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Abstract: Output distribution control is required in many industrial processes mainly for the
purpose of improving product qualities. Different from the traditional mean and variance control
of stochastic processes, the probability density function (PDF) control provides a comprehensive
solution to deal with outputs with general distributions. Various models based on B-splines
have been developed to approximate the output PDF required for closed-loop control, among
them the rational square-root (RSR) B-spline model can guarantee the nonnegativeness and
the integration constraint of a PDF. In this paper, the relationship between the so-called actual
weights and pseudo weights of the RSR B-spline PDF model is investigated so as explore a
simplified modelling algorithm for the very complex nonlinear PDF modelling problem. Based
on the proposed modelling algorithm, a predictive PDF control strategy has been established
and applied to an exemplar system of closed-loop molecular weight distribution (MWD) control
in a polymerisation process. The merit of predictive control over conventional PDF control is
clearly demonstrated through the simulation study.

Keywords: Output probability density function (PDF), B-spline approximation, parameter
estimation, model predictive control, molecular weight distribution (MWD)

1. INTRODUCTION

Probability density function (PDF) control has various
applications in industrial processes, such as molecular
weight distribution (MWD) control and particle size dis-
tribution (PSD) control in polymerization processes, pulp
fibre length distribution control in paper industries, PSD
control in powder industries, crystallisation processes, etc.
Taking the MWD control as an example, MWD of a
polymer is one of the most important variables to be
controlled in industrial polymerization processes since it
directly affects many of the polymer’s end-use properties
such as thermal properties, stress − strain properties,
impact resistance, strength, and hardness (Crowley and
Choi, 1998; Takamatsu et al., 1988). One challenge in
MWD control is the lack of on-line measurement of the
distribution. Mathematical models of MWD developed on
reaction mechanisms are normally nonlinear and of high
dimensions. A number of methods have been developed to
control MWD (Crowley and Choi, 1997; Echevarria et al.,
1998; Clarke-Pingle and MacGregor, 1998; Wang et al.,
2011; Wu et al., 2012), but most of them are in an open-
loop control manner.

? This work was supported by the Fundamental Research Funds
for the Central Universities (No.JB2011017) and National Natural
Science Foundation of China (No.61004045)

B-spline models are often used to approximate the output
PDF of a dynamic system. The major advantage of a B-
spline PDF model is the decoupling of time and space in
formulation (Wang, 2000). There are different types of B-
spline based PDF models developed. The simplest one is
the linear B-spline PDF model

γ(y, u) =

n∑
i=1

ωi(u)Bi(y) (1)

where γ(y, u) is the output PDF defined in a bounded
region [a, b], y is an independent variable, u is the control
input. Bi(y)(i = 1 · · ·n) are the B-spline basis functions
defined in a specific range, ωi(u) is the weight associated
with Bi(y). n is the number of basis functions, increasing
which will improve approximation accuracy but cost the
computational efforts. Considering the example of MWD
modelling, y stands for the chain length, u is the manip-
ulated control input such as the ratio of monomer and
catalyst flows, γ(y, u) is the MWD to be controlled. When
the input, output data and PDF information are available,
the linear B-spline PDF model can be easily established
with a least-square (LS) estimation algorithm. Linear B-
spline models have been used in our earlier studies of
MWD modelling and closed-loop control system design
(Yue et al., 2004, 2006, 2008; Zhang and Yue, 2007).
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One numerical issue of a linear B-spline model in (1) is
that the approximated function could be less than zero
at certain points in its definition domain, which is not
acceptable for a PDF. An alternative square-root model is
developed to address this issue (Wang et al., 2001).√

γ(y, u) =

n∑
i=1

ωi(u)Bi(y) (2)

There is an integration constraint of
∫ b
a
γ(y, u)dy = 1,

with a and b being the upper and lower bounds of y. On
handling the integration constraint, the rational B-spline
model is proposed (Wang and Yue, 2003).√

γ (y, u) =

∑n
i=1 ωi(u)Bi (y)∑n
i=1

∫ b
a
Bi (y) dy

(3)

Combining (2) and (3) together, the rational square-
root (RSR) B-spline model is developed (Zhou et al.,
2005), which guarantees both the non-negativeness and
integration constraint of a PDF.√

γ (y, u) =

∑n
i=1 ωi(u)Bi (y)√∑n

i,j=1 ωiωj
∫ b
a
Bi (y)Bj (y) dy

(4)

In this paper, the RSR B-spline PDF modelling is fur-
ther investigated with the aim to simplify the estimation
of model parameters (B-spline weights and parameters
associated with the weights dynamics). In Section 2, a
new RSR B-spline model is proposed and the modelling
procedure is presented. Section 3 briefs the standard out-
put PDF control solution. In Section 4, a predictive PDF
controller is designed based on the RSR B-spline model.
Simulation study of an exemplar MWD control system is
carried out in Section 5 to discuss the modelling efficiency
and evaluate the predictive PDF control strategy.

