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Abstract: In this paper we apply model order reductions techniques to efficiently implement simultaneous 

model predictive control and moving horizon estimation for high dimensional chemical processes. Two 

model approximation schemes that both combine order reduction and linearization are employed and 
compared. The approach is demonstrated on a benchmark distillation column example model. 
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1. INTRODUCTION 

Multi-parametric/explicit model based control (mp-MPC) is a 
type of model based control which relies on off-line pre-

computation of optimal control values. This approach was 

developed to reduce online computational costs of model 

predictive control and consists of generating a parametric 

map of the optimal control inputs as explicit functions of the 

state variables of the system (Bemporad et al, 2002). In order 

to implement this methodology for systems of arbitrary 

complexity, Pistikopoulos and co-workers developed a step-

wise framework (Narciso et al, 2008). This framework aims 

to bridge the gap between complex models and recent 

development on multi-parametric/explicit model predictive 
control. In order to achieve this, model approximation 

methods (model reduction, system identification) are used to 

enable or facilitate the application of new theory and tools for 

the various classes of problems within multi-parametric 

programming (Pistikopoulos, 2009). The open literature 

contains a number of studies where multi-parametric/explicit 

predictive control has successfully been combined with 

various model order reduction techniques with in-silico test 

on relatively complex nonlinear mathematical models 

(Hovland et al, 2006), (Xie et al., 2011), (Rivotti et al, 2012), 

and (Lambert et al, 2013). Another important issue is state 

and parameter estimation. While model reduction is efficient 
at deriving lower dimensional models which preserve input-

output behaviours, mp-MPC usually requires full state 

information. Moving horizon estimation techniques are 

usually preferred over Kalman filters as they are able to 

incorporate systems constraints and handle non-Gaussian 

noise. As part of the suggested framework, moving horizon 

estimation has been formulated into multi-parametric/explicit 

form (mp-MHE) (Hedengren and Edgar, 2006) (Darby and 

Nikolaou, 2007), with recent enhancement addressing 

robustness against estimation error (Voelker et al, 2013a), 

(Voelker et al, 2013b). The main aim of this study is to derive 

multi-parametric/explicit moving horizon estimators for high 

dimensional systems. In this study, we expand our on-going 
developments for the simultaneous design of multi-

parametric/explicit model predictive controllers and moving 

horizon estimation by using two model order reduction 

methodologies. The first methodology employed consists of 

linearizing the original system and subsequently reducing it 

whereas the second methodology employs a nonlinear model 

order reduction technique followed by linearization of the 

reduced order model. The paper is organized as follows:  

Firstly we give a description and comparison of the model 

approximation techniques implemented. Secondly, we 

present the fundamentals of the mp-MHE and mp-MPC 
methodologies employed. Lastly, we compare the 

performance of the two approximation methodologies by 

implementing simultaneous mp-MHE/mp-MPC on a 

distillation benchmark model example. 

 2. MODEL APPROXIMATION METHODOLOGIES 

Model approximation is often an important first step for the 

design of model-based controllers, as it is not always 

practical or feasible to implement model based control 

strategies to high fidelity models. In this study we apply a 

combination of linearization and two efficient model 

reduction techniques to derive low order models suitable for 

mp-MPC/MHE methodologies. 

2.1 Linear Model Reduction 

  The first approach consists of linearizing the original system 

and subsequently using a linear model approximation 
technique. In this study we will use balanced truncation. 

Balanced truncation is a model order reduction technique, 

based on singular value decomposition, which is particularly 

suitable in the context of state-space dynamic models, linear 
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design. Consider a linear time invariant (LTI) system of the 

form: 
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(1) 

Balanced truncation consists of deriving a transformation 

matrix T  so that the resulting system is balanced i.e. the 

most observable states correspond to the most controllable 

ones. Following the procedure described in (Antoulas, 2005), 

we formulate a dynamical system in an equivalent balanced 

form: 
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It is then possible to truncate the system by retaining the 
states accounting for most of its dynamical behaviour by 

partitioning the balanced system into retained and discarded 

states  21, xxx   and the resulting reduced order system 

has the following form:. 
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Where the matrices in (2) are partitioned as follows:  
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(4) 

2.2 Nonlinear Model Reduction 

The second approach employed is nonlinear balanced 

truncation, which is a snapshots based technique and an 

empirical extension of the linear balanced truncation 

technique (Hahn and al, 2004). Consider a nonlinear system 

of ODEs of the following form: 
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(5) 

 

As in linear balanced truncation, the method consists of 

finding a transformation matrix T in order to project the state 

vector on a lower order subspace Txx  . In order to 

compute these matrices, empirical gramians or covariance 

matrices are derived from simulation data from the system. 

