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Abstract: Anaerobic digestion with biogas production has both economic and environmental benefits. 

25% of all bioenergy in the future could potentially be sourced from biogas. Although anaerobic 

digesters have seen wide applicability, they typically perform below their optimum performance as a 

consequence of the complexity of the underlying process. This work involves the development of a 

generic advanced process control system to optimize the performance of anaerobic digesters. There is a 

requirement for a configurable monitoring and optimization system with associated sensors to optimize 

the production of biogas, combined with a degree of flexibility for quality and content of the digestate.  
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1. INTRODUCTION 

In recent years, waste has been recognized as a significantly 

underutilized resource and hence the emphasis has now 

shifted from disposal-based solutions, such as landfill, to the 

process-based solutions of recovery and recycling. There is a 

new sense of direction and an increasing focus on utilizing 

organic waste for the generation of energy. One of the leading 

technologies to support this drive towards the exploitation of 

waste is that of anaerobic digestion (AD).  The techniques 

behind AD have existed for over a century [1]. However, the 

dynamic nature, non-linear behaviour and lack of expert 

knowledge of the whole process, has resulted in AD processes 

performing less than optimally with only limited success in 

terms of the application of control strategies.  

The primary reasons include limited online measurements, 

system uncertainties, constraints on manipulated and state 

variables, highly non-linear behaviour and load disturbances 

[2]. For the implementation of an efficient control system 

there is a strong requirement for increased robust 

instrumentation. For the implementation of an efficient 

control system there is a strong requirement for increased 

robust instrumentation. Steyer and co-workers [3] summarised 

the advantages and disadvantages of various control schemes 

applied on AD processes. This included limitations of 

traditional classical control and advanced controls to 

effectively control the AD process which are subject to large 

disturbances and large set-point changes. 

In 2009 Newcastle University, Perceptive Engineering Ltd, 

Northumbrian Water, Yorkshire Water and United Utilities 

formed a consortium with the aim of improving the control of 

AD systems through the development and application of an 

advanced controller such as model predictive control. 

Following the benchmarking of four industrial AD systems 

from the consortium, it was evident that the main obstacle to 

the successful application of advanced control regimes is a 

lack of instrumentation and monitoring. This study looks into 

improving the monitoring of AD systems with the goal of 

providing better control of the process.  

Traditionally, the objective of AD in wastewater treatment 

plants (WWTP) has been that of sludge stabilization and 

odour reduction. Biogas production, solids destruction and 

pathogen reduction are now key areas of interest with biogas 

being the main product. AD with biogas production has both 

economic and environmental benefits, with 25% of all future 

bioenergy production potentially being sourced from biogas 

and thus having a significant role in contributing to the EU 

target of increasing the amount of energy derived from 

renewable energy sources to at least 20% by 2020 [4]. 

Several reviews have concluded that in order to achieve 

optimum performance, advanced control systems are required. 

Advanced control strategies can offer an opportunity for 

optimisation of processes such as anaerobic digestion that 

operate under strict regulatory constraints. The complex 

nature of the process dynamics provides sufficient motivation 

for the use of a model based control strategy. With the use of 

mathematical simulation models the application of model 

based control can be investigated for the anaerobic digestion 

process. 

2. INVENTORY SIMULATION 

The benchmark study of the four industrial AD systems 

revealed significant findings with the top three being (1) 

Inventory and scheduling have an impact on both downstream 

and upstream processes and form the main bottleneck in the 

optimisation of the process, (2) There is a significant lack of 

online instrumentation and (3) There is limited monitoring of 

the processes in general, resulting in lack of understanding of 

the process. 

Thus the key bottleneck for optimising industrial AD 

processes lies within sludge inventory levels at each site. 

Inventory and scheduling bottlenecks are the main issues for 

all the benchmark sites. It is understood at this stage that 
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inventory and scheduling form the initial optimisation 

problem. This needs to be solved or their impacts reduced to 

enable optimisation of digestate quality, increase biogas yield 

and energy production, which form the next level with respect 

to optimising ADs. Constant feed is essential for the stability 

of the process as large changes in feed affects the process 

drastically. Therefore, large changes in inventory results in 

large fluctuations in feed rate causing instability in the 

process. Inventory and, therefore, feed rate variations acts as 

the main disturbance in the system. It is therefore critical to 

feed the digester with constant feed or to limit high changes to 

the system. 