2. RSR B-SPLINE PDF APPROXIMATION

2.1 Pseudo Weights and Actual Weights

Considering linear dynamics in weights vector, the discrete-
time RSR B-spline PDF model (4) can be expressed as
follows:

V (k + 1) = AV (k) +Bu(k) (5)√
γ(y, k) =

C(y)V (k)√
V (k)TEV (k)

(6)

where
C(y) = [B1(y), B2(y), · · · , Bn(y)] (7)

E =

∫ b

a

CT (y)C(y)dy (8)

A and B are matrices of proper dimensions. k is the
time instance. The n B-spline basis functions in C(y),
cannot all be zeros simultaneously, therefore matrix E
is invertible. Here V (k) = [ω1(k), ω2(k), · · · , ωn(k)]T is
called the pseudo weights vector in the RSR B-spline
model (5)-(6) since it is only a middle term in PDF
approximation and its value is not unique. The actual
weights vector is defined as (Zhou et al., 2005)

Vr(k) =
V (k)√

V (k)TEV (k)
. (9)

It is apparent that V Tr EVr = 1. Using the actual weights,
the PDF approximation in (6) can be rewritten as√

γ(y, k) = C(y)Vr(k) (10)

To establish a complete dynamic model in (5)-(6) using
input-output data and output PDF, one needs to calcu-
late V (k) to obtain the PDF approximation weights, and
estimate parameters in A and B to establish the weights
dynamics. It can be seen from (6) that the pseudo weights
vector is difficult to be determined since the model regard-
ing V (k) is nonlinear and also V (k) is not unique, however,
the actual weights, Vr(k), can be uniquely calculated from
the PDF function γ(y, k) as follows.

Left multiplying CT (y) to both sides of (10) leads to

CT (y)
√
γ(y, k) = CT (y)C(y)Vr(k) (11)

Take integration for y on both sides of (11) to get∫ b

a

CT (y)
√
γ(y, k)dy =

∫ b

a

CT (y)C(y)dyVr(k) = EVr(k)

(12)
As discussed earlier E is invertible, therefore the actual
weights vector can be calculated by

Vr(k) = E−1
∫ b

a

CT (y)
√
γ(y, k)dy (13)

2.2 Observer Estimation of Pseudo Weights

Since the pseudo weights, V , cannot be practically recov-
ered from the output PDF, it will be difficult to estab-
lish the parameterised RSR B-spline model in the form
of (5)-(6). However, if the model is known, i.e., A and
B are given, it is then possible to estimate V through
model-based observer design, and use the estimated pseudo
weights for controller development.

Assume matrix A is stable, construct the following nonlin-
ear observer to estimate V :

V̂ (k + 1) = AV̂ (k) +Bu(k) + Lε(k) (14)

where V̂ (k) = [ω̂1(k), ω̂2(k), · · · , ω̂n(k)]T stands for the
estimated state vector, L is the observer gain matrix, ε(k)
is the output residual defined as

ε(k) =

∫ b

a

(√
γ(y, k)−

√
γ̂(y, k)

)2
dy (15)

From (6), the square root of the estimated output PDF
can be written as√

γ̂(y, k) =
C(y)V̂ (k)√
V̂ (k)

T
EV̂ (k)

(16)

Therefore the residual function in (15) can be further
expressed as

ε(k) =

∫ b

a

(√
γ(y, k)−

√
γ̂(y, k)

)2
dy

= 2− 2

∫ b

a

√
γ(y, k)

√
γ̂(y, k)dy

= 2− 2
V (k)TEV̂ (k)√

V (k)TEV (k)V̂ (k)
T
EV̂ (k)

(17)

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

272



Consider a function for x and y

f(x, y) =
xTEy√

xTExyTEy

it is obviously that

‖f(x, y)‖=

∥∥∥∥∥ xTEy√
xTExyTEy

∥∥∥∥∥
≤ λmax(E) ‖x‖ ‖y‖
λmin(E) ‖x‖ ‖y‖

=
λmax(E)

λmin(E)

This means f(x, y) has the maximum and minimum value.
Fixing y, from the first-order derive of f(x, y) to x

∂f

∂x
=
EyxTEx− ExxTEy
xTEx

√
xTExyTEy

= 0

the extremum points are obtained at x = ±y. It can be
proved that when x = y, f(x, y) reaches the maximum and
when x = −y, f(x, y) reaches the minimum. Applying this
conclusion to (17), we have

0 ≤ ε ≤ 4.