A balanced system is then obtained from the previously 

defined empirical gramians as:  
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Using a Garlekin projection  0,IP   matrix with the same 

rank as the reduced system, the unimportant states may be set 

a nominal steady state value and the nonlinear reduced order 

model: 
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Note that in the case of the presence of parametric 

uncertainty, the system may be reduced by treating the 

parameters as exogenous inputs in a similar way as the 

method described above:  
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simply by augmenting the vector of input with  as an 

exogenous input: 











u
u~ (Sun & Hahn, 2006). Model 

Order reduction can then be performed on the reduced order 

model. 

2.3 Linearization 

mp-MHE and mp-MPC routines require a linear model for 

their application. In the first case we linearize the system 

around steady state and reduce the resulting linear model. In 

the second case the system is firstly reduced via empirical 

model order reduction and subsequently linearized around the 

steady state of the reduced order model ssx . In both cases we 

use the analytical jacobians of the original and reduced order 

systems. Because the linearization in the second case is 

performed with smaller jacobian matrices, its error tends to 

be smaller than in the first case. Although both systems are 

linear, the preservation of the transient behaviour in the 

second case tends to vastly outperform the first case. 
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3. MULTI-PARAMETRIC MOVING HORIZON 

ESTIMATION 

In this section we briefly introduce the theoretical 

background necessary for the simultaneous design of a state 

estimator and an explicit model predictive controller.  

3.1  Multi-Parametric Moving Horizon  Estimation 

Moving horizon estimation (MHE) is an estimation 

methodology based on optimization. Contrary to Kalman 

filters, MHE only consider a limited amount of past data. One 

of the main advantages of moving horizon estimation is the 

possibility to incorporate system knowledge as constraints in 

the estimation. In MHE the system states are derived by 
solving following optimization problem (Rao, 2000): 
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where T is the current time, ,0,0  kk RQ

01/  TNTP are the covariances of kw kv NTx  assumed to 

be symetric, N  is the horizon length of the MHE, 
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variable of the optimization problem, respectively the 

estimated state variable and the noise sequence. v̂k is the 

measurement noise. 
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is described as the smoothed arrival cost (Rao, 2000).  

 

 

In mp-MHE the problem in (9) is reformulated as a multi-

parametric programming problem (Darby and Nikolaou, 

2007): 
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The parameters of the multi-parametric programming 

problem in (10) are the past and current measurements and 

inputs and the initial guess for the estimated states.  

3.2  Simultaneous mp-MPC and mp-MHE 

Based on the model approximation techniques described in 

3.1, simultaneous reduced order mp-MPC/MHE can be 

applied in a reduced order fashion. This approach has several 

advantages. The first advantage is the reduction in 

computational complexity as both the controller and 

estimator do longer operate based on full state information. 

The second advantage has been discussed in (Singh et al, 
2005) in the case of extended Kalman filters. It was showed 

that the use of reduced order observers avoids a estimation 

error due to poor observability of part of the states. The 

methodology is illustrated in figure 1 and it is applied to a 

distillation column example presented in the next section. 

 

Figure 1: Schematic of simultaneous reduced order mp-

MHE/MPC 

4. APPLICATION EXAMPLE 

4.1 Distillation Column Model  

We consider the design of a controller for a simplified model 

of a distillation column (Benallou et al, 1986). The control 

problem involves the regulation of the product purity to a 

fixed set-point, using the reflux ratio as the manipulated 

variable. A constraint is imposed on the manipulated 

variable. The inlet concentration is assumed to be the main 

source of uncertainty of the system and will be included as 

noise for the moving horizon estimation. A Gaussian 

distribution centred in 0.5 and with a 3% standard deviation 
is assumed. 
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4.2 Moving Horizon Estimators 

Multi-parametric moving horizon estimators were built for 

the following approximated models: 

Case 1: The original distillation column model was first 

linearized, thus yielding a 32 states linear time invariant 

system. This latter was subsequently reduced to two states via 

balanced truncation.  

