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Abstract Model Predictive Control (MPC) is a powerful tool in the control of large scale
chemical processes and has become the standard method for constrained multivariable control
problems. Hence, the number of MPC applications is increasing steadily and it is being used
in application domains other than petrochemical industries. A common observation by the
industrial practitioners is that success of any MPC application requires not only efficient initial
deployment but also maintenance of initial effectiveness. To this end, we propose a novel high
level automated support strategy for MPC systems. Such a strategy consists of components such
as performance monitoring, performance diagnosis, least costly closed loop experiment design,
re-identification and autotuning. This work presents the novel technological developments in
each component and demonstrates them on a distillation column case study. We show that
automated support strategy restores nominal performance after a performance drop is detected
and takes the right course of action depending on its cause.

1. INTRODUCTION

Since its introduction in Richalet et al. (1976), MPC
has been accepted and implemented as a standard tool
to drive and maintain processes at economically optimal
operating conditions. This widespread success is due to
its ability to handle complex interacting systems and
system constraints resulting in increase in productivity,
improved product quality, safe operation and reduction in
costs. Hence, the number of implementations are increas-
ing steadily and extending to application domains other
than traditional process industries. Despite the growing
number of implementations and substantial benefits, MPC
applications exhibit a low level of operational efficiency.
One of the major reasons for this is the lack of main-
tenance. As quoted in Bauer and Craig (2008) “A tech-
nical shortcoming of almost all MPC systems is that if
left unsupervised the performance will deteriorate over
time”. This performance degradation may be due to model
deterioration, varying operating conditions or a change

1 The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 257059, The ’Autoprofit’ project
(www.fp7-autoprofit.eu).

in disturbance characteristics (Harrison and Qin (2009)).
Additionally, lack of skilled process engineers who can sup-
port this kind of application is a challenge. Such factors,
in most cases, lead to switching off MPC completely and
returning to manual operation. Therefore, the successful
implementation requires easy to use technology that can
increase operational efficiency and automate maintenance
of MPC systems.

This topic of maintaining operational efficiency has also
been previously studied by Lee et al. (2008) and by Zhu
and Padwarthan (2012). In this work, we develop this
area further to a high level automated support strategy
for performance monitoring, diagnosis and performance
recovery. The support strategy, presented in Fig. 1, is
built around the main concepts of least costly experiment
design, just in-time maintenance of models and applica-
tions and automatic decision making based on an economic
criteria. It brings together novel techniques in performance
diagnosis and monitoring (Modén (2012a,b); Potters et al.
(2012); Mesbah and Bombois (2011, 2012)), experiment
design (Bombois et al. (2006); Hjalmarsson (2009); Lars-

son et al. (2013)), and MPC tuning (Özkan et al. (2012);
Tran et al. (2012)). This paper is organized as follows.
Section 2 provides preliminary information. Section 3 de-

Preprints of the 10th IFAC International Symposium on Dynamics and Control of Process Systems
The International Federation of Automatic Control
December 18-20, 2013. Mumbai, India

Copyright © 2013 IFAC 713



Performance drop detected

Base-layer problem or constraint

activation due to external cause

Detailed analysis beneficial?

Apply closed loop

diagnosis test?

Reidentification beneficial?

Apply closed loop

identification

Tune MPC

Dedicated

maintenance

Retune

MPC

Retune

MPC

Retune

MPC

Yes

No

Yes

∆model

Yes

Yes

No

∆dist

No

No

Figure 1. Automated support strategy (The steps consid-
ered in this paper are in bold)

scribes each of the individual components of the support
strategy namely, performance monitoring and diagnosis;
tuning; and re-identification. In Section 4 we illustrate it
on a binary distillation column case study. Results followed
by conclusion and discussion are presented in Sections 5
and 6 respectively.

2. PRELIMINARIES AND NOTATION

Let R, R+ denote the field of real numbers and the set of
positive reals respectively. Consider the true linear time
invariant discrete time system Σtrue represented by

Σtrue := {y(t) = G0(z)u(t) +H0(z)e(t) (1)

and Σmod as the approximate model of the true system at
commissioning represented by

Σmod := {y(t) = Gmod(z)u(t) +Hmod(z)e(t) (2)

We denote the controlled system ΣC(G0, H0, C(Gmod))
as the closed loop system for the true plant in 1 where
C(Gmod) is defined as the MPC control law which uses
Gmod in its algorithm. With the notation given above, we
provide information on the fundamental concepts in the
automated support strategy.