Denoting Ṽ (k) = V (k)− V̂ (k), the error dynamics can be
described as

Ṽ (k + 1) = AṼ (k)− Lε(k) (18)

Theorem 1 Assume the system matrix A is stable, and
‖L‖ ≤ δ, where δ is a pre-specified small positive number,
then the 2-norm of the stable solution to (18) will not
exceed a pre-specified positive number.

Proof: Since A is stable, 0 ≤ ε ≤ 4, and ‖L‖ ≤ δ, from
the theory of ordinary differential equation, the solution of

(18) is bounded. Assume
∥∥∥Ṽ ∥∥∥ ≤ M(M > 0), there exists

a unique positive definite symmetrical matrix P such that

ATPA− P = −I (19)

Choose the following Lyapunov function

π(Ṽ (k)) = Ṽ (k)TPṼ (k) (20)

then

∆π = π(Ṽ (k + 1))− π(Ṽ (k))

=−
∥∥∥Ṽ ∥∥∥2 − 2Ṽ TATPLε+ (Lε)TPLε (21)

∆π ≤ −
∥∥∥Ṽ ∥∥∥2 + 2

∥∥∥Ṽ ∥∥∥ ‖A‖ ‖P‖ ‖L‖ ‖ε‖+ ‖L‖2 ‖ε‖2 ‖P‖

≤ −
∥∥∥Ṽ ∥∥∥2 + 2

∥∥∥Ṽ ∥∥∥ ‖P‖ ‖L‖ ‖ε‖+ ‖L‖2 ‖ε‖2 ‖P‖

Let L =
−M‖P‖+

√
M2‖P‖2+φ2‖P‖
4‖P‖ , in which ‖φ‖ ≤

‖P‖ (16δ2 + 8Mδ). It is clear that the stable value of∥∥∥Ṽ ∥∥∥ will not grow larger than
√
‖φ‖. This is because if∥∥∥Ṽ ∥∥∥ >√‖φ‖, ∆π < 0 holds and π(Ṽ ) will decrease.

From Theorem 1 it is known that when A is stable, the
boundedness of Ṽ is guaranteed by the boundedness of L.
This indicates the feasibility of using an estimated V̂ to
replace the pseudo weights for controller design.

Although observer estimation of the pseudo weights is
feasible if the model is given, it is not our intention

to develop controller based on the estimated V . This is
mainly because it is not assumed a model is known, on
the contrary, the model needs to be establsihed using
measurement data. Instead of using the pseudo weights,
we’ll make use of the convenient calculation of the actual
weights, Vr, to establish an alternative RSR B-spline
model.

2.3 New RSR B-spline Model and Modelling Algorithm

The following RSR B-spline model is proposed

Vr(k + 1) = ĀVr(k) + B̄u(k) (22)√
γ(y, k) =

C(y)Vr(k)√
Vr(k)TEVr(k)

(23)

Ā and B̄ are of the same dimensions as A and B in
(5). It is argued that for the same input, this model is
regarded as ’practically equivalent’ to model (5)-(6), i.e.,
in the transient process, the output error between these
two models are within an acceptable small range, and
in the steady state, their outputs are the same. The use
of ’practically equivalent’ or ’characteristic’ model in real
engineering control systems was discussed in (Wu et al.,
2007). In the rest of the paper, the new RSR B-spline
model in (22)-(23) will be used for parameter estimation
and controller design.

Denote

f(y, k) =
√
Vr(k)TEVr(k)γ(y, k), (24)

Taking into account of (22)-(23), we have

f(y, k) = = C(y)Vr(k)

=C(y)(I − z−1Ā)−1B̄u(k − 1) (25)

Expanding (25) brings the parameterised model

f(y, k) = a1f(y, k − 1) + · · ·+ anf(y, k − n)

+C(y)D0u(k − 1) + C(y)D1u(k − 2) + · · ·
+C(y)Dn−1u(k − n) (26)

where a1, a2, ..., an, D0, D1, ..., Dn−1 are parameters to be
estimated. Note each Di(i = 1, · · · , n) is an n-dimensional
vector. Denoting the j-th component of Di as dij , the
parameter vector for (26) can be written as

θ1 = [a1, · · · , an, d01, · · · , d0n, d11, · · · ,
d1n, · · · , d(n−1)1, · · · , d(n−1)n]T

