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Abstract: We consider dynamic optimization of the energy consumption in a building with
energy storage capabilities. The goal is to find optimal policies which minimize the cost of
heating and respect operational constraints. The main complication in this problem is the time-
varying nature of the main disturbances, which are the energy price and outdoor temperature. To
find the optimal operable policies, we solve a moving horizon optimal control problem assuming
known disturbances. Next, we proposed simple implementation based on feedback control, which
gives a near-optimal operation for a range of disturbances. The methods were successfully tested
in simulations, which show that there is a great economical gain in using dynamic optimization
for the case of variable energy price.

1. INTRODUCTION

Recently, great attention has been given to renewable gen-
eration sources like wind turbine and photovoltaic parks.
Although efficiency-wise attractive, these alternative en-
ergy sources suffer a major drawback due to their sharply
varying energy production caused by wide-ranging weather
conditions. This is an important limitation since the en-
ergy production should cover the demand at any given
time.

One possible approach to overcome this drawback is de-
mand side load management. Here, large fluctuations in
the load are tackled by peak shaving and by shifting load to
more beneficial periods (Molderink et al., 2009). This can
be achieved by manipulating the energy price according to
demand information and weather forecasts. The dynamic
energy pricing for demand load management is in itself a
non-trivial problem, and it is currently an active research
area. The interested reader is invited to check the refer-
ences Roozbehani et al. (2010) and Goudarzi et al. (2011)
for more information. This problem is outside the scope of
this work.

In such a scenario, the adaptation of the energy consump-
tion by the final consumer is essential to the success of
the approach. Thus, in this article we focus on the local
building heating system optimization where the goal is the
minimization of energy costs, which in turn will lead to
lower consumption when energy is less abundant.

The case studied here consists of a single room comprised
of a floor heating device, a radiator and a ventilation
system with adjustable flow. We consider bounds on the
floor temperature, the room temperature (air) and the
CO2 levels. The floor heat capacity is assumed to be large
enough so that we can store a considerable amount of
energy in it, hence, giving us an extra degree of freedom
for optimization. Other hardware configurations could

also have been employed. For example, one could use a
insulated tank filled with water.

The main complicating factor for this problem is the time-
varying nature of the disturbances in the outdoor tem-
perature and energy price. We assume that predictions
of the temperature and price variation are available, but
they are not necessarily correct. Thus, a dynamic real-time
optimization (DRTO) scheme is proposed to compensate
this variations while minimizing the energy cost. In this
scheme, a dynamic optimization problem is solved at each
sample time with new states and disturbance measure-
ments.

A drawback of the DRTO is the fact that the system
operates in open-loop in between two consecutive opti-
mizations. This may yield sub-optimal or even infeasi-
ble solutions in case of large disturbances. To deal with
this problem, we propose simple solutions solely based on
feedback and offline analysis, where near-optimal control
inputs are generated at low computational and mainte-
nance costs. This extends the self-optimizing control idea
(Skogestad, 2000) to dynamic optimization problems. We
show that near-optimal solutions can be obtained by track-
ing optimally invariant trajectories, which we define as a
function of the measurements whose optimal profile does
not change with disturbances.

The paper is organized as follows: Section 2 details the
derivation of the model. Section 3 shows the formulation
of the dynamic optimization problem and describes the
solution method used. In Section 4, the implementation
of the optimal solution is discussed. Section 5 gives the
simulation results and Section 6 concludes the article.

2. MODELING

The model describes a single 25m2 room comprised of a
floor heating device, a radiator and a ventilation system
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Fig. 1. The system topology

with adjustable flow. It is assumed that all the heat lost
by the floor is transferred to the air in the room whereas
the heat in the air can be lost both through the walls and
through the ventilation. The air entering is assumed to
be at outdoor temperature and behaves as an ideal gas.
The CO2 accumulation due to breathing is modelled as a
constant feed B and the consumption of O2 is neglected.
To help visualizing the energy and mass flows in the system
it is useful to use system topology graph as shown in
Fig. 1. All state, manipulated and disturbance variables
are described in Table 1. Other constant parameters are
summarized in Table A.1.

