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Abstract: Physiologically based pharmacokinetics(PBPK) model can predict absorption,
degradation, execration and other metabolism in drug delivery system. Thus it can be
useful for regulating dose and estimating drug concentration at a particular time during the
clinical demonstration. PBPK model is expressed as a set of differential equation with various
parameters. Bio-chip experimental data are often noisy and sparse. This makes it difficult to
estimate parameters with conventional least squares approaches. The resulting parameters often
have a large confidence region. This work presents a Bayesian inference algorithm with an
objective function suitable for PBPK model. A Markove Chain Monte Carlo(MCMC) method
is employed to estimate the posterior distribution of the parameters. We illustrate the approach
with a Tegafur delivery system.
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1. INTRODUCTION

Developing a new drug takes an enormous amount time,
money, and effort, mainly because of bottlenecks in the
drug discovery process and clinical demonstration. Math-
ematical models describing drug delivery mechanism in
terms of drug concentrations in each organ over the time
course can be of significant help in reducing costs and risks.
Pharmacokinetics is the study of the course of absorp-
tion, distribution, metabolism, and elimination of some
substance in a living body and is especially important
in the development of drugs(Lindsey et al. (2000)). Not
only can we use it for prediction of dynamics of drug
delivery; we can also apply it to dose regulation. For these
reasons, during development of new drugs, data are col-
lected to construct physiologically based pharmacokinetics
(PBPK) models during animal and human trials (Phase
I-III) (Gehring et al. (1979)). Experiments for collecting
dynamic bio-chip data are expensive and often have poor
repeatability. Estimating parameters of a PBPK model
with such data set is further complicated by the concentra-
tion profiles showing a mixture pattern of declining expo-
nential functions, with the amplitudes and decay times of
the different components corresponding to functions of the
model parameters (Gelman et al. (1996)). In addition, each
individual may have different parameter values depend-
ing on their characteristic properties of body. This study
presents a Bayesian inference scheme for robust parameter
estimation of PBPK model to address the difficulties. In
addition, we apply this scheme to Tegafur delivery system.
The Bayesian inference scheme is summarized below.

1 Corresponding author: Jong Min Lee (e-mail: jongmin@snu.ac.kr)

Fig. 1. We construct PBPK model for target system and
derive the objective function from Bayes’ rule to esti-
mate parameters which maximize the objective func-
tion. With this estimation result, we employ MCMC
method to estimate the porsterior distribution.

2. PHYSIOLOGICALLY BASED
PHARMACOKINETICS MODEL

Physiologically based pharmacokinetics(PBPK) model is
the mathematical method to describe concentration of
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medicine at each organ. The medicine is dissolved into ves-
sel and transported by blood circulation. At some organs
which can perform degradation or clearance, the medicine
is transformed into other substance or is excreted from
the body. These several metabolisms in each organ can
be described as mass balance equations, overall change of
medicine concentration in the form of a set of differential
equations. The basic mass balance equation of pharma-
cokinetics model is following(Sung et al. (2009)).

V · dC
dt

= Q · (Cin −
C

P
)−Re (1)

where C is concentration of medicine, Q is the volumetric
flow rate of blood in each organ, Cin is the inlet concentra-
tion of medicine, P is the tissue/blood partition coefficient
of the organ, and Re is the metabolism rate.

If the drug is injected into a target place, initial concentra-
tion should be equal to the dose of the drug. However, in
the case of oral administration, The drug dissolves slowly
in the internal organ. For drug dissolution model, a simple
first order kinetics, referred to as Noyes-Whitney equation,
can be used(Costa and Lobo (2001)).

Fig. 2. First order drug dissolution model for drug delivery
system. Following the diffusion direction, there exist
diffusion layer and bulk solution where concentration
of drug is uniformly distributed.

dW

dt
=
D ·A · (Cs − Cb)

L
(2)

Equation (2) is the first order model for drug dissolution
where dW

dt is the dissolution rate, Cs is the concentration
of the drug in the diffusion layer, Cb is the concentration
of the drug in bulk solution, D is the diffusion coefficient,
and L is the diffusion layer thickness.

