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Abstract: Complex process networks featuring multiple energy integration agents (process-
to-process heat exchangers) offer significant cost benefits while adding additional operational
constraints. These networks show potential for multi-time scale dynamics owing to the presence
of energy flows spanning multiple orders of magnitude. In previous work, we have developed
a graph-theoretic framework to systematically uncover this time scale multiplicity. In this
paper, we present an application of this framework to a reactor-heat exchanger system used for
naphtha reforming. This system involves energy flows spanning three orders of magnitude and
the underlying energy balance variables evolve over two time scales. The framework allows for
the derivation of control-relevant models in each time scale and classifies the control objectives
leading to a hierarchical control strategy. We demonstrate that the analysis uses minimum
process information, is efficient, and scalable to large networks.
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1. INTRODUCTION

Increased global competition, high energy cost and the
efforts towards sustainability have intensified the devel-
opment of energy integrated process networks. While such
integration results in cost savings, the resulting systems
are quite difficult to operate and control. Specifically, such
tightly integrated networks exhibit complex dynamics such
as openloop instability, inverse response, multi-time scale
dynamics, and in some cases, chaotic behavior (Chen and
Yu, 2003; Morud and Skogestad, 1998; Zhu and Liu, 2005;
Jogwar et al., 2009). Additionally, integration is associated
with a reduction in operating degrees of freedom, resulting
in loss of controllability. This has motivated the devel-
opment of network-level control strategies (Rawlings and
Stewart, 2008; Liu et al., 2008; Hudson and Bao, 2012;
Hioe et al., 2012; Baldea et al., 2013).

In previous work (Jogwar et al., 2010), we have developed
an analysis and control framework for typical energy inte-
grated networks. The analysis of various energy integrated
systems revealed the presence of two fundamental config-
urations that are at the core of these networks; those with
large energy recycle and those with large energy through-
put. These prototype networks have interesting time scale
properties: large recycles exhibit two-time scale energy
dynamics whereas large throughputs result in energy dy-
namics evolving at a faster rate compared to material
dynamics (Jogwar et al., 2010). For such networks, sin-
gular perturbations can be used to reduce the underlying
two-time scale dynamic model and the resulting reduced
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models can be used for the design of a hierarchical control
strategy in different time scales. Yet such simple prototype
network configurations are rarely found in isolation. They
are typically part of more complex networks with multiple
integration loops. In the case of such complex networks,
the rigorous analysis using singular perturbations, is in
principle possible, but can be cumbersome. To this end, we
have developed a graph-theory based analysis framework
for complex networks which mimics the approach based on
singular perturbations and provides a scalable reduction
for large networks (Jogwar et al., 2011; Heo et al., 2012).

In this paper, we first review the key features of this graph-
theoretic framework. In section 3, we consider an example
complex network and apply this framework to establish the
time scale properties and develop a hierarchical control
scheme. Lastly, the advantages of this framework are
illustrated and future research directions are highlighted.

2. GRAPH-THEORETIC ANALYSIS FRAMEWORK

In order to apply the graph-theoretic framework to analyze
a complex network, it needs to be represented by an
equivalent energy flow graph. This is defined as a weighted
graph G(N,E) of the energy flows in a process network –
the nodes N represent individual process entities (e.g. heat
exchanger passes, trays of a distillation column) and the
edges E (directed and weighted) represent the direction
and the order of magnitude of the energy flows. Sources
and sinks are not explicitly represented. Directed edges
with no tail (or head) node are energy flows from sources
(or to sinks)(Ahuja et al., 1993).
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Once the network is represented by its energy flow graph,
we have developed an algorithm that systematically re-
duces this graph to reveal the underlying time scale mul-
tiplicity, derive the scaled dynamic equations for each
time scale and classify control objectives and manipulated
inputs for a hierarchical control strategy. For simplicity of
illustration, we have divided the algorithm in three parts.