Table 1. Variables description

State variables Description Unit

Tf Floor temperature K
Tr Room temperature K
mr Mass of air kg
w CO2 mass fraction -

Manipulated variables Description Unit

Qf Floor heat input kW
Qr Room heat input kW
m̂in Air inflow kg/s

Disturbance variables Description Unit

To Outdoor temperature K
p Energy price $/kW
B Rate of CO2 generation kg/s

From mass and energy balances, the dynamics of the
system may be described as

dmr

dt
= m̂in − m̂out (1)

dw

dt
=
m̂in

mr
(win − w) +

B

mr
(2)

dTf
dt

=
Qf

mfcp,f
− UAf,r
mfcp,f

(Tf − Tr) (3)

dTr
dt

=
Qr

mrcp,r
+
m̂in

mr
(To − Tr) (4)

+
UAfr
mrcp,r

(Tf − Tr) +
UAr,o
mrcp,r

(To − Tr)

where m̂out = k(Pr − Po) is the outflow and Pr = mrRTr

MrVr

is the pressure inside the room, where we assume ideal
gas. The heat generated by humans and the effect of the
sun light have been neglected. For sake of simplicity in the
notation, we define the control inputs uT = [Qf , Qr, m̂in],
the state vector xT = [Tf , Tr,mr, w] and the disturbances
dT = [To, p, B]. Hence, we can pack the dynamics into the
vector function f such that dx

dt = f(x, u, d). In the next
section we describe how to use this model to find optimal
heating polices.

.

3. DYNAMIC OPTIMIZATION

This section presents the dynamic optimization problem
and the approach used to solve it. It starts off by presenting
the continuous time optimal control problem we would like
to solve and evolves in a stepwise manner presenting mod-
ifications that helps the solution. Finally, we present the
full discretization method based on orthogonal collocation
as well as the formulation of the nonlinear program. The
implementation is discussed in the subsequent section.

3.1 Disturbance modelling

The main disturbances are the outdoor temperature To(t)
and energy price p(t). For simplicity, we assume that p(t)
is periodic and follows

p(t) = p0 +Apsign[sin(ωpt+ φp)] (5)

where parameters the Ap and φp are uncertain. More
general dynamic pricing polices can also be treated in this
framework in a straightforward manner. We assume the
weather predictions are available numerically from weather
models such that we can interpolate the predictions using
polynomials. Therefore, we assume we have the predictions
T̂o(t) = P (t) where P is a polynomial fitted using the
weather model data. For this case study we have used
weather prediction data from (yr.no, 2012). It would not
be realistic to embed a weather forecast model in the
optimization loop due to its highly complex nature. The
rate of CO2 generation by breathing (B) is a function of
the number of people currently inside the building.

3.2 Dynamic optimization problem

The optimization objective is to minimize the energy costs
over an infinite horizon. A solution method is to use a
moving horizon approach where we solve an optimal con-
trol problem within the fixed interval [t0, t0 +h] where the
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horizon h is large enough to capture important trends in
the system. At each time point t0 a different optimization
problem (6) is solved with different initial condition x0
that is unknown in advance. We formulate our moving
horizon problem in the Lagrangian form as:

min
u

∫ t0+h

t0

p(t)[β(Qf +Qr)
2 + (Qf +Qr)] dt (6)

subject to

ẋ = f(x, u, d), x(t0) = x0 (7)

Tr ≥ Tmin (8)

Tf ≤ Tmax (9)

w ≤ wmax (10)

Qf ≤ Qmax (11)

Qr ≤ Qmax (12)

Qf , Qr ≥ 0 (13)

where the quadratic term was introduced to improve
numerical convergence of the optimization algorithm. The
weighting factor β should be adjusted such that the linear
term dominates the expression.

During operation is possible that a disturbance brings the
system outside the feasible region. The formulation based
on hard constrains (8)-(13) would then fail to produce a
reasonable solution since the initial state would already
be infeasible. This problem can be overcome by softening
the output constraints (8)-(10). It would not make sense
to soften the input constrains as they represent actual
physical limitations.