With these two kinds of model equations, we can set up
a model for drug delivery system described as the set of
differential equations.

3. BAYESIAN INFERENCE

After setting up a PBPK model, we need to estimate un-
known parameters with experimental data. However, phar-
maceutical experimental data are difficult to obtain and
different resulting parameters can be obtained for each test
subject. Therefore, a robust parameter estimation tech-
nique suitable for a small data set is required. Although the

least squares and maximum likelihood estimation method
are widely used for parameter estimation, these are not
appropriate for PBPK model. Least squares methods only
minimize about summation of squared errors. When the
number of data is small, it is sensitive to noisy data or
outliers. Maximum likelihood estimation may show poor
accuracy when the data set is small since it is effective
when the data size tends to go infinity(Jang and Gopaluni
(2011)). In order to address these difficulties, we propose
a Bayesian inference scheme for parameter estimation of
PBPK model.

The Bayes’ rule is expressed in the following equation.

P (θ|Y ) =
P (θ) · P (Y |θ)∫
P (θ) · P (Y |θ)dθ

(3)

where θ is the parameter vector to be estimated, Y is
the observed data. P (x|Y ) is the ‘posterior distribution’
and P (θ) is the ‘prior distribution’ which describes the
information of prior knowledge of parameters. P (Y |θ) is
‘likelihood’. The denominator of equation is a normalizing
factor. Therefore, we can describe that ‘posterior distribu-
tion’ is proportional to the product of ‘prior distribution’
and ‘likelihood’ (Bonate (2006)).

Posterior ∝ Prior · Likelihood (4)

To estimated unknown parameters, we use a ‘maximum
a posteriori probability(MAP)’, which maximizes the pos-
terior probability.

If we have information about a reliable value of each
parameter, we can assume that prior distribution follows
a Gaussian distribution. Without such prior information,
one can also assume that prior distribution follow a uni-
form distribution between upper and lower limits of pa-
rameter.

Prior distribution =

n∏
i=1

1

(θmax,i − θmin,i)
(5)

where θmin is the set of lower limit of each parameter and
θmax is the set of upper limit of each parameter.

If the error between actual concentration and predicted
one is assumed to follow the Gaussian distribution, the
likelihood term is given by

Likelihood =

m∏
i=1

1√
2 · π · σ2

· exp{− (Yi − Y ′i)2

2 · σ2
} (6)

=
1

(2 · π · σ2)
m
2
· exp{−

m∑
i=1

(Yi − Y ′i)2}
2 · σ2

(7)

where σ is the standard deviation of residuals, and m is the
number of experimental data. Yi−Y ′i is residual between
observed and predicted values, respectively. The objective
function is the product of prior distribution and likelihood.
To simplify this objective function, we take negative log-
arithm. Consequently, the final form of objective function
as follows.
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LnP =
∑n
i=1 ln (θmax,i − θmin,i)

+m
2 · ln (2 · π · σ2) + 1

2·σ2 ·
∑m
i=1 (Yi − Y ′i)2

(8)

Our goal is to find the set of parameters that maximize
the posterior distribution. Since we take minus logarithm
for the objective function, we need to find the set of pa-
rameters that minimize the objective function value. Since
most of the PBPK model do not have analytic solution
and have many parameters to estimate, there can be a
large number of optima. To find global minimum point,
a ’Particle Swarm Optimization’(PSO), scheme(Schwaab
et al. (2008)), is employed. The proposed approach for
estimating MAP parameter is summarized as follows:

(1) Determine the number of particles, pi,j , where i is the
number of iterations and j is the particle index.

(2) Set up the initial position and velocity of pi,j ran-
domly.

(3) Move pi,j with its own velocity and compute objective
function value at each position.

(4) Find individual minimum point of each particle,
pind,i,j .

(5) Find global minimum point, pglo,i, which is the min-
imum point of individual minimum points.

(6) If the objective function value at global minimum
point is greater than the previous global minimum
point, let pglo,i = pglo,i−1.

(7) Set up a new initial position and velocity considering
the individual minimum and global minimum points.