2.1 Performance measure

It is the concept that unifies the different components of
the automated support strategy. Based on the outcome
of this measure, necessary decisions are taken followed by
the implementation of the corresponding actions. In this
paper, we use a performance measure based on K key
performance indicators, yi, of the system that we want
to be as close as possible to the given constraints bi. The
measure is given by

J (t, G,H,C(Gmod)) =

K∑
i=1

c1,iPviol,i+

K∑
i=1

c2,i|ȳi−bi| (3)

where c1, c2 are user-defined weightings. Pviol,i and ȳi
are the probability of violation and the mean value of
key performance indicator yi respectively, computed over
Nwin data points preceding time instant t. Pviol,i is de-
fined as the ratio of data points exceeding constraint
bi and the total number of data points Nwin, at time
instant t. In the case of parameterized models we can
equivalently consider a performance measure in the form
of J (t,ΣC(G,H,C(θ))) where J ∈ R+ and the control
design is based on the parameter vector θ.

The performance of the closed loop ΣC(G,H,C(Gmod)) is
satisfactory when

J (t,ΣC(G,H,C(Gmod))) ≤ β ∀t (4)

with β some carefully chosen, application dependent
threshold. The quality of a model used in a control ap-
plication will influence the performance of the control
application. We use the performance measure to define the
set of admissible parameters as

Θapp(β) , {θ : J (t,ΣC(G,H,C(θ))) ≤ β} (5)

For performance diagnosis, we use the set of admissible
models, defined as

Dadm = {G(z, θ) | J̄ (G(z, θ), Hmod, C(Gmod)) ≤ β} (6)

where Hmod is the disturbance model at commission-
ing, and G(z, θ) represents a model with the same or-
der as Gmod. Here, J̄ (·) is the time-averaged value of
J (t, G(z, θ), Hmod, C(Gmod)) over a period sufficiently
long to obtain a static value. This set includes all plant
models G(z, θ) that have a performance below the thresh-
old value β, under the original disturbance model. At
commissioning, we assume that the performance is sat-
isfactory, hence J (t, G0, H0, C(Gmod)) ≤ β. In this way,
we are able to distinguish between two important control-
relevant changes in a process: changes due to altered plant
dynamics and disturbance characteristics changes. This
will be explained in more detail in Section 3.3.

2.2 Model predictive control

MPC represents a set of control strategies in which a finite
time horizon optimal control problem is solved online at
each time instant. Only the first value of the solution is
implemented and this procedure is repeated in the next
time instant. The strategy requires a model of the process
to be controlled and is able to deal explicitly with MIMO
plants and system constraints. A general formulation of
MPC is given by

min
{u(t+k)}Nu

k=1

J(t) =

Ny∑
k=1

‖y(t+ k)− r(t+ k)‖2Q+

Nu∑
k=1

‖∆u(t+ k)‖2R, (7)

s.t. Σ :=

{
x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(8)

umin ≤ u(t+ k) ≤ umax, k = 1, . . . , Nu
(9)

ymin ≤ y(t+ k) ≤ ymax, k = 1, . . . , Ny
(10)
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where r(t) is a reference trajectory, ∆u(t) = u(t)−u(t−1)
is the control update, Ny and Nu are the prediction and
control horizons, Q and R are output and input weighting
matrices respectively.

2.3 Prediction error identification

Consider a discrete time, linear time-invariant dynamic
system described by a model on innovations form of

Σ :=

{
x(t+ 1) = A(θ)x(t) +B(θ)u(t) +K(θ)e(t),
y(t) = C(θ)x(t) + e(t)

(11a)

where θ ∈ Rnθ is the same as the parameter vector
in (5), x(t) ∈ Rd is the state vector, u(t) ∈ Rm is
the input, y(t) ∈ Rp the output, and e(t) ∈ Rp the
innovations: a zero-mean, random process with covariance
matrix E

{
e(t)eT (s)

}
= Λeδt,s. We assume that there

exists a vector θo which corresponds to the true system
parameters. In system identification, we want to find the
best possible estimate, according to some measure, of
the true system parameters θo. For this purpose, we use

the prediction error method with quadratic cost and θ̂N
denotes the estimate resulting from N samples of input–

output data, ZN = {u(t), y(t)}Nt=1,(Ljung, 1999).