Firstly, we rewrite the output constraints in a vector form
such that we have ho(x, u) ≥ 0. Next, we introduce a vector
of slack variables ε and define the following constraints in
the optimization problem:

ho(x, u) ≥ 0− ε (14)

ε ≥ 0 (15)

Finally, the cost function is modified by adding penalties
for the violation of the constraints

min
u

∫ t0+h

t0

{p(t)[β(Qf +Qr)
2 + (Qf +Qr)] +µ · ε}dt (16)

The linear penalty function was chosen because it is exact
in the sense that minimizing (16) also minimizes the
original cost function (6) provided that µ is large enough
(Nocedal and Wright, 2006).

3.3 Numerical solution: simultaneous approach

The optimal solution is obtained through the application
of a simultaneous approach (Biegler, 2010), in which both
the states and the inputs are approximated by orthogonal
polynomials. For simplicity, we first transform the problem
to the Mayer form by expanding the state vector with
J̇ = p(t)[β(Qf + Qr)

2 + (Qf + Qr)] + µ · ε such that we

have the augmented states zT = [x, J ] and ż = f̂(z, u, d).
The equivalent dynamic optimization problem is

min
u
J(t0 + h) (17)

subject to the constraints (11)-(15) and the model ż =

f̂(z, u, d).

Proceeding to the discretization, we first divide the time
interval into N time periods. Within each time period i the
control inputs are represented by Lagrange interpolation

u(t) =

K∑
j=1

l̄j(τ)uij (18)

where

l̄j(τ) =

K∏
k=1,6=j

τ − τk
τj − τk

(19)

The collocation equations for the differential equations can
be written as

K∑
j=0

l̇j(τk)zij − hif̂(uik, zik, dik) = 0 (20)

where i ∈ [1, . . . , N ], k ∈ [1, . . . ,K], l̇l(τ) =
dlj
dτ and

K is the degree of the polynomials. The length of the
time intervals hi are considered fixed and are not decision
variables for the optimization problem. In fact, for this
case we have chosen N = 1 which leads to a pseudospectral
method. Finally, the collocation points τk are chosen as the
roots of the Gauss-Legendre orthogonal polynomials. The
resulting NLP is as follows:

min J(t0 + h) (21)

s.t.

K∑
j=0

l̇j(τk)zj − hf̂(uk, zk, dk) = 0 (22)

ho(xk, uk, dk) ≥ −εk, εk ≥ 0, hu(uk) ≥ 0 (23)

k ∈ [1, . . . ,K] (24)

where hu(u) ≥ 0 represents the input constraints (11)-
(13). The above problem is formulated in MATLAB and
solved using the sparse NLP solver SNOPT. This solver
employs a sparse SQP algorithm with quasi-Newton ap-
proximations to the Hessian. Gradient information is ob-
tained using automatic differentiation approach. The in-
terface between MATLAB and SNOPT is handled by the
optimization environment TOMLAB.

4. IMPLEMENTATION OF THE OPTIMAL
SOLUTION

4.1 Dynamic real-time optimization

We propose the implementation of a dynamic real time
optimization where the optimal control problem is solved
in a moving horizon fashion. At each time sample, t0,
a dynamic optimization problem is solved with a new
initial state and disturbance measurements. We specified a
horizon length h = 24h so that all the important dynamics
are captured. However, only the first portion of the optimal
profile corresponding to t ∈ [t0+ts] is implemented, where
ts < h is the time between successive optimizations. In
this paper we assume limited computation power so that
we need to have ts = 2h. During this period the optimal
inputs are extracted by using the Lagrange interpolation
shown in (18).

In order to improve the accuracy of the solution and im-
prove the convergence, the NLP is solved with successively
larger number of collocation points, where the solution
to the previous lower dimensioned problem is used as an
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initial guess for the next one. Here, we solve the NLP
first with K = 25 and then using K = 45 collocation
points. Another important point is the warm start of the
NLP solver. This is done in two steps: first, the control
inputs from previous solutions are shifted to to the next
time window by assuming the inputs remain constant in
the final time period. Then, the shifted inputs are used
to simulate the model and the states are extracted. The
shifted inputs and the simulated states are the initial guess
to the next optimization problem.

4.2 Near-optimal solution by tracking optimally invariant
trajectories

In this section, we propose a simple control implementa-
tion that gives near-optimal solutions without the need
for re-optimization online. The main idea is to find a func-
tion of the measurements whose trajectory is optimally
invariant to disturbances and then track the trajectory
using standard feedback controllers. The control structure
is shown in Fig. 5 where cr(t) is the optimally invariant
reference trajectory that we wish to track. In the sequel,
we will derive a procedure to obtain such trajectories.