(8) Return to (3) and repeat until no further improve-
ment is achieved

4. MARKOV CHAIN MONTE CARLO METHOD

The result of Bayesian inference is the posterior dis-
tribution. Since each patient can have different kinetic
parameters of enzyme, It is important to know about the
posterior distribution of model parameters. The posterior
distribution is useful for setting up the optimal dose of
drug for general case to prevent either side effect of over-
dose or under-dose. However, since the product of prior
distribution and likelihood is too complex to calculate
due to the integral term of equation (3) numerically, it is
difficult to know about exact numerical value of posterior
distribution. For this reason, we employ a Markov Chain
Monte Carlo(MCMC) method to estimate the posterior
distribution of the resulting estimate. Suppose that we
can construct a Morkov chain with state space which has
a equilibrium distribution. If we run the chain for a long
time, simulated values of the chain can be used as a basis
for summarizing features of the probability distribution of
interest (Smith and Roberts (1993)).

There are various algorithms for MCMC method. This
study uses the Metropolis-Hastings algorithm. We suppose
the proposal probability density function(p.d.f) is sym-
metric and closed form. From this proposal p.d.f, we ob-
tain samples and run the algorithm (Chib and Greenberg
(1995)). The Metropolis-Hastings algorithm is summarized
below.

(1) Draw a new proposal state, x
′
, from the proposal

p.d.f.

(2) Calculate α = min{1, P (x′|D)
P (xt|D) ·

Q(xt|x′)
Q(x′|xt)

} where xt is

the previous state, Q is the proposal p.d.f, and P is
the posterior distribution.

(3) When α ≥ 1, then xt+1 = x′.
(4) When α ≤ 1, then we choose xt+1 = x′ with the

probability of α or xt+1 = xt with the probability of
1− α.

(5) Return to (1) and repeat until the distribution is
converged.

Since P (x′|D)
P (xt|D) can be calculated only for the proportion

of the prior distribution and likelihood, we can calcu-
late numerically posterior distribution without calculating
integral term of posterior distribution with Metropolis-
Hastings algorithms. From this posterior distribution, we
can predict valid range of each parameter of PBPK model.

5. CASE STUDY: TEGAFUR DRUG DELIVERY
SYSTEM

Tegafur is widely used in the treatment of a range of can-
cers, especially of colorectal cancer (Longley and Johnston
(2007)). Tegafur is the oral administration drug and trans-
form to 5-fluorouracil by CYP450 enzyme at liver(Sung
et al. (2009)), thereby it can perform pharmacological
action.

5.1 The PBPK modeling for Tegafur delivery system

Fig. 3. Tegafur is orally administrated for patients and
absorbed into lumen. At liver, Tegafur is transformed
to 5-fluorouracil by CYP450 and also 5-fluorouracil
degraded by DPD. At blood, both of Tegafur and
5-fluorouracil cleared out from blood. At tumor, the
same metabolism is working with that of the liver.

To set up the PBPK model for Tegafur drug delivery
system, human body is split into each organ part. The
most important parts of the body are liver and tumor
where transformation from Tegafur to 5-fluorouracil is
occurred. In addition, oral administrated Tegafur dissolves
inside of the body and is absorbed at lumen, gut. Drug
is delivered by blood and also cleared out at blood.
Therefore, The PBPK model can be constructed as in
Figure 3. Transformation and degradation are described

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

639



Table 1. Parameters to estimate

Parameter Description

Kml,T (nmol/min/g tissue) Vmax for CYP450 enzyme in liver
Vml,T (nmol/ml) Michaelis-Menten constant for CYP450 enzyme in liver

Kmt,T (nmol/min/gtissue) Vmax for CYP450 enzyme in tumor
Vmt,T (nmol/ml) Michaelis Menten-constant for CYP450 enzyme in tumor

Kml,FU (nmol/min/gtissue) Vmax for DPD enzyme in liver
Vml,FU (nmol/ml) Michaelis-Menten constant for DPD enzyme in liver

Kmt,FU (nmol/min/gtissue) Vmax for DPD enzyme in liver
Vmt,FU (nmol/ml) Michaelis Menten-constant for DPD enzyme in tumor

kabs(min−1) Absorption coefficient of Tegafur
k(min−1) Dissolution coefficient of Tegafur