To overcome this problem a simulation was designed to 

evaluate the capability of a model predictive controller to 

control the inventory levels and reduce their disturbance on 

various downstream processes. Only by removing this 

bottleneck can the true capability of the advanced controller 

on optimising the system be achieved. A simulation model 

depicting the nature of the industrial processes and the effects 

of inventory on operating the process was built.  A study was 

then conducted into testing the capability of model predictive 

control on removing or reducing the hindrance of inventory 

on the process. 

Simulations give an alternative way of performing traditional 

experimental or theoretical research. The complex nature of 

the AD system provides difficulty for modelling the process 

and, consequently, there are several causes of inconsistency 

between the process model and real AD systems. This is 

mainly due to lack of in depth process knowledge as well as 

(1) Limited number of process interactions being modelled, 

(2) Models which do not take into account full indirect 

effects, (3) Selection of variables which mainly affect 

inventory, (4) Assumptions on the rate of change of some 

process effects, (5) Assumptions on the scale of some 

unmeasured parameters, (6) No sensitivity analysis conducted 

on numerical solutions, (7) and Hybrid models for model 

improvement. 

The simulation model is validated and verified continuously 

to compare the model and its behaviour to real AD systems. 

This included an iterative calibration process to make 

adjustments to the revised model. These tests for comparison 

ensured that the model behaved closely as expected and 

observed on site and in the benchmark data.  

Most processes are constructed without consideration of 

controllability and control at the design phase. Neglecting to 

consider controllability and control means that any proposed 

control scheme is restricted by the design, with the degree of 

controllability being a factor of the design, range of accepted 

values such as flexibility of the process and process stability. 

As such the simulation model is built with restrictions to 

enable it to behave more like industrial AD systems. The AD 

system is subject to considerable uncertainties and 

disturbances affecting operating conditions and product 

qualities such as biogas and sludge composition. To help 

achieve optimum dynamic performances and economic 

profits, assessment of the performance with respect to 

controllability is required at the design phase [5]. Measures 

such as separation of the different process phases for the 

digestion technology help improve the stability and 

controllability. This reduces the degree of non-linearity in the 

system yet there still remains an opportunity for improved 

control. This is an example of design criteria, which improves 

the controllability of the process.  

In order to control a microbial process such as AD requires 

quantitative description of variables relevant for the systems 

kinetics. The availability of such information enables optimal 

process design for obtaining optimal control [6]. Nonetheless 

the non-linear nature of such processes does not permit this 

being possible; therefore approximations are made by 

developers aiming to choose the operating parameters that 

enable process improvement. Simulations are the typically 

employed as a test bed for attaining such parameters. The use 

of simulation tools enable real developments to be made 

without disturbing the process and/or reducing the cost 

associated with such activities. 

Controllability analysis is concerned with determining the 

limitations for achievable dynamic performance [7], thus the 

AD process with varying dynamics makes the process highly 

uncontrollable. Improved measures need to be developed for 

the evaluation of process controllability and operability. As a 

result there is a need for further research into the development 

of simple criteria for controllability evaluation and clear 

understanding of their limitations to formulate an algorithmic 

synthesis technique to trade-off between controllability and 

economics [8]. 

The objective here is to reduce the disturbance in the process 

caused by sludge inventory levels through application of a 

model predictive advanced controller. The hypothesis is 

therefore that; the model predictive controller can effectively 

control the sludge inventory levels, thus improving the 

stability of the process and maximising biogas and energy 

production. This will be illustrated through reduction in the 

level of tank level trips, increasing the energy production and 

overall site efficiency. The aim of using the simulation in this 

manner to gain further understanding from the process and to 

utilise this during the plant testing or design of experiments on 

the industrial site. Thus changes made on the plant will be 

combination of results from the simulation results and 

improved process understanding. 

2.1 The simulation model 

In the study a hybrid model consisting of established 

relationships from industrial process data generated for the 

process benchmarking and empirical models was used to 

formulate a standard single phase mesophilic anaerobic 

digestion (MAD) simulation process as depicted in fig. 1.  

Hybrid simulation models generally capture the better of the 

two different simulation paradigms of system dynamics and 

discrete event simulation models. The structured approach of 

design of experiment (DOE) and sensitivity analysis was used 

to evaluate the simulation model. Sensitivity analyses show 

the impact of parameter changes on the system. This dynamic 

model provides a platform for testing control and optimisation 

strategies primarily for assessing the capability of a model 
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predictive control (MPC) controller for removing or reducing 

the scheduling and inventory bottleneck. 