We define y ∈ Rny as the vector of known variables
(measurements), which may include states, disturbances
and control inputs. The disturbance is modelled as a vector
of constants d0. However, the real (unknown) parameters
are denoted by d, and we may have deviations ∆d = d−d0.
The nominal optimal measurement trajectory is referred
to as y0(t, d0).

It can be shown that if the cost function J is twice con-
tinuously differentiable in a neighbourhood of the nominal
solution and the linear independence constraint qualifica-
tions and the sufficient second-order conditions hold, then
the optimal sensitivity matrix F is well defined:

F (t) =
∂yopt(t, d)

∂d
(25)

and, a first order, local approximation of the optimal
solution in the neighbourhood can be obtained from

yopt(t, d) ≈ y0(t, d0) + F (t)∆d (26)

We are searching for a function of measurements c(y(t), d)
whose optimal value is independent of d, that is, we want
copt(y(t), d) = c0(y(t), d0) for any d sufficiently small. A
simple choice is a linear combination of the measurements:

c(t) ≡ H(t)y(t) (27)

where H(t) is a nu×ny matrix, and c(t) is a nu×1 vector.
This way we can write

copt(t, d) = H(t)[y0(t, d0) + F (t)∆d] (28)

and we define the nominal combination of measurements:

c0(t, d0) = H(t)y0(t, d0) (29)

By subtracting (29) from (28) we obtain:

copt(t, d)− c0(t, d0) = H(t)F (t)∆d (30)

Therefore, the optimal combination copt(t, d) equals the
nominal c0(t, d0) for any d if we select H(t) such that
H(t)F (t) = 0. This is always true if H(t) lies in the left
null space of F (t). Using this approach we obtain a trajec-
tory copt(t, d) that is optimally invariant to disturbances.
We can transform the problem of implementing u(t) in a
’open-loop’ manner to a reference tracking problem with
optimal setpoints cr(t, d) = copt(t, d) (see Fig. 5). By
tracking cr, a simple controller automatically generates
inputs u that are optimal for any disturbance d sufficiently
small and thus, the online optimization is avoided.

The whole procedure has offline and online steps which are
summarized as follows:

Offline:

• Solve the dynamic optimization problem with d0;
• Select appropriate measurements y;
• Compute the optimal sensitivities F (t) and the com-

bination H(t);
• Compute the reference trajectories cr(t) = H(t)y0(t).

Online:

• Track the reference cr by a feedback controller.

Remark: It is only possible to choose H in the left null
space of F if the number of independent measurements
respect the condition ny ≥ nu + nd where nd and nu are
the number of disturbances and inputs, respectively. See
(Alstad and Skogestad, 2007) for proof.

5. RESULTS

5.1 Nominal optimal solution

The solution for a whole day obtained with the DRTO
algorithm was computed assuming perfect predictions.
Figure 2 depicts the nominal price variations and the
outdoor temperature variation. This temperature profile
corresponds to the temperature measured in Trondheim,
Norway on 03 January 2012 provided by the Norwegian
Meteorological Institute which made the data freely avail-
able in (yr.no, 2012). For simplicity, we assumed a constant
rate of CO2 generation B = 9.02 × 10−6 kg/s in the
simulations.

For the sake of comparison, we also implemented the
most trivial solution to the problem where the room
temperature is kept at minimum allowed value by varying
the heat input Qr using a PI controller. To get a fair
comparison, the optimal air inflow was used. The second
heat input,Qf , was left unused. Note that keeping the
room temperature at minimum allowed value is, in fact,
the optimal policy if we would like to minimize the energy
consumption instead of the economical cost.

A comparison between the optimal profiles and the simple
strategy is given in Figures 3 and 4. Some interesting
conclusions can be drawn from these results. First, notice
that it is optimal to overheat the room and floor above the
minimum constraint when the price is low. In this case,
when the energy is cheap we will store enough heat in
order to meet the temperature constraints until the next
low price valley. We also confirmed (not shown here for
brevity) that the air inflow is increased just enough to
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meet the CO2 level constraint. This is trivial since over-
ventilation would unnecessarily cool the room down and
it would require extra energy to keep the temperature
constraint.

