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Abstract: In this contribution we study the application of non-linear model predictive control
to a continuous polymerization of acrylic acid in tubular reactors with multiple side injections
of monomer. The background of this work is to transfer the polymerization from semi-batch to
continuous operation. Model Predictive Control (MPC) is the obvious candidate to control such a
multi-input system. The reactor configuration and polymerization reaction make the application
of MPC very challenging. The controller employs a discretized dynamic pde model of the process
and optimizes the productivity of the plant online while keeping the product quality parameters
within the predefined constraints. The spatial domain of the model is discretized by applying
the Weighted Essentially Non Oscillatory (WENO) scheme. Besides testing the controller for a
nominal case in which the control model is identical to the existing plant, the controller has been
simulated for two model-plant mismatch cases, caused by fouling and feed impurities. For the
both cases, a moving window estimation scheme is applied to estimate the unknown parameters
and to update the model used by NMPC. The results show that the controller can increase the
product throughput considerably and has a robust performance in the presence of the model-
plant mismatch. Moreover, the effect of formulating the quality constraints as soft constraints
is studied.

Keywords: continuous polymerization, tubular reactors, optimizing control, pde models,
parameter estimation.

1. INTRODUCTION

In the framework of the European Project F3-factory
(Buchholz 2009) new flexible continuous modular produc-
tion concepts are being developed which employ intensified
equipment. One of the case studies is the production of wa-
ter soluble acrylic acid-based polymers in tubular reactors
instead of semi-batch reactors. The reactor considered in
this work consists of eight tubular reactor modules which
are connected in series and equipped with static mixers
to obtain efficient mixing of the reactants at laminar
flow conditions. The free radical homo-polymerization of
acrylic acid is investigated as a first step towards more
complex reaction systems. In the plant, shown in figure
1, there are four possible locations for feeds of monomer
(u1, u2, u3 and u4). The jacket temperature can be set via
a thermostat, offering an additional control input.

We assume that the monomer concentrations at four
positions distributed along the reactor can be measured
by infrared spectroscopy. This measurement system has
been established in parallel work. The molecular weight of
the polymer is assumed to be measured at the outlet of
the reactor by means of an online viscosity measurement.
The system has several inputs (the feed flow rates of
monomer and the zone temperatures) and reacts with large

⋆ The research leading to these results has received funding
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time delays due to the plug flow between the inputs and
outputs. Model Predictive Control (MPC) is the obvious
candidate for the control of such a multi-input control
problem. While the standard implementations of MPC
employ cost functions which penalize the deviations of the
states or outputs from the targets and the control moves, in
this work the controller has been formulated to maximize
the product throughput while meeting the constraints on
product quality (Engell 2007). The controller copes with
model inaccuracies, in particular a fouling case which
decreases the heat transmission between the reactor and
jacket, as well as a retardation of the start of the reaction
due to impurities in the feed.

2. PROBLEM DESCRIPTION

2.1 Process

This case study deals with the continuous production of
poly acrylic acid (PAA) in a modular, intensified tubular
reactor, which is currently tested in the lab in Dortmund.
The results in this paper are based on a realistic model of
this process. The polymerization is performed in aqueous
solution at 20% solid content by a free radical mechanism.
Sodium persulfate acts as thermal initiator and the nom-
inal reaction temperature is 80◦C. Throughout the whole
process, all components including the polymer are soluble
in water, thus precipitation of solids does not occur. As the
product is used directly as an aqueous polymer solution,
no further separation of solvent is required.
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Figure 1 shows the P&ID diagram of the polymerization
plant. It consists of eight tubular reactor modules equipped
with static mixing elements and jackets. The internal
volume of modules one to four is 45 ml where modules
five to eight are larger and each has a volume of 130 ml.
This configuration leads to a total residence time of 42
minutes at the nominal flow rate of 1 kg/hr.

Through the side injections of the monomer, which are
distributed along the reactor, it is possible to influence the
product quality. The reactor is divided into four sections
consisting of two reactor modules each. A side injection
at the beginning of every section is installed and the
temperature of each section is controlled independently
via the jacket.

Fig. 1. Flow sheet of the modular continuous polymeriza-
tion plant with side injections, heating system and
analytics (C1 − 4: monomer concentration; MW :
molecular weight).

The measurements from the process which are assumed to
be available to the controller are the monomer concentra-
tion measured at C4 and the average molecular weight at
the reactor outlet. These information are available at the
real plant, as described below.
The monomer concentration can be measured inline by
mid-IR spectroscopy in between the reactor modules (C1-
4). For this purpose, attenuated total reflection (ATR)
fiber optic probes are installed at the reactor flanges.
The monomer concentration can be extracted from the
acquired spectra with a relative error of 1%. This mea-
surement is available at roughly every 25 seconds.

