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Abstract: This paper suggests a method to control the particle size distribution in semi-batch
emulsion homopolymerizations under structural plant-model mismatch. In this approach, firstly
a nominal monomer feed input trajectory is applied to the plant up to a predefined time instant
after the start of the batch (mid-course). By means of a calorimetric observer, all states of the
system except the particle size distribution are estimated using the available measurements. The
estimated states and the measured PSD at the mid-course of the process are used as the initial
condition for an optimization which is done to compute the trajectory of the monomer feed from
the mid-course up to the end of the batch. In this optimization, considering a structural plant-
model mismatch, a hybrid model which comprises the nominal model of emulsion polymerization
and an empirical component that corrects the predictions of this nominal model is used.
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1. INTRODUCTION

Emulsion polymers are used in a wide range of appli-
cations such as adhesives, inks, paints, coatings, gloves
and cosmetics. The process of emulsion polymerization
belongs to the family of free radical polymerizations where
the initiation process usually starts by dissociation of the
initiator molecules in the water phase. This process is
one of the common polymerization techniques to produce
high molecular weight latexes. In emulsion polymerization,
the probability of termination of the growing radicals is
reduced by the compartmentalization of the radicals in
the particles. This results in having a high polymerization
rate even at high molecular weights while the viscosity of
the latex does not increase drastically.

Monomer, surfactant, initiator and water are the main
ingredients of the emulsion polymerization process. The
process starts by dispersing the monomer in water using
a stirrer. Additionaly, in order to prevent the droplets
from coalescencing in the reactor, a surfactant is used to
cover the droplets. When the amount of the surfactant
exceeds the critical micelle concentration (CMC), micelles
of surfactant are formed within the system; these are
monomer swollen aggregates of surfactant. In order to
bring the resulting dispersion of monomer in water into
the appropriate condition for starting the reaction, the
emulsion is heated up, usually to around 50 to 80oC,
depending on the type of the monomer. After reaching
the desired temperature, a water soluble initiator is added
to the dispersion where it decomposes to form radicals
? The financial support of DAAD is gratefully acknowledged.

which start the reaction with the small amount of free
monomer molecules which are dissolved in the water phase.
These free monomer molecules are outside of the monomer
droplets covered by the surfactant. The product of initiator
radicals and monomer are oligomeric radicals which can
either propagate with the rest of the free monomer that
is present in the water phase or they can terminate with
each other. If they do not terminate in the water phase,
they propagate to reach a certain chain length of jz

after which they will enter into micelles of surfactant and
reacting there with the monomer, the result of which is
the occurrence of micellar nucleation where the precursor
particles are formed. The newly formed particles are then
converted into stable ones either via propagation (growth
by consuming monomer) or coagulation.

The end-use properties of the polymers produced by emul-
sion polymerization processes such as film forming, adhe-
sion, and viscosity are highly correlated with the particle
size distribution (PSD). Therefore controlling the PSD is
well motivated. To control the PSD, a rigorous model of
the emulsion polymerization process is usually adopted
where the population balance equation (PBE) model of
emulsion polymerization is used to predict the evolution of
the PSD (Vale and McKenna, 2005). Hosseini et al. (2012,
2013a) proposed to use the Fokker-Planck equation model
of emulsion polymerization instead of PBE model as it
predicts the observation of the broadening of the PSDs in
experiments significantly better. Hence, in this work, the
Fokker-Planck model of emulsion polymerization is used
to describe the temporal PSDs.
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In general, for batch and semi-batch processes, different
control approaches such as online, batch-to-batch and
combinations of them (depending on the availability of
the off/online measurements and the level of sophistication
needed and/or desired) can be used. Feedforward con-
trol (Immanuel and Doyle III (2002); Rajabi-Hamane and
Engell (2007)) is the simplest scheme where the optimal
input trajectories are computed by performing an offline
optimization or they are repeated from a golden batch.
The corresponding optimizations are usually performed
using mechanistic models. The obtained optimal input
trajectory is implemented at the plant without consid-
ering feedback. As mechanistic models cannot cover all
aspects of the real processes, in the presence of plant-
model mismatch and/or disturbances the optimal input
trajectory computed by this method cannot conduct the
process exactly to the desired target due to the lack of
a mismatch/disturbance rejection mechanism. Batch-to-
batch control (Dokucu and Doyle III (2008); Doyle III
et al. (2003)) is a relatively simple approach to improve
the quality of offline control strategies. Using the results
of offline measurements taken at the end of a batch, a
correction is computed. This correction is then considered
in the offline optimization which is performed to calculate
the input trajectory of the next batch. However, in this
method of batch optimization, due to the absence of the
in-batch feedback, the disturbances are not adequately
treated. To overcome the deficiencies of the offline and
batch-to-batch control approaches, online measurements
can be used under the framework of nonlinear model
predictive control (NMPC) like the work of Mansour et al.
(2011). When frequent measurements are not available to
perform closed-loop control, mid-course correction control
policies (Flores-Cerrillo and MacGregor (2002)) can be
used instead of NMPC approaches. This methods are com-
promises between offline and online control. Hosseini et al.
(2013b,c) proposed an approach to perform the mid-course
correction to control the PSD in emulsion polymerization
under parametric plant-model mismatch. In this approach,
assuming the availability of quasi-continuous solid (poly-
mer) content measurements, a state estimator was incor-
porated to estimate the lumped state of the system at
the mid-course of the process. Furthermore, an empirical
model was added to improve the predictions of the nominal
model in comparison to a virtual plant when performing
an optimization to obtain the optimal monomer flow rate
trajectory, from the mid-course up to the end of the batch,
that brings the PSD of the virtual plant to a desired target.
The virtual plant was considered to be the nominal model
of emulsion polymerization with different key parameters
(i.e. propagation rate constant, termination rate constant,
initiator decomposition rate constant, and the entry of
radicals into the particles rate constant). In the previous
work, the coagulation phenomenon was neglected in the
nominal model as well as in the virtual plant.