The optimal energy cost for one day was $12.45, whereas
the simple temperature controller gave a cost of $21.62,
which is considerably higher than the optimal. The energy
usage is 12.5kWh and 10.9kWh, respectively. This differ-
ence in the cost is proportional to the ratio between high
and low energy price.
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Fig. 2. Disturbances - energy price and outdoor tempera-
ture.
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Fig. 3. Temperatures - green lines: optimal solution; ma-
genta lines: simple temperature controller with con-
stant setpoint.

5.2 Controlling invariant trajectories

Here, we assume the air inflow qin will remain at nominal
trajectory such that two manipulated variables are avail-
able. Thus, since we are considering two disturbances we
will need at least ny = 2 + 2 = 4 measurements and we
seek two trajectories c1(t) and c2(t) to track. Defining the
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Fig. 4. Inputs and energy cost - green lines: optimal
solution; magenta lines: simple temperature controller
with constant setpoint.

measurement vector y = [Tf , Tr,mr, p]
T we compute the

optimal sensitivities F (t) for the whole horizon and obtain
H(t) and the reference trajectory cr(t). As controllers, we
use two decentralized P controllers. Note that the only way
to adapt to price changes is by measuring it as the model
of the physical process does not depend on price explicitly.

This idea was tested by considering a disturbance in the
phase shift (φp) of the energy price as well as a mismatch
between prediction and actual outdoor temperatures. Fig-
ure 6 compares the predictions with the measured dis-
turbance values. We compare the proposed method with
the moving horizon strategy and with the true optimal
solution assuming perfect knowledge of the disturbances.
Figure 7 depict the input trajectories for the three different
cases. The economical comparison is shown in bottom Fig.
7. The proposed simple method works very well for this
case, given a relative loss of optimality of only 0.32%.
The relative loss given by the moving horizon strategy
with imperfect disturbance model was 24.4%, which is
considerably higher.

5.3 Discussion

One of the reasons for the success of the method is the fact
that, in this range of disturbances, the dynamics are close
to linear and, therefore, the linear approximation of the
NLP ends up near the true solution. A drawback of this
approach is that it cannot explicitly handle constraints.
Therefore, for a realistic implementation the proposed
method should be combined with a periodic solution of
the dynamic optimization where a new reference solution
is obtained, and new invariant trajectories c(t) are com-
puted. The idea is to recompute the optimal sensitivities
F (t) online after solving the current NLP and then apply
the approach shown in Fig 5 in between two successive
optimizations. This requires, however, fast online calcula-
tions of the sensitivities as those provided by the meth-
ods proposed by (Pirnay et al., 2012). Similar idea has
been published in (Würth et al., 2009) where the authors
proposed to use sensitivity based neighbouring-extremal
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Fig. 5. Proposed implementation based on simple feedback

updates combined with real-time optimization. In this way,
the frequency of optimizations can be greatly reduced.
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Fig. 6. Disturbances - solid lines: measured; dash-dotted
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6. CONCLUSION

We proposed a moving horizon dynamic optimization
method, which uses predictions to compute the optimal
heating polices and ensure feasibility. We showed that, in
a scenario where the energy price is time-varying, the eco-
nomical benefit of using a real time dynamic optimization
scheme is substantial. Finally, simple solutions based on
feedback control and offline analysis was derived and suc-
cessfully tested. The simulation example showed that very
little loss of optimality could be obtained. The benefit of
this method is the negligible online computational cost and
the simplicity of the implementation. The ideas discussed
here may also be applied to other problems with energy
storage capabilities where the energy price changes.
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Appendix A. MODEL PARAMETERS

Table A.1. Parameters description

Parameter Description Value Unit

UAf,r Heat transfer coef. floor 0.1801 kJ/(s ·K)
UAr,o Heat transfer coef. walls 0.0216 kJ/(s ·K)
mf Mass of the floor 3000 Kg
cp,f Heat capacity floor 0.63 kg/kJ
cp,r Heat capacity air 1.005 kg/kJ
k Valve constant 100 kg/(bar · s)

win CO2 fraction in flow 6.16 · 10−4 -
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