Algorithm 1: MultiTimeScale(G,W)

1: Sort W in descending order
2: for i = 1 to Size(W) do
3: m = W[i]
4: H = InducedSubgraph(G, m)
5: T (τm) = nodes ∈ H
6: C = SmallestElementaryCycle(H)
7: while C 6= φ do
8: GraphReduce(G,C,m)
9: GraphReduce (H,C,m)

10: C = SmallestElementaryCycle(H)
11: end while
12: for all node N ∈ H such that degree(N) 6= 0 do
13: Remove N from G
14: end for
15: end for
16: return T

The inputs to the algorithm are the graph G(N,E) and
a vector W of the various orders of magnitude exhibited
by different energy flows. The output of the algorithm
is T , a set such that T (τm) refers to the set of units
(nodes) evolving in the time scale τm. Since one seeks the
evolution of the system for times t = 0→∞, the algorithm
begins with the largest order of magnitude energy flows
(corresponding to the fastest time scale) and proceeds
to the smallest. For a given order of magnitude ‘m’, an
induced subgraph ‘H’ is formed from G such that all the
edges in H are of the order ‘m’. All the nodes in this
subgraph evolve at the time scale τm. A graph reduction
procedure (steps 7 through 14) is applied to this subgraph
before proceeding to the next time scale.

Algorithm 2: Dynamics(G,W)

1: Sort W in descending order
2: for i = 1 to Size(W) do
3: m = W[i]
4: gm(um) = h1,s × Ebalance(G, m)
5: H = InducedSubgraph(G, m)
6: C = SmallestElementaryCycle(H)
7: while C 6= φ do
8: GraphReduce(G,C,m)
9: GraphReduce (H,C,m)

10: C = SmallestElementaryCycle(H)
11: end while
12: if size(RecycleTimes) 6= 0 then
13: DAEm = CmBmzm
14: Constraintm = g̃m−(um−)
15: if size(RecycleTimes) > 1 then

16: AddConstraintsm =
∑size(RecycleT imes)

j=1 DAEj

17: end if
18: end if
19: if degree(N) = 0 for any node N ∈ H then
20: Add τm to RecycleTimes
21: Add Ni to PureRecycles
22: end if
23: if degree(N) 6= 0 for all nodes N ∈ H then
24: Clear RecycleTimes, PureRecycles
25: end if
26: for all node N ∈ H such that degree(N) 6= 0 do
27: if N is a composite node then
28: Remove Ni from PureRecycles
29: end if
30: Remove N from G
31: end for
32: end for
33: Energy balance equations are

34:

dH

dt
=

size(W )∑
i=W [1]

1

εi
gi(ui)

35: for all m ∈W do
36: Reduced order model in τm is

37:

dHm

dτm
= ḡm(um) +DAEm

0 =Constraintm +AddConstraintsm

38: end for

Having identified the various time scales exhibited by the
energy dynamics of a complex network, this algorithm de-
rives the scaled equations describing the energy dynamics
in each time scale. Graph traversing algorithms (Cormen,
2001) are used for this and the subroutine Ebalance per-
forms this operation. Depending on the structure of the
subgraph H, i.e. whether it corresponds to a recycle or
a throughput, the resulting scaled dynamic equations are
ODEs (ordinary differential equations) or DAEs (differen-
tial algebraic equations). Line 34 gives the overall energy
dynamics whereas line 37 gives the reduced order dynamics
in a particular time scale.

Algorithm 3: Control(G,W)

1: Sort W in descending order
2: for i = 1 to Size(W) do
3: m = W[i]
4: H = InducedSubgraph(G, m)
5: for each node N ∈ H do
6: if N is a composite node then
7: add

∑
Ni to Y(τm)

8: else
9: add N to Y(τm)

10: end if
11: end for
12: U(τm) = Edges in H
13: C = SmallestElementaryCycle(H)
14: while C 6= φ do
15: GraphReduce(G,C,m)
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16: GraphReduce (H,C,m)
17: C = SmallestElementaryCycle(H)
18: end while
19: if degree(N) = 0 for any node N ∈ H then
20: All but 1 out of Ni should be controlled in this

time scale
21: end if
22: for all node N ∈ H such that degree(N) 6= 0 do
23: Remove N from G
24: end for
25: end for
26: return Y, U

Lastly, algorithm 3 classifies different control objectives
to be addressed in each time scale (Y) as well as the
potential manipulated inputs (U) available to achieve
those objectives. This is based on the fact that flowrates
of different magnitude have been documented to act (and
thus be available for manipulation) at different time scales
(Jogwar et al., 2009, 2010).

