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Abstract: In this paper, we consider a closed loop subspace identification problem. Here the open loop 
processes are unstable. By using the subspace identification algorithm, the closed loop system is first 
identified. The plant dynamics are extracted from the identified closed loop system. Three unstable processes 
are simulated and identified by the MON4SID algorithm. 
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1. INTRODUCTION 

Subspace identification is used to identify the linear time 
invariant state space models from measured (input/output) data. 
It uses the concepts of systems theory and linear algebra. It will 
not encounter problems like convergence, slow convergence or 
numerical instability. Due to its several good properties, it has 
gained popularity in industrial applications. Subspace 
identification algorithms such as Numerical algorithms for 
Subspace State Space System Identification (N4SID), 
Multivariable Output Error State sPace (MOESP) (Verhaegen, 
1994)  and Canonical Variate Analysis (CVA) (Larimore, 
1990) are not iterative (Van Overschee and De Moor, 1996), so 
it is faster than the classical identification methods such as 
Prediction Error Methods (PEM). The main features of 
subspace identification methods are simple parameterization for 
Multiple Input Multiple Output (MIMO) systems and non-
iterative numerical solution. Closed loop identification plays a 
very important role when the open loop process is unstable. 
N4SID and MOESP are biased under closed loop identification. 
(Verhaegen, 1993) proposed a closed loop subspace 
identification method to overcome the above mentioned biased 
problems. Different kinds of closed loop identification methods 
are available and these are broadly categorized into three main 
types such as direct, indirect and joint input output 
identification method (Forssell & Ljung, 1999). An indirect 
method (Pouliquen, et. al.  2010) is developed to identify the 
dynamics of plant. In literature, only stable systems are being 
identified using MON4SID (Miranda & Garcia, 2009) 
algorithm, however, no paper has reported the identification of 
unstable systems using this algorithm. We illustrated the 
identification procedure by considering a case study of a first 
order bioreactor and some second order unstable systems. 

1.1 Open Loop Subspace Identification 
A linear time invariant dynamic system is described by the state 
space model in the innovation form 
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 Where m
ku ℜ∈ , l

ky ℜ∈ and n
kx ℜ∈ are denoted as input, 

output and state vectors respectively. The matrices A, B, C, D 
and K are system, input, output, direct feed through and the 
noise matrices with appropriate dimensions respectively. 

l
ke ℜ∈ denotes the zero-mean white innovation process. 

 
1.2 Problem Statement for Open Loop Identification 
 
Given s samples of the input sequence {u(0), …, u(s-1)} and 
output sequence {y(0), … , y(s-1)} 
Estimate the system order and the system matrices A, B, C, D 
and noise covariance matrices Q, R and S. 
By successive substitution of state equation in output equation 
and stacking the equations in matrix form gives the subspace 
matrix equation. The subspace matrix equation is given below 
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Where subscript ‘f’ stands for future and ‘p’ stands for past. i is 
a number of block rows. The above equations play a very 
important role in the development of subspace identification. 
Description of the different terms included in the above 
equation are given below 
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The output data can be similarly stacked to give matrices Yp, 
and Yf. Ep and Ef can be constructed in a similar way.  
The states are defined as 

( )1100 ... −== jp xxxXX                                      (7)                                                                                               

( )11 ... −++== jiiiif xxxXX                                 (8)                                                                                                        

The extended observability matrix 

nli

i

i

CA

CA

CA

C

×

−

ℜ∈























=Γ

1

2

...

                                                             (9)                                                                                                                                 

The lower triangular block-Toeplitz matrices d
iH and s

iH are 

given by 
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The reversed extended controllability matrices d
i∆ and s

i∆ are 

given by  

( )BABBABA iid
i ...21 −−=∆                            (12)                                                                                                 

( )KAKKAKA iis
i ...21 −−=∆                         (13)                                                                                                     

In subspace identification literature, the following short hand 
notation is often used   
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The following two projections plays vital role in subspace 
identification algorithms 
Orthogonal projection: The orthogonal projection (Van 
Overschee and De Moor, 1996) of the row space of A onto the 
row space of B is denoted by A/B and can be defined as  

BBBABBA TT †)(/ =                                                  (15)                                                                                                                      

Property: 0/ =⊥AA                                                         (16)                                                                                                                  

where ● †  denotes the Moore-Penrose pseudo inverse of the 
matrix ●.  
Oblique projection: The oblique projection (Van Overschee and 
De Moor, 1996) of the row space of A along the row space of B 
on the row space of C are defined as  
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Properties:  0/ =BA A  and CCC B =/                       (18)                                                                        

 
1.3 Closed Loop Identification 

State space form of the closed loop identification is given by 
the following difference equation: 
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Where, ‘c’ stands for controller. rk is the exogenous input, uk 
the input control, yk the plant, wk the process noise and vk the 
measurement noise. Ac, Bc, Cc and Dc are matrices with 
appropriate dimensions. 
 