2.2 The simulator design 

The simulation model consists of seven simulator auto 

regressive with exogenous inputs (ARX) model blocks. These 

form the underlying structures of the simulation which are 

recursive least squares (RLS) models. Together they provide 

the basis of controlling the tank levels, gas production and the 

heating and energy usage in the system. The simulator enables 

models identified within the PerceptiveAPC design system to 

act as a simulation of the AD plant behaviour. The models can 

be read into the online system to generated simulated data 

after model development in the design system. 

The simulation is conducted in Perceptive engineering Ltd.’s 

PerceptiveAPC [9] development software. The software uses 

data driven algorithms to derive empirical models of the 

system. The AD system is typical bioprocess system and as 

such is subject to several pitfalls common for most 

bioprocesses. These include complexity which is often not 

measured and understood, long operating times, nonlinear 

systems and highly sensitive to environmental conditions with 

large variability and difficult to repeat results. 

 

Fig.1. Schematic of AD Inventory Simulation 

There are various model assumptions to include (1) 

Correlation of temperature, effects of % dry solids (%DS) and 

feed rate on biogas production, (2) %DS distribution in 

thickened sludge tank affecting the %DS into the digester, (3) 

The heating efficiency for digester, rate of heat change, (4) 

combined heat and power (CHP) efficiency with respect to % 

heat and energy production, (5) Cost penalties for process 

tank level trips to include the buffer tank, the digester, 

digestate tank and biogas holder, (6) Price of energy 

production used in the cost benefit analysis, (7) Tank sizes 

representation of true system affecting time taken to empty 

and fill and (8) Duration for each tank level trip to recover to 

the desired setpoints. These assumptions will form the basis of 

the validity of the results, thus the closely related the 

simulation is with true AD processes the greater the validity 

of the results from the simulation. 

2.3 Model predictive control and quadratic programming 

MPC involves the operation of multivariable controllers under 

process constraints [10]. These constraints may be ‘hard’ 

constraints of manipulated variable (MV) minimum and 

maximum limits, incremental move limits, as well as ‘soft’ 

constraints as controlled variable (CV) minimum and 

maximum limits. This makes MPC controller ideal for 

constraint optimisation problems such as the AD process. 

There are several methods available to manage such 

constraints, such as long range (LR), quadratic programming 

(QP) and a combination of these two; long range QP (LRQP). 

The PerceptiveAPC [9] MPC solution uses the QP constraint 

management method. The QP solver aims to optimise by 

minimising or maximising a quadratic function of 

multivariable, subject to linear equality and inequality 

constraints. 

2.4 System understanding 

Step changes were made in manipulated inputs such as feed 

flow rate to observe the changes in measured outputs such as 

biogas production. These process excitations or step tests 

were conducted to generate data which captured the dynamics 

necessary for the modelling.  

The data generated from the step tests were used to establish 

relationships within the system where comparisons were made 

to ensure the simulation results fitted with what has been 

observed on-site. This evaluation of system performance led 

to an iterative method where the model was continuously 

improved to make it behave close to the real system. Step tests 

were conducted to satisfy generate appropriate dataset for the 

modelling. The training data needed to satisfy various features 

to include richness, variability and consistency. This ensures 

that (1) The process moves around throughout the data range, 

(2) Data include all operating ranges of the process, to avoid 

the controller struggling if the process moves to a different 

region and (3) The dataset is together in sequence. 

2.4 Disturbance profile modelling 

The MPC controller enables disturbance profile modelling of 

expected sludge levels over the week and therefore a degree 

of the disturbance can be predicted. Although the profile 

varies greatly there is a general drop in the feed to the 

thickened sludge tank level over the weekend, this increases 

generally from Monday and by Wednesday inventory levels 

are in the high range through to Friday. Modelling of the 

disturbance profile into the system will help with reducing 

disturbances in the system as a whole as the sludge inventory 

level has a knock on effect for almost every process in the 

system. 

2.5 Controller Design 

Fig. 2 depicts the controller specification design page for 

which response and predictor variables are selected, setpoint 

limits, high/low constraints and mode for the variable defined. 

These settings are based on the simulator design restriction 

and results and conclusions drawn from the system 
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understanding and disturbance profile modelling tests. 

 

Fig.2. Controller Specification Design page 

3.  RESULTS AND DISCUSIONS 

3.1 Cost benefit analysis 

Mesophilic digesters generally operate around 35˚C with a 

range between 25-45˚C. The optimum temperature varies 

dependent on the feedstock composition [11]. Overnight runs 

(7 hours of simulation time, equivalent to about 3 months of 

‘real life’ time) of the simulation were conducted at 

temperatures between 25-38˚C. The aim was to evaluate best 

temperature condition for running of the simulation at set 

conditions with the hypothesis that the optimum to be around 

35˚C. 