At the outlet of the reactor an online sensor for the liq-
uid viscosity is installed. The average molecular weight
(Mw), which is an important measure for the product
quality can be derived from this measurement. For this
purpose, a correlation is applied, based on the empirical
Mark-Houwink equation, which describes the correlation
between the intrinsic viscosity and the viscosity average
molecular weight. At constant temperature, known poly-
mer concentration c and with negligible changes of the
shape of the molecular weight distribution (MWD), an
extended correlation for the absolute viscosity η holds:

η = KMα
wc. (1)

The polymer concentration is known from the monomer
feed assuming full conversion. The shape of the MWD does
not change significantly in continuous free-radical solution
polymerization over a wide range of operating conditions.
That is why Mw at the reactor outlet is available at the
same sampling rate as the viscosity, which is up to 1 Hz
for the installed vibrating rod viscosimeter. (Chevrel et al.
2012).

3. PROCESS MODEL

Based on the balance equations for energy and all rel-
evant components in the reaction mixture, a rigorous
dynamic model of the process has been formulated. It
is assumed that radial mixing is perfect and axial dis-
persion is negligible. The free radical polymerization of
acrylic acid is modeled by the terminal model approach.
A thermally activated initiator decomposes in two radical
fragments, which start the polymer chains by reacting
with a monomer molecule. The resulting macroradicals
propagate by adding more monomer units. As the speed
of all reaction steps is assumed to be independent of the
chain length, the concentration of the macroradicals is
lumped into one species λ0. Chain termination happens
when two macroradicals meet, resulting in dead polymer
chains that do not participate in the reaction anymore.
The temperature dependent rate coefficients ki(T ) are
modeled by an Arrhenius approach. The resulting non-
linear partial differential equations model (PDE) is shown
in the equations 2 to 10.
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The temperature in the reactor jacket Tjac is assumed to
be constant along the reactor axis, which can be achieved
with a high coolant flow rate. The dynamics of tempera-
ture changes in the thermostat are assumed to be negligi-
ble, which is approximately true for lab scale equipment.
The concentrations of initiator and monomer are denoted
with cI and cM respectively. The method of moments is
applied to describe the polymer chain length distribution,
with λ0 as the concentration of macroradicals and µ0 as
the concentration of deactivated polymer chains. Higher
moments are λ1, λ2, µ1 and µ2, which are required to cal-
culate the molecular weight averages. The weight average
molecular weight is chosen as main quality measure of the
product and is defined as:
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Mw =
µ2 + λ2

µ1 + λ1

(11)

As mentioned in the section 2.1, the controller uses only
Mw and C4. None of these variables depends on µ0, thus
the balance describing the dynamics of this state can be
left out from the model used in the controller.
The spatial domain is discretized using the weighted
essentially non-oscillatory (WENO) scheme, a method
which is especially designed to cope with steep fronts of
the states’ profile along the axial domain without the need
of a very fine discretization (Bouaswaig et al. 2009) (Liu
et al. 2011). The 8 remaining pdes are discretized in 200
points which result in a system of 1600 odes that is solved
by the Matlab solver ode15s.

3.1 Model Predictive Control

The reactor in focus at this work is controlled by a model-
based controller where the input moves are optimized
over a finite prediction horizon using the rigorous process
model. Standard implementations of MPC employ a track-
ing criterion as cost function which penalizes deviations of
the outputs or states and possibly of the inputs from the
target values (Findeisen et al. 2004). In this work, we
follow the idea of online optimizing control (Engell 2007).
The target of the controller is to maximize the reactor
throughput under the constraints of product quality. For
the continuous reactor, maximizing the throughput implies
to maximize the sum of all injections of monomer into the
reactor (u1, u2, u3 and u4 in figure 1). In order to keep
the product quality within the specifications, constraints
are set for the last measurement point of the monomer
concentration (C4) and for the molecular weight of the
product measured at the outlet of reactor (Mw). The
optimization problem is formulated as:

max
u1k,u2k,u3k,u4k

Φ (x(tk), u(tk), Nc, Np)

:=

k+Np
∑

j=k

(u1j + u2j + u3j + u4j) (12)

s.t.