Case 2: The original distillation column model was reduced 

to two states by using empirical nonlinear balanced 

truncation. The resulting two states system of ODEs was then 

linearized. 

Relative performance of both reduced order model is shown 

in figure 2. It is evident that the transient response in case 2 

gives a better fidelity to the original model. 

 

Figure 2: Dynamic simulations of the original system 

compared to reduced order models 

In this work we do not intend to have the original state 

information for the physical system. Note that the 32-states 

model cannot be directly used to derive multi-parametric 

controllers/estimators. Also note that the remaining states are 

also those required to compute optimal control laws when 

deriving an mp-MPC controller. Although the first state of 

the original system of ODEs is measured, it is also possible to 

reconstruct it from the estimated reduced states. This is 
shown in figure 3. One can notice that case 2 offers a 

significantly better estimation than case 1 although both 

systems are linear. The comparison is also performed on the 

reduced states. The two lower dimensional subspaces onto 

which the original states are projected are not the same since 

the linearization in case 1 is performed around the steady 

states values of the original states while the linearization in 

case 2 is carried out on the steady state values for the 

nonlinear reduced order model. In figure 6 we show the 

critical regions for the moving horizon estimator based on 

case 2, which will be used for simultaneous mp-MPC/MHE.  

 

 

Figure 3: Comparison of reconstructed states for both 

reduced order models. 

 

Figure 4: Comparison of actual and estimated reduced order 

state information for case 1 

 

Figure 5: Comparison of actual and estimated reduced order 

state information for case 2 
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Figure 6: Multi-Parametric critical region maps for the 

estimator built based on case 2: Projection on the first two 
parameters, which are the two past measurements in the 

estimation problem. 

Figure 4 and 5 show the performance of both reduced order 

estimators in their respective subspace. One observation that 

can be made, having used similar reduction techniques both 

based on singular value decomposition and balancing of the 

system, is that the order in which the linearization and 

reduction steps are performed does matter and nonlinear 

model order reduction seems to perform better if employed 

prior to linearization 

4.3  Simultaneous mp-MHE/mp-MPC 

mp-MHE and mp-MPC were combined  and a close-loop 
simulation, shown in figure 7, was performed to evaluate the 

performance of the methodology. It can be seen that the 

estimator provides sufficiently accurate information to the 

parametric controller to drive the system to the desired set 

point based only on measurement information. The 

combination of two reduced order parametric maps is then 

sufficient to operate a control policy for high order chemical 

process. A slight offset is observed around the set-point and 

is mainly due to the noise or uncertainty of the inlet 

concentration of the column. In the case of high measurement 

noise (figure 8 and 9), the control profiles are more erratic 
but the simultaneous implementation of mp-MPC and mp-

MHE still achieve the desirable set-point change. Figure 10 

displays the critical region map for the mp-MPC controller 

implemented simultaneously to mp-MHE. 

 

Figure 7: Close loop simulation of  a set-point change 

operated through simultaneous mp-MHE and mp-MPC 

 

Figure 8: Close loop simulation of  a set-point change 

operated through simultaneous mp-MHE and mp-MPC in the 

case of high measurement noise. 

 

Figure 9: Evolution of the control input variable in the case of 

high measurement noise. 

 

Figure 10: Critical regions for the mp-MPC controller 

implemented simultaneously to mp-MHE 

 

 

5. CONCLUSIONS 

This work underlines the importance of using reduced order 

models for simultaneous multi-parametric moving horizon 

state estimation and mode predictive control. Based on the 

studied distillation example, the superiority of using 
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nonlinear model order reduction is highlighted when 

employed prior to linearization. Future work will deal with 

the use of robust controllers to hedge against the estimation 

error by incorporating model reduction error metrics in the 

calculation of mp-MHE error dynamics (Volker et al, 2013a)  

and combining the reduction methodology to robust tube mp-

MPC/MHE (Volker et al,  2013b). 
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Appendix A. Linear Reduced Order Models 

Case 1: 
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