1.4 Problem Statement for Closed Loop Identification 
 
Given (rk, uk and yk), a set input and output measurements. 
Identify the deterministic part of plant, that is, determine the 
order of the unknown system, the system matrices (A, B, C, and 
D) up to within a similarity transformation. 
 

2. SUBSPACE IDENTIFICATION METHOD 

Subspace identification algorithms always consist of two main 
steps. In the first step, the extended observability matrix and 
state sequences are retrieved from the weighted projection of 
the future outputs Yf into the orthogonal complement of future 
inputs Uf. Second step determines the state space model using 
either of the extended observability matrix or state sequence. 
Algorithms which use the extended observability matrix to 
obtain state space model are MOESP, IV-SID and basic-4SID. 
Algorithms which use state sequence to find the system 
matrices are N4SID and CVA.  
 
Inside MOESP family, there is the Past Output MOESP (PO-
MOESP) method, which solves the state space model by means 
of an approximation of the extended observability matrix Γi. 
MOESP is biased under closed loop condition, which requires 
special treatment whereas in MON4SID, there are no issues 
with biasness. To solve this problem, (Verhaegen, 1993) 
proposed a closed loop subspace identification method. Based 
on it, the plant and the controller models are estimated. But, 
here it is necessary to provide the order of the controller. 
Similarly in the  N4SID  case  (Van  Overschee; De Moor, 
1997) it is necessary to know a limited number of impulse  
response  samples  of  the  controller  and,  via  direct 
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identification,  the  plant  model  is  estimated. MON4SID does 
not require any information regarding the controller. 
 
2.1 MON4SID identification method 
 
In this section, MON4SID method is discussed. To solve 
equation (2), it is used the POMOESP method to calculate the 
extended observability matrix Γi and N4SID method is 
employed to calculate the system matrices A, B, C, D through 
the least squares method. Therefore, it is necessary to eliminate 
the last two terms in the right side of equation (1). That is done 
in two steps: first eliminating the term Hi

dUf in (1), performing 
an orthogonal projection of equation (2) into the row space of 
Uf
┴, which yields: 

⊥⊥⊥⊥ ++Γ= ff
s
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d
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And by the orthogonal property (16), equation (20) can be 
simplified to  

⊥⊥⊥ +Γ= ff
s
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Second, to eliminate the noises in equation (21), an 
instrumental variable Wp is defined. Multiplication of (21) by 
yields: 

pff
s
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As it is assumed that the noise is uncorrelated with past input 

and output past data, which means that 0/ =⊥
pff WUE . 

Therefore, equation (22) can be simplified to  
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In equation (23), fpff XWUX
∧

⊥ =/ is the estimate of the 

Kalman filter state. Equation (23) indicates that the column 
space of Γi can be calculated by the SVD decomposition of

pff WUY ⊥/ . 

Γi, given in (23), can be derived from a simple LQ factorization 
of a matrix constructed from the block-Hankel matrices Uf, Up 
and Yf, Yp in the form:  
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and the orthogonal projection in the left side of (23) can be 
computed by matrix L32 . The SVD of L32 can be given as: 
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The order of the system is equal to the number of non-zero 
singular values in S. The column space of U1 approximates that 
of Γi in a consistent way. That is: 

1Ui =Γ                                                                               (26)                                                                                                     

The system (1) can be written as: 
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In equation (27), suppose (ideally) that Xi+1 and Xi are given, 
then the system matrices (A, B, C, D) could be computed 
through the least squares method. Therefore, the problem now 
is to find the state sequences.  

pUfi WY
f

/=Θ is the oblique projection, which is achieved 

by performing an oblique projection of equation (2), along the 
row space of Uf onto the row space of Wp, that is: 
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The last two terms of equation (28) are zero, 0/ =pUf WU
f

 

by the property of oblique projection (18); 0/ =pUf WE
f

by 

the assumption that the noise is uncorrelated with input and 
output past data. Thus equation (28) can simplified as  

iipUf XWY
f

~

/ Γ=                                                            (29)                                                                                        

where pUfi WXX
f

/
~
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The oblique projection Θi given in (30) can be computed from 
(24) by:  
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An estimate of the state sequence X is given by: 

( ) pi WLLX 1
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Define the following matrices with j-1 columns as 

)]1()......1([1 −++=+ jixixX i                                  (33)        

)]2()......([ −+= jixixX i                                          (34)       

)]2()......([\ −+= jiuiuU ii                                         (35)                                      
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Thus, the system matrices can be estimated from equation (27).  
 