{

Mw,min ≤ Mw ≤ Mw,max

C4 ≤ Cmax

The temperature (Tjac) does not enter the cost function
directly but is used to fulfill the constraints. The dynamic
model of the system is implicit in the constraints of this
formulation since we are using a sequential approach for
the implementation of the NMPC. We assume that the
initial condition of the model is known.
In section 4.1(a), we show the simulation results in which
the constraints of this optimization problem are treated
as hard constraints and are applied for the whole pre-
diction horizon. In section 4.1(b), the performance of the
controller is compared with the case that the quality con-
straints are formulated as soft constraints. For the imple-
mentation at the real plant, model-plant mismatch have to
be taken into account. This is discussed in section 4.2 and
we show there that a moving horizon scheme can be used
to estimate the unknown parameters and to update the
model used by NMPC which gives a robust performance
of the controller. For the results presented in this work, the
algorithm SNOPT from the TOMLAB package is used to
solve the optimization problem that appears in NMPC.

4. RESULTS

4.1 Regulation scenario

a) Quality constraints as hard constraints

As the first case, it is assumed that the NMPC controller
uses a model which can perfectly reflect the behavior
of the plant and maximizes the product throughput as
stated in equation 12. Tuning the controller parameters
(Np and Nc) has a great influence on the performance
of the controller for this problem. The residence time
of the reactor for the nominal flow rate, as mentioned
before, is about 2600 seconds which implies that the
prediction horizon should be at least this long. However,
the controller continuously manipulates the total flow rate
of the reactor which causes a drift in the states and can
expedite or postpone the effect of a particular control
move depending on the next control movement. In order to
take this behavior into account and to ensure the stability
of system, the prediction horizon is chosen longer (6000
seconds). The control horizon has the length of one and
the manipulated variables stay constant for the whole
prediction horizon. Using a longer control horizon, results
in too many decision variables for the optimizer which
increases the computation time considerably and is not
favorable for the real-time application. The sampling time
is 100 seconds.

For the nominal case (no regulation), the produced poly-
mer has a molecular weight of 77.1Kg/mol (Mw) and a
monomer content of 321mol/m3 at (C4). By admitting
some deviation of the molecular weight from the nominal
value, and small increase of the monomer content, the
regulation problem can be formulated as in equation 13.

max
u1,u2,u3,u4

k+60
∑

j=k

(u1 + u2 + u3 + u4) (13)

s.t.

{

75000 ≤ Mw ≤ 80000

C4 ≤ 330

The cost function itself is trivial to solve and the prob-
lem is defined by its constraints. Considering the quality
constraints as hard constraints and the prediction horizon
of 6000 seconds (Np = 60) implies that 120 constraints
for this optimization problem must be satisfied. Providing
a feasible initial point for the optimizer helps to solve
the problem efficiently. This can be done by considering
that at the beginning of the simulation, the reactor is
in steady state and the produced polymer fulfills all the
necessary constraints. This combination of the inputs is
chosen as the initial point for the solver at the beginning
of the simulation (t = 0). For the next sampling times, the
output of the optimizer at the previous sampling time is
considered as the initial point.

Figure 2 depicts the reactor outputs and manipulated
variables for this simulation. The controller tends to inject
the largest portion of the monomer at the first feed point
(u1), which makes sense because the injected monomer
from this position has the longest residence time inside
the reactor. For the fluctuation of the outputs (figure 2(a)
and 2(b)) before reaching the steady state, the reasons are:
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(1) The system is highly nonlinear and does not have a
monotically increasing/decreasing step response.

(2) The inputs are applied at different positions acting
with different delays in the measured variables. For
example, suppose the controller manipulates u1 and
u4 simultaneously. Since u4 acts in a position closer to
the sensors, its effect is sensed earlier. After a while
when the effect of change in u4 is almost over, the
change in u1 affects the measurements and depend-
ing on u1 (and the other manipulated variables), a
fluctuation in the outputs can be observed.

(3) As mentioned before, manipulating the flow rate in-
side the reactor shifts the states in the axial direction
which causes an extra fluctuation of the states.
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Fig. 2. Manipulated and controlled variables for the regu-
lation scenario (NP = 60, NC = 1, Ts = 100sec).