In this paper, the seeded emulsion homopolymerization of
styrene is considered as the example process for which,
based on the mid-course correction idea, a method to con-
trol the PSD under the structural plant-model mismatch
is proposed. To describe the behavior of the real plant,
a virtual plant is considered where it is assumed that
in contrast to the nominal model, in the virtual plant
coagulation occurs. The flow rate of the monomer feed is

considered as the manipulated variable to control the PSD.
The structure of this paper is as follows: first we briefly
introduce the model of emulsion polymerization in section
2. The main idea behind the proposed control structure
is presented in section 3. The control structure is then
simulated. Finally conclusions are presented in section 4.

2. PROCESS MODEL

To describe the evolution of the PSD in emulsion poly-
merization, considering a seeded process and neglecting
the nucleation phenomenon, the model of Hosseini et al.
(2013a) is used. In this model, to overcome the inad-
equacies of conventional PBE models of emulsion poly-
merization to descirbe the evolution of the broadening of
experimental PSD, the Fokker-Plank Equation (FPE) is
employed as follow:

∂

∂t
n(r, t) = − ∂

∂r

[(
G(r, t) +

dD(r)
dr

)
n(r, t)

]
+

∂2

∂r2
(D(r)n(r, t)) + <coag.,

(1)

where n is the density function, r is the particle radius (the
only internal coordinate which is considered in the FPE),
D is the dispersion coefficient. The growth kernel can be
expressed as follows:

G(r, t) =
dr

dt
=

kpMwt

4πr2ρpNA
n(r, t)[M ]p, (2)

where kp is the propagation rate constant, Mwt is the
molecular weight of the monomer, n is the average number
of radicals per particle, [M ]p is the monomer concentration
in the particle phase, ρp is the density of the polymer
and NA is the Avagadro constant. The coagulation rate
is calculated as follows (Vale and McKenna, 2005):

<coag. =
1
V

∫ (r/2)1/3

rnuc.

β(r′, r′′, t)n(r′, t)n(r′′, t)

r2

(r3 − (r′)3)2/3
dr′ − n(r, t)

∫ rmax

rnuc.

β(r, r′, t)n(r′, t)dr′,(3)

in which β is the coagulation kernel defined for two
interacting particles with the swollen radii of rs and r′s
as:

β =
2kBT

3ηWrr′
(2 +

rs

r′s
+

r′s
rs

), (4)

where η is the viscosity, kB is the Boltzman constant
and Wrr′ is the stability ratio which is a measure of the
stability of the latex; the higher the stability ratio the more
stable is the latex. Here a simple stability ratio is used,

Wrr′ =
(

(rr′)3

r6
min

)S

, (5)

in which r and r′ are the radius of the interacting particles,
rmin is the lower limit of the internal coordinate (here the
particle radius) and S is a parameter. In this model, by
decreasing the parameter S (here considered to be 1.8),
the particles are simulated to coagulate more.