2.2 MON4SID algorithm  

1. Compute the matrices Uf, Up, and Yf, Yp and the LQ 
factorization given in (24). 

2. Compute the SVD of the matrix L32 from equation 
(24). 

3. Determine the system order by inspection of the 
singular values in S given in (25) 

4. Determine Γi from equation (26) and the state 
sequence X from (32), determine Xi+1 and Xi 
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5. Compute the matrices A, B, C and D from equation 
(27). 

3. SIMULATION STUDIES 

In this section, we provide simulation examples of some of 
unstable processes. Performance of MON4SID algorithm is 
compared with the identification algorithm PEM. The 
exogenous input is a Gaussian white noise sequence with mean 
zero and variance 1. The number of columns in the block 
Hankel matrices is 640. 1000 samples are collected and the 
number of block rows i = 20. 
 
Case study 1: Here, we consider a first order bio-reactor 
problem. An open-loop unstable plant is studied. For this 
simulation, the transfer functions of plant and controller are 
respectively given by 
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Estimates of the poles are shown in the (Fig. 1). Frequency 
response plots are shown in (Fig. 2). We can see that the 
MON4SID algorithm identifies the unstable bioreactor 
effectively. The validation data is performed by testing the 
identified system to impulse response which is presented in 
(Fig. 3).   

 
 

Fig. 1. Plot of the Eigen values of the estimates of ‘A’ 
(‘o’ denotes real and ‘*’ denotes estimated) 

 

 
Fig. 2. Bode plots of the plant (left) and closed loop system 

(right) 

 
 

Fig. 3. Impulse response of identified model 
 
 

Case study 2: We consider a second order plant with two real 
poles 1 and 0.333. The open-loop plant transfer function and 
controller transfer function are given by 
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The above system is simulated and generated output data. 
(Pseudo Random Binary Signal) PRBS is used as the 
exogenous input to excite the process. The results are shown in 
the following (Fig. 4, 5 and 6). Figure 4 shows the poles of true 
pant and the estimated one, where ‘o’ and ‘*’represent the poles 
of the real plant and estimated one respectively.  Here too, the 
proposed algorithm works well for identifying the second order 
unstable systems. The phase plot of both true and estimated 
plant shows the same trend (Fig. 5).  The deviation may be 
accounted for the presence of two unstable poles. Impulse 
response of the closed loop system is presented in (Fig. 6). 
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Fig. 4. Plot of the Eigen values of the estimates of ‘A’ 

(‘o’ denotes real and ‘*’ denotes estimated) 
 

 
Fig. 5. Bode plots of the closed loop system (left) and plant 

(right) 
 

 

Fig. 6. Impulse response of identified model 
 

Case study 3: We consider a second order plant with complex 
conjugate poles 0.3649 ± 1.4013i. Suppose plant and controller 
transfer functions are given by the following  

097.27298.0
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The above system is simulated and generated the measurement 
data. This data is used for the identification. We see from the 
(Fig. 7 and 8) that the identified results obtained from the 
MON4SID algorithm are quite good. In (Fig. 8), bode plots are 
shown. Magnitude plots of both real and identified plant are 
matching accurately but phase plots of estimated plant is 
deviated from the real one due to the presence of two unstable 
poles. And the resulted data is validated through the impulse 
response (Fig. 9).  
 

 
Fig. 7. Plot of the eigen values of the estimates of ‘A’ 

(‘o’ denotes real and ‘*’ denotes estimated) 
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Fig. 8. Bode plots of the closed loop system (left) and plant 

(right) 

 
 

Fig. 9. Impulse response of identified model 
 

4. CONCLUSION 
Unstable systems are simulated and identified by MON4SID 
algorithm. Three case studies are considered. The results are 
compared by means of Bode plot and estimated poles with the 
real pole of the true plant. The magnitude diagrams of both real 
and estimated plant are matching but the phase plots are not 
matching for the last two case studies. The phase plots of both 
the real and the estimated plants show same trend up to certain 
frequency. After that phase plot of estimated plant is deviating 
from the real one. This may be due to the presence of two 
unstable poles or the loss of numerical accuracy in the 
estimation.  
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