The controller drives the operating point of the reactor
to a higher temperature and increases the total feed of
monomer to the reactor as expected. Figure 3 shows that
the controller increases the product throughput by 76.1%
from the initial condition.
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Fig. 3. Throughput increase by the controller.

b) Quality constraints as soft constraints

Considering the quality constraints of the product as hard
constraints has the benefit that the required specification
for the products are strictly met for the whole simulation
time and no off-specs are produced. However, a large set-
tling time results. Moreover an optimization problem with
hard constraints is more difficult to solve. It is possible to
handle the quality constraints as soft constraints which
means their violations from the predefined bounds are
tolerated but penalized in the cost function. The cost
function (Φ) is formulated as:

Φ = −Φ1 + γΦ2 = −Φ1 + γ (Φ21 +Φ22 + Φ23) (14a)

Φ1 =

j=k+Np
∑

j=k

(u1 + u2 + u3 + u4) (14b)

Φ21 =

j=k+Np
∑

j=k

(max((C4j − C4u), 0))
2 (14c)

Φ22 =
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j=k

(max((Mwj −Mwu), 0))
2 (14d)

Φ23 =

j=k+Np
∑

j=k

(min((Mwj −Mwl), 0))
2 (14e)

where the parameters with a subscript of ”l” and ”u”
are the lower and upper bounds of these parameters.
The first part of the cost function, (J1), maximizes the
product throughput and the second part, (J2), minimizes
the violation of controlled variables from the predefined
bounds. γ is a tuning parameter (but not a decision
variable) and determines the relative importance of J1 and
J2. The control horizon is one and the prediction horizon
is 60. The simulation results are shown in figures 4 and 5.
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Fig. 4. Manipulated and controlled variables obtained by
formulating the quality constraints as soft constraints
(optimization problem stated in equation 16.)
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Fig. 5. Throughput of the reactor for the regulation case
with the soft quality constraints. The optimizing
controller increases the throughput by 76.0%.

Comparing the profiles of the controlled variables in figures
2 and 4 shows that the formulation with soft constraints
results in a shorter settling time but off-specs are produced
for a while in the transition phase. For this case, the
throughput increases continuously with small steps at
almost every sampling time which is not the case for
the formulation with hard constraints. The main difficulty
with this formulation is the tuning of the parameter γ
because it affects the productivity of the reactor and the

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

729



0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iterations of NMPC

C
o

m
p

u
ta

ti
o

n
 T

im
e 

 w
it

h
 h

ar
d

 c
o

n
st

ra
in

ts
 [

s]

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iterations of NMPC

C
o

m
p

u
ta

ti
o

n
 t

im
e 

w
it

h
 s

o
ft

 c
o

n
st

ra
in

t 
[s

]

Fig. 6. Computation times in the cases of using hard and
soft constraints.

violations of the controlled variables from the bounds. For
the presented simulation, γ has a value of 15. With this
value, the controller increases the product throughput by
76.0%. Furthermore, as shown in figure 6, the formulation
with soft constraints results in a much shorter computation
time which is favorable for the real-time application 1 .

4.2 Regulation in the presence of model-plant mismatch

a) Fouling

It is almost impossible to build a model for a given
plant which can perfectly reflect its behavior. Model-plant
mismatch can result from neglecting some dynamics of the
system or some parameters of the system can change over
time.

Fouling is a phenomenon which is likely to happen in
almost every chemical reactor. In this study, the controller
attempts to maximize the product throughput while foul-
ing decreases the heat transmission between the reactor
and the jacket. A common approach to compensate model
inaccuracies is to compare the available measurements
with the simulation results at every sampling time and
to correct the model outputs by this error in the next
sampling time (bias correction). By applying this method,
it is assumed that the error caused by the model inaccura-
cies stays almost constant for the whole prediction horizon
which is not the case here. We therefore use a moving win-
dow approach to estimate the unknown parameters and to
update the model used by the controller. Moving window
estimation is an optimization-based approach which uses
the current and past measurements to estimate parameters
which can be formulated as follows:

min
α

p
∑

j=1

∥

∥yk−j − ŷk−j

∥

∥

2

2
(15)

where y is the vector of measurements, ŷ is the vector of

estimated outputs, α are the decision variables (unknown
parameters) and p is the length of the window. At every
sampling time (subscript k) a horizon including the last 35
samples (subscript j) is used to solve the above mentioned
optimization problem. The sampling time of the parameter
estimator is the same as of the controller and equals 100
seconds. We assume that fouling affects the reactor differ-
ently at each segment of the reactor (every two modules
of the reactor constitute a segment). This assumption is
reasonable because the material has a higher viscosity in
the last segments which causes more fouling. By solving

1 Intel Core i7-2600K CPU @ 3.40GHz - 8.0 GB RAM

the optimization problem given by equation 15 the fouling
factors are estimated. A fouling factor is defined as:

αi =

(

1−
heat transfer coef. with fouling

nominal heat transfer coef.