In what follows, the dynamic balances of the lumped
states of the system for a semi-batch process are briefly
introduced.
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Monomer balance
The monomer balance for a semi-batch reactor leads to:

d[M ]
dt

= −rip − [M ]
V

dV

dt
+

V̇M

V

ρm

Mwt
xM,F , (6)

where rip is the reaction rate, V is the volume of the reacor
content, ρm is the monomer density, V̇M is the monomer
flow rate and xM,F is the monomer feed purity.

Initiator balance
The water soluble initiator (usually a persulfate) decom-
poses in the aqueous phase and its concentration balance
is

d[I]
dt

= −fkI [I]− [I]
V

dV

dt
+

V̇I

V
xI,F , (7)

in which f is the initiator decomposition efficiency, kI

is the initiator decomposition rate coefficient, V̇I is the
initiator flow rate and xI,F is the initiator feed purity.

Radicals in the water phase balance
One can consider a single overall balance for all types of
radicals in the water phase (Rawlings and Ray, 1988),

d[R]w

dt
= 2fkI [I] +

∫ rmax

rmin

n(r)kd(r)n̄(r)dr−
4πkmp[R]wV NA

Vw

∫ rmax

rmin

r2
sn(r)dr − kw

t ([R]w)2
V w

V
−

4πr2
mkmmNm[R]w

V w

V
− [R]w

V

dV

dt
,

(8)

here kmp is the rate constant of radicals entry to particles,
V w is the volume of the water phase, kmm is the rate
of radicals entry to the micelles of surfactant, rm is the
radius of the micelles, Nm is the number of micelles, kw

t
is the water phase termination rate constant and kd is the
desorption rate coefficient.

Volume balance
The mass balance of the reactor content leads to:

dV

dt
= V̇M + V̇I + V̇S −

(
V̄M − Mwt

ρp

)

︸ ︷︷ ︸
Considering shrinkage

ripV
p, (9)

where V̄M is the molar volume of the monomer and V p is
the total volume of particle phase.

Heat balance reactor side
d (ρrV cprTr)

dt
= −∆HrV rip + kA(Tj − Tr)+

V̇Mρmcpm(Tr,in − Tr),
(10)

where ρr is the density of the reactor content, cpr is the
specific heat capacity of the reactor content, Tr is the reac-
tor temperature, Tr,in is the monomer inlet temperature,
∆Hr is the enthalpy of the polymerization reaction, k is
the heat transfer coefficient, A is the heat transfer area,
Tj is the jacket temperature, and cpm is the specific heat
capacity of monomer.

Heat balance jacket side
d (ρwVjcpwTj)

dt
= V̇W ρwcpw(Tjin − Tj) + kA(Tr − Tj),

(11)

where ρw is the density of water, cpw is the specific heat
capacity of water, Vj is the volume of the jacket, V̇W is

the water flow rate, and Tjin
is the temperature of water

at the jacket inlet.

The discretized form of equation (1) in combination with
the dynamic balances of the lumped states constitute a set
of differential algebraic equations (DAE), the integration
of which provides the dynamic evolution of the PSD and
of the other states of the system.

3. CONTROL STRUCTURE

In this paper, a practical control strategy based on the
mid-course correction idea is proposed to control the PSD
in a semi-batch seeded emulsion homopolymerization pro-
cess under structural plant-model mismatch (to resemble
the structural plant-model mismatch, no coagulation is
considered in the nominal model whereas in the (virtual)
plant coagulation takes place). In this approach, firstly a
nominal input trajectory of the monomer flow rate which
is obtained either by experiments or from an offline op-
timization is applied at the plant up to a certain time
(mid-course of the batch) after the start of the batch.
Using a calorimetric state estimator and incorporating the
available measurements, the lumped states (i.e. all states
except of the PSD) of the emulsion polymerization model
are estimated. The estimated states together with the PSD
measured at the mid-course of the process constitute the
complete state vector at the mid-course of the process
which is used as the initial condition for an optimization
that is performed to compute the optimal trajectory of
the monomer feed from the mid-course up to the end of
the batch. The difference between the PSD predicted by
the nominal model and the PSD of the virtual plant as
well as the reduction in the number of the particles due to
the coagulation cannot simply be compensated by fitting
the parameters of the nominal model to the experimental
data (obtained by simulation of the virtual plant) because
intuitively the nominal model without considering coag-
ulation/nucleation delivers constant number of particles.
Apart from that, the rigorous model of coagulation is not
reliable in reacting conditions (Vale and McKenna, 2005)
and even if it was reliable, the simulation of the FPE model
considering the coagulation is computationally demanding
such that one cannot use the model for the optimization
purposes. Hence, in this work it is proposed to use an
empirical model to compensate for the coagulation in the
nominal model and the resulting hybrid model is used to
perform the above mentioned optimization. The empirical
model maps the state of the system at mid-course to
the residual of the states (the difference between model
prediction and plant) at the end of the batch. This residual
is used to correct the predictions of the nominal model
during the optimization.