Let

Φ1(y, k) = [f(y, k − 1), · · · , f(y, k − n),

u(k − 1)B1(y), · · · , u(k − 1)Bn(y), · · · ,
u(k − n)B1(y), · · · , u(k − n)Bn(y)]T

then (26) can be rewritten into a compact form

f(y, k) = θT1 Φ1(y, k) (27)

A recursive least-square (RLS) algorithm can be used to
estimate θ1 in (27):

θ̂1(i+ 1) = θ̂1(i) +
P (i− 1)Φ1(yi, k)ε(i)

1 + ΦT1 (yi, k)P (i− 1)Φ1(yi, k)
(28)
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ε(i) = fk(yi)− θT1 (i)Φ1(yi, k) (29)

P (i) =

(
I − P (i− 1)Φ1(yi, k)ΦT1 (yi, k)

1 + ΦT1 (yi, k)P (i− 1)Φ1(yi, k)

)
P (i− 1)

(30)

The procedures for establishing the RSR B-spline PDF
model can be summarized as follows.

Step 1: Collect the input and output data pair (u(k), yi,k)
and output PDF γ(yi, k) at sampling time k.
Step 2: Calculate the actual weights Vr(k) by (13).
Step 3: Calculate f(yi, k) according to its definition in (24).
Step 4: Choose data set Y = {yi,k}, i = 1, 2, · · · ,M in the
definition interval [a, b] of y.
Step 5: Identify the parameter vector θ with RLS algo-
rithm in (28)-(30).
Step 6: Increase k to k + 1 and repeat steps 1-5 until the
end of the recursive calculation.

3. STANDARD PDF CONTROLLER DESIGN

A general PDF control target is to drive the output PDF to
the desired distribution. Using the following performance
function

J(u(k)) =

∫ b

a

(√
γ(y, k)−

√
g(y)

)2
dy +Ru(k)2 (31)

where g(y) is the target distribution, R is a weighting
factor for control input, the optimal control input u is
obtained by taking dJ

du = 0 to give

u(k) =

∫ b
a
C(y)D0g(y)dy∫ b

a
(C(y)D0)

2
dy +R

(32)

where

g(y) =−
n∑
i=2

aif(y, k − i+ 1)− C(y)Di−1u(k − i+ 1)

+
√
g(y)− a1f(y, k) (33)

4. PREDICTIVE PDF CONTROL STRATEGY

4.1 The Input-output Model of the Output PDF

Equation (26) can be written as

f(y, k) =

n∑
i=1

aif(y, k− i) +

n−1∑
j=0

C(y)Dju(k − j − 1) (34)

The second term in (34) can be further expanded as

C(y)Dju(k − j − 1) =

n∑
i=1

djiu(k − j − 1)Ci(y) (35)

Introducing the back-shift operator z−1, denote

α(z−1) = 1−
n∑
i=1

aiz
−i , β(z−1, y) =

n−1∑
j=0

C(y)Djz
−j (36)

equation (34) can be represented as

α(z−1)f(y, k) = β(z−1, y)u(k − 1) (37)

Equation (37) is the input-output model of the output
PDF. All the coefficients can be estimated by LS identifi-
cation when the pseudo weights and the input-output data
pairs are available.

4.2 The Predictive Model of the Output PDF

The following Diophantine equation is introduced to con-
struct the predictive PDF model

1 = Gq(z
−1)α(z−1) +Hq(z

−1)z−q (38)

where q is the step for model prediction.

Gq(z
−1) = 1 +

q−1∑
i=1

gq,iz
−i , Hq(z

−1) = 1 +

n−1∑
j=0

hq,jz
−j

(39)
Multiplying Gq(z

−1) to both sides of equation (37) and
taking equation (38) into account, we have

f(y, k + q) =Hq(z
−1)f(y, k)

+Gq(z
−1)β(z−1, y)u(k + q − 1) (40)

Write

Gq(z
−1)β(z−1, y) =

n−1+q−1∑
i=0

sq,i(y)z−i (41)

and take q = 1, 2, · · · , p (p is the predictive control step),
the multi-step predictive PDF model can be established
from (40) in the following matrix form

Π(y, k, p) = Ĥf(y, k) + Ω(y)U(k) + Φ(y)η(k) (42)

where

Π(y, k, p) =


f(y, k + 1)
f(y, k + 2)
...
f(y, k + p)

 , Ĥ =


H1(z−1)
H2(z−1)
...
Hp(z

−1)



Ω(y) =

 s1,0(y) 0 0 · · · 0
s2,1(y) s2,0(y) 0 · · · 0
· · · · · · · · · · · · · · ·

sp,p−1(y) sp,p−2(y) · · · sp,1(y) sp,0(y)



Φ(y) =


s1,1(y) s1,2(y) · · · s1,n−1(y)
s2,2(y) s2,3(y) · · · s2,n−1+1(y)

...
... · · ·

...
sp,p(y) sp,p+1(y) · · · sp,n−1+p−1(y)



U(k) =


u(k)
u(k + 1)
...
u(k + p− 1)

 , η(k) =


u(k − 1)
u(k − 2)
...
u(k − n+ 1)


Equation (42) gives the predictive model of the output
PDF. The coefficients in the Diophantine equation can be
obtained by recursive development.