)

∗ 100, i = 1, 2, 3, 4

Figure 7 shows the result of the estimation of these
coefficients. The sensors are located at the last segment of
the reactor and the optimizer can sense the change of the
unknown parameter at this segment immediately (decision
variable α4). For this reason, α4 is estimated accurately
at the very beginning of the simulation while the other
unknown parameters are estimated accurately once their
effect is visible at the measurements. The horizon for the
estimator has to be chosen long enough to capture the
effect of all unknown parameters.
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Fig. 7. Decrease of the heat transmission between the
reactor and the jacket by 3%, 7%10% and 15%in the
first, second, third and fourth segments of the reactor
and estimation of the fouling factors using a moving
window estimation scheme.

As shown in figure 8, the controller can cope with this
type of model-plant mismatch properly and fulfill the
constraints strictly and increases the product throughput
by 75.7%. The slight difference to the nominal case (no
fouling) results from the fact that a reactor affected by
fouling is less efficient. Since the controller tends to inject
the largest portion of the monomer at the first feed point,
fouling in this segment is critical and affects the attainable
throughput.
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Fig. 8. Manipulated and controlled variables for the reg-
ulation scenario with model inaccuracies caused by
fouling and estimation of the fouling factors.

b) Fouling and variation of the reaction rate

As the second case we investigate the robustness of the
proposed controller against two possible inaccuracies of
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Fig. 9. Evolution of the throughput with and without
considering model inaccuracies caused by fouling.

the model. We assume that besides fouling, impurities in
the raw material have decreased the initiator reaction rate
by 5%. Similar to the previous case, a moving window
estimation scheme is used to estimate the fouling factors
and the actual reaction kinetics.

As it can be seen in figure 10, the controlled variables are
kept within the defined bounds for the whole simulation
time and the product throughput is increased by 75.4%.
The product throughput for this case and for the nominal
model are shown in figure 11.
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Fig. 10. Manipulated and controlled variables for the reg-
ulation case where fouling and feed monomer im-
purities have caused a model-plant mismatch. It is
assumed that fouling has affected the model like the
previous case and that feed monomer impurities have
decreased the monomer reaction rate by 5%.
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Fig. 11. Evolution of the throughput with and without
considering model inaccuracies caused by fouling and
different reaction rate.

5. CONCLUSION

An application of optimizing model-based control was
studied in this work which aims at the maximization of
the product throughput of a continuous polymerization
reactor while the product quality is set as constraint. The
simulation results show that the controller can increase the
product throughput considerablly and cope with model in-
accuracies properly. Two cases of such model inaccuracies
caused by fouling and feed impurities were studied. For
these cases a moving window estimation scheme is used to
estimate the unknown (uncertain) parameters and to up-
date the model. Using this updated model, the optimizing
controller is able to meet the problem constraints.
Finding the solution of the optimization problem stated in
eqn. 12 requires a high computational effort. However by
being content to a suboptimal solution when the optimal
solution can not be found on time, the controller can be
used for the real time applications. The use of a moving
window estimator adds another computational burden.
Treating the quality constraints as hard constraints has
the benefit that the quality constraints are strictly met
and no off-specs are produced but it results in a long
settling time and a demanding optimization problem. On
the other hand, soft constraints result in a less complicated
optimization problem and a smoother and faster tran-
sient, but the quality constraints are violated slightly in
the tranisient phase and off-specs are produced. However,
since the reactor is a continuous reactor and the product
is usually stored in large vessels, these violations of the
constraints are averaged to the whole production time.
The tuning of the parameter γ, which controls the relative
importance of the throughput maximization and violations
of the controlled variables from the bound, is the main
difficulty of using soft constraints. It seems that the hard
constraints can be replaced by the soft constraints if the
proper values for the tuning parameter γ and possibly
modified quality constraints are used. Consideration of the
measurement noise and estimation the initial states of the
model are two open issues.

REFERENCES

Bouaswaig A.E. and Engell S. (2009). A new numerical
solution scheme for tracking sharp moving fronts Proc.
19th European Symposium on Computer Aided Process
Engineering, 907–912.

Buchholz S. (project coordinator) 2009. F3-Factory
project web page, www.f3-factory.com.

Chevrel M.C. and Kohlmann D. (2012). Continuous
Production of Water Soluble Polymers in a Flexible
Tubular Reactor Experimental Studies at Small Pilot
Plant Scale CHISA, Prague, 2012.

Engell S. (2007). Feedback Control for Optimal Process
Operation Journal of Process Control 17(3), 203–219,
2007.
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