 

Fig. 3. CHP energy savings 

Fig. 3 shows plot of CHP energy savings against temperature 

settings of 25 to 38˚C on the X axis. This shows a steady 

linear increase from 25 to 30˚C. There is then a large increase 

between 30 to 31˚C of about 510 savings.  The plot illustrates 

that the peak energy saving is at 33˚C. The optimum is 

affected by gas flaring at high temperatures and therefore the 

energy savings for increasing temperature above what the gas 

holders and CHP units can handle results in the shift in the 

optimum. 

Fig. 4 illustrates the various trips occurring for overnight runs 

at different temperatures. From the results it is clear that for 

all the various temperature levels studied, the trip on AD for 

low thickened sludge tank level and centrifuge trip on high 

digestate tank is totally eliminated by the controller. 

Therefore, the main issues for the overnight runs are the trips 

on high thickened sludge tank level and AD trip on high 

digestate tank level. This simply means that the level of 

inventory coming into the designed simulation site is higher 

for what the plant is capable of processing. The other level 

trips reflect temperature effect on gas production as at low 

temperature CHP trip on low has holder level occurs where at 

high temperatures, flare and AD trip on high gas holder level 

occurs. This is expected, nevertheless the level of trips are 

more erratic at high temperatures and should be avoided as the 

trips which occur at high temperatures may be of greater cost 

due to gas flaring and tripping the CHP. 

 

Fig. 4. Various numbers of trips occurring 

Fig. 5 and 6 give number of trips occurring and the % of time 

trips occur in the overnight runs. There is high level of trips 

occurring around 36 to 37˚C due to the increase in high gas 

production to the high temperatures. This is, therefore, the 

sensitive point where the digester temperature should possibly 

be operated, provided that there is adequate capacity available 

for gas holder level and CHP units to avoid trips with gas 

flaring etc. 

 

Fig.5. Number of trips occurring 

 

Fig. 6. % amount of simulation time that trips occur 

The simulation cost/benefit analysis revealed the key 

variables for control and modifications required for industrial 

application are identified. However, due to the underlying 

assumptions some unexpected results have to be treated with 

care and therefore results here are to be validated through the 

industrial application. The main aim of the controller for 

improving inventory and scheduling is achieved; the 

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

687



 

 

     

 

cost/benefit relationships are questionable. Significant 

assumptions about the process are uncertain from the 

simulation results and have provided further insight into the 

complexity of the nonlinear relationships within the process. 

Due to the degree of variation on inventory levels and the rate 

at which changes occur, it is practically impossible not to trip 

any of the level controls. This may require increased capacity 

or flexibility and prediction on the incoming feed stocks. The 

controller however is able to limit trips by almost 85%. This 

has enabled increased biogas production and energy 

production, whilst reducing cost.  

The main bottleneck in the process is shifted from the 

thickened sludge tank level to the gas holder as the feed rate 

increases due to high tank level. This is further alleviated by 

reducing the temperature setpoint in the system and, therefore, 

continuous maximum feed can be observed whilst producing 

less biogas and therefore limits gas flaring and gas holder 

trips. The feedforward information from the AD process 

enables the digestate tank and centrifuge to be controlled 

effectively to avoid both systems from tripping. It is thus 

evident that a feedforward control on the digestate tank and 

centrifuge feedrate can easily be achieved with digester feed 

information. 

The key findings from the simulation assessment can be 

summarised as follows: 

1. Significant reduction in level trips, with total 

elimination on the AD trip on low thickened sludge tank level  

and centrifuge trip on low digestate tank level which were 

possible because sludge inventory levels are mostly at high 

levels; 

2. Optimum temperature for total simulation 

cost/benefit gain found to be around 33˚C instead of the 

predicted optimum of 35˚C. This is typical of the simulation 

conditions, as sludge inventory is high, high temperature 

operations incur more trips and the cost element associated 

with these within the simulation makes operation at high 

levels of temperature not so cost effective. The optimum is 

therefore process dependent as at different capacities, the 

optimum will change; 

3. A key turning point in the process is around 31˚C: 

level trips are at zero, or stable within 25˚-31˚C and above 

31˚C, there is a general erratic behaviour within the system. 

