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Abstract: Interpolation-based off-line MPC for LPV systems is presented in this work. The on-line 
computational time is reduced by pre-computing off-line the sequences of state feedback gains 

corresponding to the sequences of ellipsoidal invariant sets. At each sampling time, the real-time state 

feedback gain is calculated by linear interpolation between the pre-computed state feedback gains. Four 

interpolation techniques are presented. In the first technique, the smallest ellipsoid containing the current 

state measured is approximated and the corresponding real-time state feedback gain is calculated. In the 

second technique, the pre-computed state feedback gains are interpolated in order to get the largest 

possible real-time state feedback gain while robust stability is still guaranteed. In the third technique, the 

real-time state feedback gain is calculated by minimizing the violation of the constraints of the adjacent 
inner ellipsoids so the real-time state feedback gain calculated has to regulate the state from the current 

ellipsoids to the adjacent inner ellipsoids as fast as possible. In the last technique, the real-time state 

feedback gain is calculated by minimizing the one-step cost function so the real-time state feedback gain 

calculated has to regulate the next predicted state to the origin as fast as possible. A case study of 

nonlinear CSTR is presented to illustrate the implementation of the proposed techniques. The results 

show that the proposed interpolation techniques 2, 3 and 4 tend to produce less sluggish responses than 

the technique 1. 
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1. INTRODUCTION 

Model predictive control (MPC) has originated in the 
industries as an effective control algorithm to solve 

multivariable control problem. Although MPC based on a 

linear model has been successfully implemented in many 

industrial applications, it is well-known that the stability of 

MPC based on a linear model cannot be guaranteed in the 

presence of process nonlinearity (Morari and Lee, 1999). 
This has motivated the synthesis of MPC using linear 

parameter varying (LPV) model whose dynamics depend on 

the scheduling parameter that can be measured on-line (Lu 

and Arkun, 2000). 

Wada et al. (2006) proposed on-line MPC for LPV systems 
using parameter-dependent Lyapunov function. At each 

sampling instant, the ellipsoidal invariant set containing the 

measured state is constructed so robust stability is 

guaranteed. Since the optimization problem has to be solved 

on-line at each sampling instant, the algorithm requires a 

relatively high computational effort.  

Some researchers have proposed a dual-mode MPC for LPV 
systems (Casavola et al., 2002; Bumroongsri and Kheawhom, 

2012a). The control law has the form cKxu   for the first 

N steps and Kxu   for the rest of the infinite horizon. 

Although the degrees of freedom are increased, larger on-line 

computational time is required because the size of on-line 

optimization problem grows significantly with respect to N.  

In order to reduce on-line computational time, off-line 
formulation of MPC have been proposed (Wan and Kothare, 

2003; Bumroongsri and Kheawhom, 2012c). A sequence of 

state feedback gains corresponding to a sequence of invariant 

sets is pre-computed off-line. At each sampling instant, the 

real-time state feedback gain is calculated by linear 
interpolation between the pre-computed state feedback gains. 

Although the on-line computational time is significantly 

reduced, the conservativeness can be obtained in control of 

LPV systems because the scheduling parameter is not 

included in the controller design.  

Off-line MPC for LPV systems was proposed by 
Bumroongsri and Kheawhom (2012b). The sequences of state 

feedback gains corresponding to the sequences of ellipsoids 

are pre-computed off-line. At each sampling instant, the 

scheduling parameter is measured and the smallest ellipsoid 

containing the measured state is approximated. The 

corresponding real-time state feedback gain is then calculated 

by linear interpolation between the pre-computed state 

feedback gains. The ellipsoid computed at each sampling 

instant is only an approximation so the algorithm sacrifices 
optimality in order to reduce on-line computational time. To 

improve the control performances of off-line MPC algorithm, 

an interpolation technique has been introduced (Kheawhom 
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and Bumroongsri, 2013; Bumroongsri and Kheawhom, 

2013.)    

In this paper, interpolation-based off-line MPC for LPV 
systems is presented. Four interpolation techniques based on 

different ideas are proposed. The aim is to develop new 

interpolation techniques that can achieve good control 

performance while robust stability is still guaranteed. 