3.1 STATE ESTIMATION

To estimate the lumped states of the system at the mid-
course of the process, an Extended Kalman Filter based on
the nominal model (model without coagulation) of emul-
sion polymerization is used. The available measurements
(reactor temperature, jacket temperature, and volume of
the reactor content) obtained from a virtual plant are used
to estimate the non-measured lumped states of the system
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(a) Monomer concentration
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(b) Polymer mass concentration
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(c) Initiator concentration
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(d) Radicals concentration
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(e) Heat of reaction
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(f) Volume of the reactor content
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(g) Reactor temperature
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Fig. 1. Results of the state estimation. The diagonal values
of the matrixes of model error covariance (Q), initial
condition error covariance (P0) and the measurement
error covariance (R) for the monomer concentration,
polymer mass concentration, initiator concentration,
radicals in the water phase concentration, the heat
of the reaction, volume of the reactor content, the
reactor temperature, and the jacket temperature are
Q = [10−5, 0.4, 1.5 × 10−7, 10−8, 0.1, 1.3 ×
10−4, 0.5, 0.5], P0 = [10−4, 0.8, 1.5 ×
10−7, 1.2 × 10−7, 0.06, 10−3, 0.4, 0.4], and
R = [0.01, 0.5, 0.5].

at the mid-course of the process. To simulate the plant-
model mismatch, it is assumed that in the virtual plant
(model of the plant) coagulation occurs whereas no coagu-
lation is considered in the nominal model. Apart from this
structural mismatch, the parameters of the virtual plant
and the nominal model are considered to be the same.
The elements of the covariance matrices of the initial state
and the state noise, P0 and Q, were tuned by performing
simulations. Q was considered to be diagonal and time
invariant. The result of the state estimation is shown in
figure 1. As one can see, despite the uncertain initial con-

ditions, the concentrations of the monomer (figure 1(a)),
polymer (figure 1(b)), initiator (figure 1(c)), radicals in
the water phase (figure 1(d)), the heat of the reaction
(figure 1(e)) are estimated correctly and the volume of
the reactor content (figure 1(f)), the temperature of the
reactor (figure 1(g)), and temperature of the jacket (figure
1(h)) are properly filtered.

3.2 HYBRID MODEL

In the control structure proposed above, a hybrid model
with two components, the nominal model (model without
coagulation) and an empirical model which corrects the
predictions of the nominal model at the end of the batch
based upon the estimated/measured states of the system
at the mid-course, is used to compute the optimal input
trajectory of the monomer from the mid-course up the end
of the batch.

The batch history needed to build the empirical com-
ponent of the hybrid model is obtained by simulating
the virtual plant using different monomer input trajecto-
ries which are obtained by perturbing the feed trajectory
around the nominal input trajectory (16 experiments were
created). The empirical model maps the states of the
system at the mid-course and the parameterized monomer
flow rate trajectory from the mid-course up to the end of
the process to the state residuals (difference between the
predictions of the nominal model and the virtual plant)
at the end of the batch. Linear models like partial least
squares (PLS) were not able to capture the nonlinearities
of the above mapping. Therefore, a nonlinear model, a par-
tial least square based radial basis function neural network
(RBF-PLS) (Walczak and Massart, 1996) is used where
firstly the activation matrix of the RBF component of this
black-box model is calculated using the input matrix, and
to connect the activation matrix to the output matrix,
instead of weights (as in conventional RBF networks), a
PLS model is used. RBF-PLS enjoys the dual advantage of
capturing the nonlinearities by its RBF component while
treating the high dimensionality of the data with the PLS
model. After selecting the centers (k-means clustering is
used to obtain the RBF centers) and the standard devi-
ation of activation functions, the activation matrix of the
RBF component of the empirical model is calculated using
the input matrix X as follows:

Φ =




ϕ1(X1) ϕ2(X1) . . . ϕNc(X1)
ϕ1(X2) ϕ2(X2) . . . ϕNc(X2)

...
ϕ1(XN ) ϕ2(XN ) . . . ϕNc(XN )


 , (12)

where ϕj(Xi) = exp
(
−‖Xi−Cj‖22

2σ2
r

)
in which Xi(1 × 15)

consists of the states of the system at the mid-course (8
estimated states, number of particles and first 2 moments
of the distribution obtained from the measured PSD) and
of the feed flow rate trajectory from the mid-course up
to the end of the process (monomer flow rate trajectories
parameterized by 4 parameters) for experiment i, Cj is
jth center, Nc is the number of centers, N(=16) is the
number of experiments and σr is the standard deviation
of the activation functions. The activation matrix Φ(15×
Nc) is then mapped to the residuals of the states at the
end of the batch (the first two moments of the PSD,
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number of particles and the monomer concentration for
each experiment, i.e. the residual matrix is R(15 × 4))
using the PLS model as follows:

Φ = T.Pt + E, R = U.Qt + F, U = K.T + H (13)

where T(15 × Nl) and U(15 × Nl) are the scores of
the predictor and response, P(Nc × Nl) and Q(4 × Nl)
are the loadings, K (15 × 15) is the regression matrix,
E(15 × Nc), F(15 × 4), and H(15 × Nl) are the error
matrices, and Nl is the number of PLS latent variables.
The loading, score, regressor, and error matrixes of the
PLS model are computed using the NIPALS algorithm
(Geladi and Kowalski, 1986). The predictions of the nom-
inal model are then corrected using the residuals obtained
from the RBF-PLS model (e.g. for the first moment of
the distribution MHybrid

1 (tend) = MFPE
1 (tend) + RM1).

To build the RBF-PLS model the data-sets were divided
into two parts for the training and the validation. The
performance of the empirical model is evaluated by the

predictability index (PI = 1 −
k∑

i=1

(Residualpredicted
i −

Residualreal
i )2/

k∑
i=1

(Residualreal
i )2) computed for the val-

idation data-sets. In the RBF-PLS model, Nc, σr, and Nl

are degrees of freedom. To obtain the best combination
of these parameters, firstly, it is assumed that Nc and
σr vary in the ranges of [3-10] and [0.1-2] respectively.
Then for each pair of Nc and σr the optimal number of
latent variables of the PLS model is obtained using Monte
Carlo cross-validation. To avoid over-fitting, the minimum
number of RBF components which gives PI > 0.95 is
selected. Nc = 6, σr = 1.7 and Nl = 6 were found to
provide very good performance with the average prediction
ability of 0.96 for this problem. As one can see in figure
2(a) there is an offset between the PSD predictions of
the nominal model and the virtual plant when simulating
both models using a nominal monomer flow rate input
trajectory. There is a 22% reduction in the number of
particles based on the considered coagulation in the virtual
plant. The significance of these differences depends mainly
on the application of the latex and the required preciseness
of the PSD. In this work, simulations are used to show
the capability of the control approach. The hybrid model
predicts the final PSD of the virtual plant with a very good
accuracy as it is illustrated in figure 2(b).
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Fig. 2. PSD predictions of the nominal and hybrid model
versus virtual plant.

3.3 MID-COURSE CORRECTION

The monomer input trajectory is discretized over the
whole emulsion polymerization batch horizon (here con-
sidered to be 15000 seconds) using a control vector
parametrization. The batch time is divided into 5 equal
periods of time for each of which the flow rate of the
monomer is kept constant. In this study, the mid-course
correction is considered to be computed when one fifth of
the whole batch time (i.e. 3000 seconds) has passed. This
means that the corrcetion is performed at the end of the
first step of the parameterized control vector.