Let us now apply this framework to an example complex
network.

3. ANALYSIS OF REACTOR-HEAT EXCHANGER
SYSTEM

Energy integrated reactor-heat exchanger systems are
quite common in chemical industries and typically incor-
porate recycle of energy using numerous process-to-process
heat exchangers. The simplest case involves using a hot
reactor effluent to preheat cold feed, resulting in a con-
figuration with large energy recycle (Jogwar et al., 2009).
The design of heat exchanger networks to minimize utility
consumption in reactor systems leads to complex config-
urations. Fig. 1 shows one such example system used for
naphtha reforming (Varghese and Bandyopadhyay, 2007).
This system has two endothermic reactors (reformers)
operating at elevated temperature compared to the feed.
Nine process-to-process heat exchangers (PPX1 through
PPX9) are used to reduce external energy consumption
by transferring energy from a hot effluent stream to the
cold inlet stream, and thus each one of these acts as a feed
effluent heat exchanger (FEHE). The energy flow structure
for this system involves nine energy recycle loops. Table 1
tabulates the nominal values of the duties of these FEHEs,
along with the heating/cooling duties of the utilities.

Table 1. Nominal values of heat exchanger
duties for the reactor - HE network

Exchanger Duty Exchanger Duty

H1 3.72 kW PPX1 4.88 kW
H2 12.55 kW PPX2 17.20 kW
H3 37.77 kW PPX3 1.88 kW
C1 3.80 kW PPX4 8.50 kW
C2 4.77 kW PPX5 10.80 kW
C3 6.20 kW PPX6 29.30 kW
C4 0.35 kW PPX7 4.10 kW
C5 12.50 kW PPX8 3.84 kW

PPX9 7.90 kW

The duty of any FEHE represents the magnitude of the
corresponding energy recycle stream. As the duties of
these FEHEs span multiple orders of magnitude, there is

a potential for the presence of several large energy recycle
loops. On the other hand, the duty of the heating/cooling
utility represents an external energy flow and the presence
of different orders of magnitude in their values suggests
that this system also involves large energy throughputs. In
essence, the prototype networks with large energy recycle
and throughput form the backbone of this integrated
system.

Let us now apply the analysis framework presented in
section 2 to the reactor-HE system in Fig. 1. The three al-
gorithms presented in section 2 are applied to this system.
The cycle finding algorithm proposed in Tarjan (1973)
has been used in the subroutine SmallestElementaryCycle.
All the algorithms are coded in C++. To begin with, the
energy flow graph for this system is constructed. All the
process-to-process heat exchangers are represented by two
nodes, one for the cold side and the other for the hot side,
connected by a directed edge from the hot node to the cold
node (see Fig. 2). The definitions of the various nodes of
this energy flow graph are tabulated in Table 2.

Fig. 2. Energy flow structure for a process-to-process heat
exchanger

Table 2. Node details for the reactor-HE sys-
tem

Index Node details Index Node details

Primary nodes

1 PPX1-cold 18 PPX7-cold
2 PPX1-hot 19 PPX7-hot
3 PPX2-cold 20 C5

4 PPX2-hot 21 H2

5 H1 22 Reformer-1
6 Desulphurisation reactor 23 H3

7 PPX3-cold 24 Reformer-2
8 PPX3-hot 25 PPX8-cold
9 PPX4-cold 26 PPX8-hot
10 PPX4-hot 27 C2

11 C1 28 C3

12 Gas separation 29 Mixer
13 Stripping column 30 Compressor
14 PPX5-cold 31 PPX9-cold
15 PPX5-hot 32 PPX9-hot
16 PPX6-cold 33 C4

17 PPX6-hot 34 Stabilizing column

Auxiliary nodes

35 H1-head 43 Stripping column energy input
36 H2-head 44 Reformer-1 heat of reaction
37 H3-head 45 Reformer-1 heat of reaction
38 C1-tail 46 Stabilizing column energy input
39 C2-tail 47 Compressor power input
40 C3-tail 48 Desulphurisation heat of reaction
41 C4-tail 49 Naphtha feed-head
42 C5-tail 50 Aromatics product-tail
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Fig. 1. Energy integrated reactor-heat exchanger network for naphtha reforming