The paper is organized as follows. In section 2, the problem 

description is presented. In section 3, interpolation-based off-

line MPC for LPV systems is presented. In section 4, we 

present an example to illustrate the implementation of the 

proposed techniques. Finally, in section 5, we conclude the 

paper. 

 

Notation: For a matrix A , TA  denotes its transpose, 1A  
denotes its inverse. I  denotes the identity matrix. For a 

vector x , )/( kkx  denotes the state measured at real time k , 

)/( kikx   denotes the state at prediction time ik   predicted 

at real time k . The symbol   denotes the corresponding 

transpose of the lower block part of symmetric matrices. 

 

2. PLOBLEM DESCRIPTION 

The model considered here is the following discrete-time 

LPV system: 

 

                      
)()(

)()())(()1(

kCxky

kBukxkpAkx



                         (1) 

where )(kx  
is the state of the plant and )(ku  is the control 

input. We assume that the scheduling parameter )(kp  is 

measurable on-line at each sampling time. Moreover, we 

assume that 
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where Ω  is the polytope, Co  denotes the convex hull, jA  

are the vertices of the convex hull. Any ))(( kpA  within the 

polytope Ω  is a linear combination of the vertices such that 
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The aim of this research is to find the state feedback control 

law 
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that stabilizes (1) and satisfies the input and output 

constraints 
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Wada et al. (2006) proposed on-line MPC for LPV systems 

using parameter-dependent Lyapunov function. At each 

sampling instant, the state feedback control law which 

minimizes the upper bound   on the following worst-case 

performance cost  
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where   and R  are weighting matrices, and asymptotically 

stabilizes the discrete-time LPV system (1) is given by 
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jY  and jG  are obtained by solving the following problem 
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Since the optimization problem has to be solved on-line at 

each sampling instant, the algorithm requires a relatively high 
computational effort. 

3. INTERPOLATION-BASED OFF-LINE MPC 

In this section, interpolation-based off-line MPC for LPV 
systems is presented. The sequences of state feedback gains  
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jiK ,  corresponding to the sequences of ellipsoids 

 1/ 1
,,   xQxx ji

T
ji  are pre-computed off-line where 

Ni ,...,3,2,1  denote the number of ellipsoids in each 

sequence and Lj ,...,3,2,1  denote the vertices of the 

polytope Ω . At each sampling time, the real-time state 

feedback gain is calculated by linear interpolation between 

the pre-computed state feedback gains. 

3.1 Interpolation-based off-line MPC 

Off-line: Choose a sequence of states Nixi ,...,3,2,1 ,  . For 

each ix , substitute )/( kkx  in (9) by ix  and solve the 

optimization problem (8) to obtain the corresponding state 

feedback gain 
1

,,,
 jijiji GYK  and ellipsoids 

 1/ 1
,,   xQxx ji

T
ji . Note that ix  should be chosen such 

that jiji ,,1   . Moreover, for each Ni  , the inequality 

,0)()( ,1

1

,,1

1

,  







jijli

T

jijji BKAQBKAQ ,,...,3,21 L,j   

L,l ,...,3,21  must be satisfied. 

 

On-line: The real-time state feedback gain is calculated by 

linear interpolation between the pre-computed state feedback 

gains. Four interpolation techniques are proposed as follows 

 

Technique 1: (Bumroongsri and Kheawhon, 2012b) The first 
technique is based on an approximation of the smallest 

ellipsoid containing the measured state. At each sampling 

time, when )(kx  satisfies ,)( , jikx   ,)( ,1 jikx   
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It is seen that 0)( k  and 1)( k  correspond to the 

ellipsoids ji ,1  and ji, , respectively. In this technique, no 

optimization problem is needed to be solved on-line. Figure 1 
shows the graphical representation of the state feedback gain 

in each prediction horizon. It is seen that the state feedback 

gain ))(( kK 
 

is implemented throughout the prediction 

horizon. Thus, the state must be restricted to lie in the 
smallest ellipsoid approximated by (13) and robust stability is 

guaranteed. 