Total simulation cost/benefit and CHP energy savings 

increase significantly above 31˚C; 

4. The feed to thickened sludge tank level i.e. the 

sludge inventory on site changes to quickly and is very 

unpredictable, therefore prediction of incoming feed is not 

possible. The aim was to implement disturbance profile 

modelling into the controller design to help the controller 

better predict changes; 

5. Temperature is best controlled by the feed rate for 

cooling with cold sludge feed making heating more difficult 

as cold sludge is continuously added. The next factor affecting 

temperature is the cooler/boiler settings followed by ambient 

temperature and CHP speed respectively; 

6. The best set-points are identified to best control the 

process with constraints settings based on system dynamics 

and process understanding; 

3.2 Controller evaluation 

 

Fig.7. Process improvement through advanced control in 

simulation 

The model predictive controller has also been shown to 

significantly improve the process.  Best temperature settings 

for various scenarios are identified as shown in Fig 2-5. An 

advanced controller such as MPC can be used to effectively 

control the multi-constraint, nonlinear nature of the process. 

The MPC calculates a future set of moves to avoid the 

constraint violation. This has been shown to improve the 

process in simulation environment as shown in Fig 7; where 

about 40% increase in biogas production can be achieved at 

13% lower average temperatures. 

3.3 System dynamics 

The AD system has varying dynamics; there are some 

parameters which change very quickly (the fast dynamics) and 

others such as biogas production which is very slow. 

Therefore a one level model structure to capture all the 

varying dynamics is difficult and not a true representation of 

the system. Simulation analysis were carried out to test if by 

separating the AD system into two model structures with split 

of fast and slow dynamics parameters. The findings from the 

split dynamics structure included (1) Reduction in the number 

of level trips in general and % of time trips occurring, (2) 

Temperature setpoint less controlled, (3) Process more erratic 

and therefore further tuning may be required to smooth the 

controller (4) gravity belt thickener (GBT) trip on high 

thickened sludge tank tripped above 197 times for all 

overnight runs for the flat structure, however for the dynamics 

split model; this is reduced to 77. This is over 60% reduction 

in the number of trips occurring for the GBT system and (5) 

the overall simulation cost/benefit did not improved for the 

current settings and tuning of the split dynamics modelling. 

Although the findings show that the simulation system is less 

controlled smoothly in comparison to the flat structure, there 

is a significant reduction in the number of level trips occurring 

in the system. There is therefore further assessment to be 

conducted on this model to ascertain whether any further 

improvements can be made. 

3.4 Controller Optimisation 

The QP optimiser is applied and evaluated to test the 

capability of improving the process through further 

optimisation. The first objective of the QP is to keep the 
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process within bounds of its constraints followed by cost 

minimisation. The QP is designed to handle soft constraints 

such as the thickened sludge tank level and the heating and 

cooling exchangers. 

Fig. 8 and 9 illustrate the controller comparison of the 

benchmark MPC controller, the split dynamics controller and 

the controller with QP optimisation included. The high 

reduction in tank level trips and the lack of improvement on 

the overall cost/benefit of the system; may be due to the way 

the controller is modelled. For example, priority settings and 

actuator move weights were tuned to make sure the primary 

aim of the controller is satisfied. Therefore the optimiser aims 

to limit the level of tank trips before optimising for CHP 

energy savings and biogas production to improve the overall 

cost benefit. For this reason the optimised controller has 

worked towards achieving its aim. Further work may be 

required to improve the controller settings to improve the 

overall cost/benefit of the system. 

 

Fig.8. Controller evaluation comparison 

 

Fig.9. Controller evaluation comparison 

4. CONCLUSIONS 

The simulation results illustrate that the multi objective 

control problem of AD can be controlled with respect to 

scheduling and inventory. This is a positive result and has 

illustrated the variables that are most difficult to control. The 

simulation also highlights the problems associated with the 

system dynamics. The large variability in the system means 

variables such as temperature settings take considerably long 

time to heat or cool down with the boiler/cooler settings 

whilst the cooling effect on increased feed is more 

instantaneous. The inventory simulation achieved the aims of 

the study by providing (1) Reduction or complete elimination 

of level trips - Over 85% reduction in level trips is achieved 

through application of the flat structure controller, with 

further reduction with the optimiser and split dynamics 

system, (2) Optimisation of biogas production - increase 

production at least 12% for the flat structure and (3) Defining 

optimum settings for best operation - through cost/benefit 

analysis, optimum settings for temperature, feed flow and feed 

to CHP units are achieved. As the aims of control are satisfied 

by the control system designed, thus the process is 

controllable in the simulation environment and further study is 

required to test the controller on industrial scale. 
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