The advantage of the proposed framework is that it re-
quires minimum process information, specifically the or-
ders of magnitude (rather than actual magnitudes) which
can be easily inferred based on unit-level and overall en-
ergy balances. For example, for the heat exchanger PPX2

in this system, the only information available is that
the rate of heat transfer in this exchanger is large (say
O(1/ε) 1 ). The energy balance across this exchanger sets
the hot inlet flow and the cold outlet flow to be O(1/ε).
This, however, does not fix the orders of magnitude for
hot exit flow and the cold inlet flow (which can be either
O(1) or O(1/ε)). The energy balance across the exchanger
PPX1 provides the solution. It indicates that all the en-
ergy flows in this exchanger should be of the same order
of magnitude. As the energy flow corresponding to the
naphtha feed is assumed to O(1), all the energy flows
in PPX1 and the remaining energy flows in PPX2 are
O(1). A feasibility condition (as shown in the following
subroutine) can be easily added in the energy flow graph
definition algorithm. Based on the energy balance across
each node, the validity of the arguments made about the
orders of magnitude of the various energy flows can be
verified.

Subroutine FeasibilityCheck(G)

1: Feasibility = TRUE
2: for all node N ∈ G do
3: MaxInOrder = highest order of magnitude among

the edges entering node N

1 ε = 0.1, a small number

4: MaxOutOrder = highest order of magnitude among
the edges leaving node N

5: if MaxInOrder 6= MaxOutOrder then
6: “Energy flow structure is infeasible”
7: Feasibility = FALSE
8: end if
9: end for

10: return Feasibility

The analysis for this system (or any other system) is
performed in the following sequence.

(1) Input energy flow graph G.
(2) Check feasibility of the graph.
(3) Identify time scales in the network using algorithm 1.
(4) Check feasibility of the recycle structures (sub-

graphs).
(5) Generate dynamic models in each time scale using

algorithm 2.
(6) Classify controlled variables and manipulated inputs

using algorithm 3.

The results from the application of algorithm 1 to this
system are included in Table 3. It can be noted that
the various energy balance variables evolve over two time
scales. Specifically, the enthalpies of the cold and hot sides
of PPX6 (16 and 17), the heaters H2 (21) and H3 (23)
and the two reformers (22 and 24) evolve only in the fast
time scale. It can be noted that these variables are a part
of a large throughput from the large heater H2 duty to the
endothermic heat of reaction in reformer-1 (via reformer-
2, PPX6, H2 and reformer-1). The enthalpies of the cold
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and hot sides of PPX2 (3 and 4), the heater H1 (5) and
the desulphurisation reactor (6) evolve in both the fast
and the slow time scale, owing to the presence of a large
recycle loop (via PPX2, H1, desulphurisation reactor). All
the other energy balance variables evolve only in the slow
time scale.

Table 3. Results of algorithm 1

Timescale Nodes evolving # of pure recycles

τ2
3, 4, 5, 6, 16, 17,

1
21, 22, 23, 24

τ1

1, 2, 3, 4, 5, 6,

0
7, 8, 9, 10, 11, 12,

13, 14, 15, 18, 19, 20,
25, 26, 27, 28, 29, 30,

31, 32, 33, 34

τ0 0

Algorithm 2 was then applied to this graph. The code
successfully generated scaled energy balance equations.
Equation (1) represents the original scaled energy balance
equations. It can be noted that this equation is stiff
and shows a potential for multi-time scale dynamics. H
represents the vector of all the enthalpy balance variables.
g0(u0), g1(u1) and g2(u2) are scaled vectors.

dH

dt
= εg0(u0) + g1(u1) +

1

ε
g2(u2) (1)

The corresponding scaling rules (2) and (3) were also
generated:

O(1) steady state ratios, ki−j =
hi−j,s
hw,s

(2)

O(1) scaled flows, ui−j =
hi−j
hi−j,s

(3)

where, hw,s is a reference energy flow of weight w, where
w is the weight of the energy flow hi−j .

