presented
consists of two steps. In the first step the dissipativity
requirements of each local controller are determined. This
is facilitated by lifting the processes and (to be designed)
controllers into a global sampling rate. This ‘global plan-
ning’ step is posed as an LMI optimization problem. In
the second step, local controllers are synthesized inde-
pendently by a discrete algebraic Riccati equation based
approach to realize controllers which achieve the desired
closed-loop process network properties.
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