 
Technique 2: In the second technique, the pre-computed state 

feedback gains 
jiK ,
 are interpolated in order to get the 

largest possible real-time state feedback gain while robust 

stability is still guaranteed. At each sampling time, when 

)(kx  satisfies ,)( , jikx   ,)( ,1 jikx   ,,...,3,21 L,j   
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jiK ,1
is always larger than 

jiK ,
 because input and output 

constraints impose less limit on the state feedback gain as i  

increases. Thus, the largest possible real-time state feedback 

gain ))(( kK   can be calculated by minimizing )(k  in (14) 

while robust stability is still guaranteed by (15). The input 

constraint is guaranteed by (16). 

 

Figure 2 shows the graphical representation of the state 

feedback gain in each prediction horizon. It is seen that the 

largest possible real-time state feedback gain ))(( kK  is 

only implemented at each sampling time
 

k . At time 1k  

and so on, the state feedback gain 



L

j

jiji KkpK
1

,)(  is 

implemented. Thus, the state must be restricted to lie in the 

ellipsoids ji,  and robust stability is guaranteed.   

Technique 3: In the third technique, the real-time state 
feedback gain is calculated by minimizing the violation of the 

constraints of the adjacent inner ellipsoids so the real-time 

state feedback gain calculated has to regulate the state from 

the current ellipsoids ji,  to the adjacent inner ellipsoids 

 
Fig.2. The graphical representation of the state feedback 

gain in each prediction horizon of technique 2. 

 
Fig.1. The graphical representation of the state feedback 
gain in each prediction horizon of technique 1. 
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ji ,1  as fast as possible. At each sampling time, when )(kx  

satisfies NiL,jkxkx jiji     ,,...,3,21  ,)(  ,)( ,1,  , the 

real-time state feedback gain 
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can be calculated from )(k  obtained by solving the 

following problem. 
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By applying Schur complement to (19), we obtain 

)(1)1()1( 1
,1 kkxQkx ji

T  
 . By minimizing )(k  in 

(18), the real-time state feedback gain ))(( kK   calculated 

has to regulate the state from the current ellipsoids ji,  to the 

adjacent inner ellipsoids ji ,1  as fast as possible. Robust 

stability is guaranteed by (20). The input constraint is 

guaranteed by (21).  

 

Figure 3 shows the graphical representation of the state 

feedback gain in each prediction horizon. It is seen that the 

real-time state feedback gain ))(( kK   calculated is only 

implemented at each sampling time
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implemented. Thus, the state must be restricted to lie in the 

ellipsoids ji,  and robust stability is guaranteed.    

 

Technique 4: In the last technique, the real-time state 
feedback gain is calculated by minimizing the one-step cost 

function so the real-time state feedback gain calculated has to 

regulate the next predicted state to the origin as fast as 

possible. At each sampling time, when the measured state 
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By applying Schur complement to (24), we obtain 

)1()1(  kxkxJ T
k 

 

where   is the weighting matrix. 

Thus, kJ  in (23) is the one-step cost function. Robust 

stability is guaranteed by (25). The input constraint is 

guaranteed by (26).  

 

Figure 4 shows the graphical representation of the state 

feedback gain in each prediction horizon. It is seen that the 

real-time state feedback gain ))(( kK   calculated is only 

implemented at each sampling time
 

k . At time 1k  and so 

on, the state feedback gain 



L

j

jiji KkpK
1

,)(  is 

implemented. Thus, the state must be restricted to lie in the 

ellipsoids ji,  and robust stability is guaranteed. 

   

 

 

 
Fig.4. The graphical representation of the state feedback 

gain in each prediction horizon of technique 4. 

 
Fig.3. The graphical representation of the state feedback 

gain in each prediction horizon of technique 3. 
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4. EXAMPLE 

In this section, we present an example that illustrates the 

implementation of the proposed off-line MPC algorithm. The  

numerical simulations have been performed in Intel Core i-5 

(2.4GHz), 2 GB RAM, using SeDuMi (Sturm, 1998) and 

YALMIP (Löfberg, 2004) within Matlab R2008a 

environment. We will consider the application of our 
approach to the following nonlinear model for CSTR where 

the consecutive reaction CBA   takes place 
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where 1x  denotes the dimensionless concentration of A
 
and 

2x  denotes the dimensionless concentration of .B  The 

control variable u  corresponds to the inlet concentration of 

A . The operating parameters are 1Da =1 and 22 Da .  