Using the hybrid model presented in section 3.2, an opti-
mization problem is solved to compute the optimal input
trajectory from the mid-course up to the end of the batch:

Min
V̇M

J = w1

2∑

i=1

(MHybrid
i −MTarget

i )2/
2∑

i=1

(MTarget
i )2+

w2

(
NHybrid −NTarget

)2
/

(
NTarget

)2
+

w3

5∑

i=2

(V̇M,i − V̇ Nominal
M,i )2/

5∑

i=2

(V̇ Nominal
M,i )2,

(14)

subject to ẋ = f(x(t),u(t)), x(t = tmid) = xmid,

V̇
min

M 6 V̇M 6 V̇
max

M , [M ]Hybrid
tend

≤ [M ]max
tend

,
5∑

i=1

V̇
i

M∆ti <

V tot,fed
max , and Q̇ < Q̇max, where MHybrid

i are the ith
moments of the distribution at the end of the batch
predicted by hybrid model, MTarget

i is the ith moment
of the target PSD, NHybrid =

∫ rmax

rmin
nHybrid

end (r, tend)dr,
NTarget =

∫ rmax

rmin
nTarget(r, t)dr, V̇M,i is the parameter-

ized monomer flow rate, V̇ Nominal
M is the nominal input

trajectory, V tot,fed
max is the maximum amount of monomer

to be fed into the reactor, ẋ(t) is the model of emulsion
polymerization, xmid is the state of the system at the mid-
course, [M ]Hybrid

tend
is the monomer concentration at the end

of the batch predicted by the hybrid model, Q̇ is the heat
of the reaction, and w1 = 1, w2 = 0.5, and w3 = 0.25.

In general, there are always concerns regarding the residue
of the unreacted monomer at the end of the batch in
polymerization processes as the contamination of the final
product with the excess monomer is restricted. Further-
more, the postprocessing which has to be done for remov-
ing the unreacted monomer is costly and time consuming.
Therefore, the concentration of the monomer should be
reduced to an acceptable level (here considered to be
[M ]tend

≤ 0.2 mol/l ). Moreover, due to the economical
issues the amount of monomer consumed in the batch has
to lie within a certain range. Considering these arguments,
the monomer concentration at the end of the batch and the
total amount of the monomer fed to the reactor are taking
into account as end point constraints in the formulation
of the optimization problem. The heat removal capacity of
the jacket is another constraint. This is treated here as a
path constraint (Q̇max = 10 J/s). Due to the operational
limitations, a maximum allowable range is considered for
the parameterized control vector (V̇

max

M = 1 ml/s).
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Fig. 3. The result of the mid-course correction using the
hybrid model. Mid-course correction is done when one
fifth of the batch time has passed.

The above optimization problem is solved using the
NPSOL solver of TOMLAB and the corresponding re-
sults are presented in figure 3. As one can see in figure
3(b), by applying the obtained optimal inlet flow rate of
monomer from the mid-courese up to the end of the batch
(shown in figure 3(a)) to the virtual plant, the PSD of
the virtual plant converges to the target PSD. The same
behavior is observed when the optimal input trajectory is
implemented at the hybrid model which once more shows
the efficiency of the hybrid model in the prediction of the
PSD of the virtual plant. To illustrate the inadequacy of
the nominal model for the optimization purpose in the
presence of the structural plant-model mismatch, the opti-
mal trajectory of monomer is implemented at the nominal
model and as one can see in figure 3(b) there is a significant
mismatch between the prediction of the nominal model
and the target PSD. Moreover, the constraints of the
above optimization problem are satisfied as it is depicted in
figures 3(c) and 3(d). It can be concluded from this figure
that employing the proposed mid-course control strategy
enables one to produce a latex with a predefined target
PSD despite uncertain initial conditions (see figure 1) and
a structural mismatch between the nominal model and the
virtual plant.

4. CONCLUSIONS

A practical approach to perform a mid-course correction
under structural plant-model mismatch in a semi-batch
emulsion polymerization process to achieve a polymer with
a predefined target PSD was developed. In this method,
firstly a nominal parameterized monomer flow rate tra-
jectory is applied at the plant up to the mid-course of
the batch while the available measurements are used to
estimate the lumped states of the emulsion polymerization
model using an EKF. The estimated states together with
the measured PSD at the mid-course of the process are
used as the initial condition for an optimization which
is done to compute the trajectory of the monomer feed
from the mid-course up to the end of the process. In
this optimization, a hybrid model which comprises the

nominal model of the emulsion polymerization process and
an empirical component that maps the state of the system
at mid-course to the residual of the states at the end of
the batch, is used. It was shown that using this method
one can effectively control the PSD in a seeded emulsion
polymerization in the presence of uncertain initial condi-
tions and significant structural plant-model mismatch (e.g.
when unlike the nominal model coagulation occurs in the
virtual plant).
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