4.3 The Predictive Controller for Output PDF

The following performance index is formulated for the
purpose of predictive PDF control

J1 =

∫ b

a

[Π(y, k, p)− Γ(y)]T [Π(y, k, p)− Γ(y)]dy

+U(k)TQU(k) (43)
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Fig. 2. The created data for PDF modelling

where Γ = [
√
g(y), · · · ,

√
g(y)]T , Q is the weighting ma-

trix for control input. Taking (42) into (43) and denoting

ξ(y) = Ĥf(y, k) + Φ(y)η(k) (44)

as the known term at sampling time k, the optimisation
solution to (43) is

U(k) =−

(∫ b

a

ΩT (y)Ω(y)dy +Q

)−1

·

(∫ b

a

ΩT (y)(ξ(y)− Γ(y))dy

)
(45)

Equation (45) gives the p-step predictive controller.

5. SIMULATION STUDY

The above output PDF modelling and controller design
algorithm are integrated and applied to the simulation
study of the exemplar styrene polymerization process.

Fig. 1 illustrates a sketch of a lab-scaled polymerization
process. The reaction takes place in a continuous stirring
tank reactor (CSTR). The input flow F to the tank is
the sum flow rate of the monomer (FM ) and the initiator
(FI). The monomer and the initiator is fed into the reactor
with a ratio of C = FM

FI+FM
, which is used as the control

input. The output is the MWD of the produced polymer.
In the simulation, the sum flow rate F is kept constant,
only the ratio C between the monomer and the initiator
is adjusted. The development details of the first-principle
model and the MWD formulation can be found in (Yue
et al., 2004), from which the input-output data pairs and
the MWD data used for PDF modelling in this simulation
are produced.
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Fig. 3. MWD evolvement from the developed model
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Fig. 4. The conventional PDF control input
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Fig. 5. The initial, final and target MWD with conven-
tional control

The constraint for the control input is set to be u = C ∈
[0.3, 0.7]; the chain length of the polymer, y, changes from
1 to 2000. The number of the B-spline basis functions
used for PDF modelling is 10; the shape of each B-spline
function is a parabolic curve. Fig. 2 shows the created
data used for establishing the RSR B-spline PDF model.
The RLS algorithm is adopted to identify the model
parameters. Fig. 3 illustrates the modelling result. There’s
a small modelling error when the estimation is convergent.
This is mainly due to the low number of B-spline functions
used in PDF approximation, which is meant to avoid high
computational load.

We first applied conventional output PDF control to this
system. The target distribution is set corresponding to
C = 0.65. Fig. 4 is the control input time profile. It can be
seen that the control input is converged, but not exactly
to the target control input level for the target MWD. This
could be partly due to the modelling errors. Fig. 5 shows
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Fig. 6. The predictive PDF control input
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Fig. 7. The initial, final and target MWD under predictive
control

the initial, final output MWDs and the target distribution,
in which the final MWD gets close to the expected MWD
but with a clear steady-state error.

We then applied the predictive PDF control to the same
model. The simulation results are demonstrated in Fig. 6-
7. It can be seen from Fig. 6 that the control input
converges to the expected input level of C = 0.65. Fig. 7
illustrates that the final output MWD reaches the target
distribution (two curves overlap with each other). Compar-
ing this result with that of the conventional PDF control,
a clear improvement can be seen in the predictive control
strategy which eliminates tracking error in output MWD
even though there is a small modelling error.

6. CONCLUSION

In this paper, an alternative RSR B-spline model is pro-
posed for output PDF modelling, in which the actual
weights are used instead of the pseudo weights. This largely
simplifies the modelling procedure for the parameter es-
timation of the RSR B-spline model. Based on the new
modelling of output PDF, the conventional PDF controller
and the predictive PDF controller are employed to drive
the output PDF getting close to the target PDF. The
integrated modelling and control algorithm is applied to
a simulation study of an exemplar styrene polymerization
process for the purpose of closed-loop MWD control. The
simulation results verify the effectiveness of the proposed
algorithm and shows the strength of predictive PDF con-
trol strategy.
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