CLT (ml/min) Clearance rate of Tegafur from plasma
CLFU (ml/min) Clearance rate of 5-flourouracil from plasma

Table 2. Organ volume and blood volumetric flowrate)

Organ Organ volume(V , ml) Blood flow rate(Q, ml/min)

Blood(Vb, Qb) 13.2 76.45
Gut(Vg , Qg) 7.92 17.1
Liver(Vl, Ql) 8.8 19

Tumor(Vt, Qt) 1.0 0.25
Well perfused organs(Vw, Qw) 8.5 38.9
Poorly perfused organs(Vp, Qp) 165 18.3

with Michaelis-Menten equation. With Eqs. (1) and (2)
the Tegafur delivery system is described as 12 differential
equations at each organ.

The notations and determined parameter values are pre-
sented in Tables 1, 2, and 3.

Table 3. Tissue/blood partition coefficient

Organ Tegafur(T) 5-fluorouacil(FU)

Blood(Pb) 0.808 0.794
Gut(Pg) 0.768 0.759
Liver(Pl) 0.895 0.5

Tumor(Pt) 0.336 0.169
Well perfused organs(Pw) 0.834 0.826

Poorly perfused organs(Pp) 0.8 0.795

5.2 The result of Bayesian inference

We used a bio-chip set up an experimental environment
similar to the internal body and obtain dynamic drug
concentration data. The bio-chip consists of micro organ
cells connected by blood vessel (order of micrometers)
which copy the real organ.

With PBPK model for Tegafur drug delivery system
and experimental data from the bio-chip, we estimate
12 unknown parameters given in Table 1. The bio-chip
consists of the organ cells and blood vessel of a rat, and the
concentration of Tegafur and 5-fluorouracil at 0.5, 1, 2, 4
hours were measured from gut, liver, tumor cell and blood.
The initial Tegafur dose was 15 mg/kg. Since we don’t
have any prior knowledge of these parameters, uniform
distributions were used as the priori distributions, with
32 data points. The estimation result and concentration
profiles at each organ are given in Table 4 and Figures
4-11.

5.3 The result of MCMC simulation

To figure out the posterior distribution for the estima-
tion result of Bayesian inference, we conducted MCMC

Table 4. The estimation result of undetermined
parameters

Parameter Estimated value

Kml,T 2.561×104 nmol/min/g tissue
Vml,T 3.653×103 nmol/ml
Kmt,T 2.856×104 nmol/min/gtissue
Vmt,T 4.088×104 nmol/ml
Kml,FU 6.319×10 nmol/min/gtissue
Vml,FU 9.462×103 nmol/ml
Kmt,FU 4.687 nmol/min/gtissue
Vmt,FU 2.279×10 nmol/ml
kabs 6.768×10 min−1

k 12.8 min−1

CLT 0.629 ml/min
CLFU 2.203×10 ml/min

simulation with Metropolis-Hastings algorithm. Iteration
of MCMC simulation is 100,000 and , latter 10,000 runs
were accepted as the converged posterior distribution. The
joint distributions of every two parameters which is very
complex distribution are described at figure 12.

6. CONCLUSION

In this study, a Bayesian parameter estimation method
for PBPK model by finding maximum point of the objec-
tive function is introduced. Despite the large number of
unknown parameters, the estimation result is well fitted
with the experimental data. Furthermore, it can be helpful
for regulating dose for different groups of patients since the
estimation result is described as a probability distribution
form.
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Fig. 4. The Concentration of Tegafur at gut.
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Fig. 5. The Concentration of Tegafur at liver.
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Fig. 6. The Concentration of Tegafur at tumor.
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Fig. 7. The Concentration of Tegafur at blood.
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Fig. 8. The Concentration of 5-fluorouracil at gut.
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Fig. 9. The Concentration of 5-fluorouracil at liver.
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Fig. 10. The Concentration of 5-fluorouracil at tumor.
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Fig. 11. The Concentration of 5-fluorouracil at blood.
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Fig. 12. The joint distribution of the posterior distribution.
The probability is getting decrease in order of yellow,
red, black and white cite.
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