 

Let   eqxxx  ,111  , eqxxx  ,222    and
  equuu 

 
where subscript eq   is used to denote the corresponding 

variable at the equilibrium condition,
 
the input and output 

constraints are given as         
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By evaluating the Jacobian matrix of (28) along the vertices 

of the constraints set (29), we have that all the solutions of 

(28) are also the solutions of the following differential 

inclusion 
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where 2,1, jAj  are given by 
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and 2,1, jp j  are given by     

 

             
min,2max,2

min,22

2
min,2max,2

2max,2

1  ,
xx

xx
p

xx

xx
p









                   (32) 

                                                                                                                                    

The discrete-time model is obtained by discretization of (30) 

using Euler first-order approximation with a sampling period 

of 0.1 min and it is omitted here for brevity. The weighting 

matrices are 





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10

01
Θ and .01.0R  

 

Figure 5 shows two sequences of ellipsoids constructed off-

line. Each sequence has three ellipsoids ).2 3,( ,  j,iji  In 

this example, two sequences of ellipsoids are constructed 

because the polytope Ω  has two vertices. 
 

 

   a) }3,2,1 ,1/{ 1
1,1,   ixQxx i

T
i   

 

   b) }3,2,1 ,1/{ 1
2,2,   ixQxx i

T
i   

 

Fig. 5. Two sequences of ellipsoids constructed off-line. 

 

Figure 6 shows the closed-loop responses of the system. In 

technique 1, the smallest ellipsoid containing the measured 

state is approximated at each sampling instant and the 

corresponding real-time state feedback gain is calculated. 

Since the same real-time state feedback gain ))(( kK   is 

implemented throughout the prediction horizon as shown in 

Fig.1, technique 1 tends to produce relatively slow responses 

compared to other techniques. In technique 2, the pre-

computed state feedback gains are interpolated in order to get 

the largest possible real-time state feedback gain ))(( kK  . 

At each sampling time, the largest possible real-time state 

feedback gain is implemented as shown in Fig. 2 so 

technique 2 tends to produce less sluggish responses than 

technique 1. In this example, technique 2 gives 0.5% better 

performance cost (7) compared to technique 1. In technique 

3, the real-time state feedback gain is calculated by 

minimizing the violation of the constraints of the adjacent 

inner ellipsoids. At each sampling time, the real-time state 

feedback gain ))(( kK   is implemented as shown in Fig. 3 so 

the state has to be regulated from the current ellipsoids ji,  

to the adjacent inner ellipsoids ji ,1  as fast as possible. In 

this example, technique 2 and technique 3 behave almost 

identically in regulating the output. In technique 4, the real-

time state feedback gain is calculated by minimizing the one-
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step cost function so the real-time state feedback gain 

calculated has to regulate the next predicted state to the origin 

as fast as possible. As shown in Fig. 6, technique 4 tends to 

produce the fastest responses among all techniques. In this 

example, technique 4 gives 0.6% better performance cost (7) 

compared to technique 1. 

 

 
a) Output 

 

 
b) Input 

Fig. 6. The closed-loop responses. 

 

Table 1.  The on-line computational time. 

Algorithm CPU time (s) 

Technique 1 0.001 

Technique 2 0.047 

Technique 3 0.101 

Technique 4 0.075 

 

Table 1 shows the on-line computational time. It is seen that 

technique 1 has the smallest on-line computational time 

because no optimization problem is needed to be solved on-

line. In comparison, technique 3 has the largest on-line 
computational time because many LMIs constraints are 

involved in the on-line optimization problem. 

5. CONCLUSIONS 

In this paper, we have presented interpolation-based off-line 
MPC for LPV systems. The sequences of state feedback 

gains are pre-computed off-line. The real-time state feedback 

gain is calculated by linear interpolation between the pre-

computed state feedback gains. Four interpolation techniques 

are presented. It is shown that the proposed techniques give 

better control performance than the old technique. 
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