The dynamic equations in the fast time scale τ1 = t/ε are
given by Eq. (4).

dH2

dτ1
= g′2(u2) (4)

whereH2 = {H3, H4, H5, H6, H16, H17, H21, H22, H23, H24}.
g′2(u2) represents a subset of the vector g2(u2) correspond-
ing to enthalpy vector H2. As there is a large energy
recycle loop, the constraints from the fast time scale are
linearly dependent. The dynamics in the slower time scale
is given by Eq. (5).

dH1

dτ0
= g′1(u1) + C1B1z1

g̃′2(u2) = 0 (5)

where g̃′2(u2) = 0 represents linearly independent con-
straints. H1 represents the corresponding vector of energy
balance variables evolving in this time scale. z1 represents
algebraic variables, thus making this slow dynamics a DAE
system.

Note that the exact forms of the various vectors and
matrices are generated by the code but, for the sake of
brevity, are not reproduced here.

Lastly, the results from the application of algorithm 3 are
presented in Table 4. Variables that should be controlled
in the fast time scale are the temperatures of cold and
hot sides of PPX2 (3 and 4) and PPX6 (16 and 17), the
heater H1 (5), the desulphurisation reactor (6), the heaters
H2 (21) and H3 (23) and the two reformers (22 and 24).
It was also indicated that one out of the temperatures
of cold and hot sides of PPX2, the heater H1 and the
desulphurisation reactor (6) should be left uncontrolled
in this time scale. Some of the potential manipulated
inputs include the heating duty of H3 (37→23), the
heat transfer rate across PPX2 (4→3) which can be
varied using a bypass stream across this exchanger. In
the slow time scale, most of the variables evolving in
that time scale are to be controlled along with the total
enthalpy of the recycle block comprising of PPX2, H1 and
desulphurisation reactor.

Table 4. Results of algorithm 3

Timescale
Potential control Potential manipulated

variable Node input edge

τ2

16 3 → 5 (Internal flow)
17 4 → 3 (Internal flow)
21 5 → 6 (Internal flow)
22 6 → 4 (Internal flow)
23 16 → 21 (Internal flow)
24 17 → 16 (Internal flow)

any 3 out of 21 → 22 (Internal flow)
3, 4, 5 & 6 22 → 44 (External flow)

23 → 24 (Internal flow)
24 → 17 (Internal flow)
37 → 23 (External flow)

τ1

1, 2, 7, 8, 1 → 3 (Internal flow)
9, 10, 11, 12, 2 → 1 (Internal flow)
13, 14, 15, 18, 2 → 26 (Internal flow)
19, 20, 25, 26, 2 → 27 (Internal flow)
27, 28, 29, 30, 7 → 13 (Internal flow)
31, 32, 33, 34 8 → 7 (Internal flow)
3 + 4 + 5 + 6 8 → 10 (Internal flow)

This example clearly illustrates the predictive power of
the proposed analysis framework. It should be emphasized
that minimal process information is utilized to generate
these results very efficiently (it took less than 1 second
to run all these algorithms together for this system on a
Intel(R) Core(TM)2 Quad CPU with 2.40 GHz clock speed
and 4 GB of RAM).

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an application of a graph
theoretic framework for the analysis of a complex energy
integrated network. The framework offers significant ad-
vantages over an analytical approach using singular per-
turbations. Specifically,

• the graph-based approach is scalable to large net-
works

• it requires minimum process information to uncover
dynamic time scale multiplicity or identify controlla-
bility issues

• it can be easily automated and can serve as an
efficient tool to compare and screen different design
alternatives based on controllabilty of the integrated
system
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The graph-theoretic framework is generic and can find
applications in a wide range of energy integrated systems.
One particular area we are currently exploring is the anal-
ysis of cryogenic systems. Energy integration is prevalent
in cryogenic systems as the supply of refrigeration at
cryogenic temperatures is highly energy (and thus cost)
intensive. These systems are, however, characterized by
the presence of recovery and recycle of refrigeration. These
systems work the opposite way as compared to conven-
tional high temperature integrated systems. For example,
a colder stream carries higher refrigeration than a hotter
stream. The graph-theoretic framework will therefore be
modified to analyze such refrigeration flow graphs.
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