For an unbiased estimator the Cramér-Rao inequality
provides a lower bound on the covariance matrix for the
parameter estimation error. Given data collected from
time m to time n, this bound is given by the inverse of
the Fisher information matrix Inm(θo), where the latter is
defined by

Inm(θo) =

n∑
t=m

E
{
ψ(t, θ)Λ−1e ψT (t, θ)

} ∣∣∣∣
θ=θo

, (12)

ψi(t, θ) =
dŷ(t)

dθi
(13)

ψ(t, θ) = [ψ1(t, θ) · · · ψnθ (t, θ)]
T

(14)

where ŷ(t) is the one-step-ahead predictor. Under very
general conditions Ljung and Caines (1979), it holds that

Inm(θo)
1/2(θ̂N − θo) ∈ AsN (0, I) (15)

meaning that the random variable Inm(θo)
1/2(θ̂N − θo)

converges in distribution to the normal distribution with
zero mean and covariance matrix I.This implies that

θ̂N ∈ Eid(α) ,
{
θ : [θ − θo]T Inm(θo) [θ − θo] ≤ χ2

α(nθ)
}

(16)

with probability α as N = n − m → ∞. Here χ2
α(nθ) is

the α-percentile of the χ2-distribution with nθ degrees of
freedom. We call Eid(α) the identification ellipsoid. The
result in (16) is crucial for the re-identification procedure
described in Section 3.5.

Note that the identification ellipsoid in (16) depends
on the Fisher information matrix defined in (12) and
on the unknown true parameter vector θo. Instead of
evaluating the expected value in the expression of the
Fisher information matrix, we approximate it by

Inm(θo) =

n∑
t=m

ψ(t, θ)Λ−1e ψT (t, θ)

∣∣∣∣
θ=θo

(17)

In fact, it holds under fairly mild conditions that

lim
n→∞

1

n
Inm(θo) = lim

n→∞

1

n
Inm(θo) (18)

Instead of using the true parameter vector θo, we use an

initial estimate θ̂init. This estimate can be obtained from
the model used at commissioning or from an identification
experiment that is much cheaper than the one performed
during re-identification.

3. AUTOMATED SUPPORT STRATEGY AND ITS
COMPONENTS

The automated support strategy consists of four main
components written in bold as shown in Fig. 1. These
are performance monitoring, performance diagnosis, closed
loop identification and automated tuning.

Performance monitoring is a crucial step and is discussed
in Section 3.2. Once the performance drop is detected, the
performance diagnosis tool is called upon (Section 3.3).
This tool distinguishes if the performance drop is due to
a plant change or a disturbance characteristics change.
Subsequent actions, being re-identification and tuning, are
discussed in Section 3.5 and Section 3.4 respectively.

3.1 Performance Monitoring

This component uses the performance measure defined in
(3) to decide whether the closed loop system ΣC(Gmod,
Hmod, C(Gmod)) is satisfactory or not. The satisfactory
performance is the case when J̄ (ΣC(G0, H0, C(Gmod))) ≤
β

3.2 Performance Monitoring

This component uses the performance measure defined in
(3) to decide, using definition (4), whether the performance
of the closed-loop system ΣC(Gmod, Hmod, C(Gmod)) is
satisfactory or not.

3.3 Performance Diagnosis

This component is triggered when a performance drop
is observed and used to accurately distinguish between
a performance drop due to a plant change or due to a
disturbance change. Base layer problems such as jammed
or leaking valves are excluded. The diagnosis problem
decides between the following hypotheses when a perfor-
mance drop is observed:

H0 : G0(z) ∈ Dadm
H1 : G0(z) /∈ Dadm,

(19)

where H0 (H1) corresponds to a performance drop caused
by a change in disturbance characteristics (plant change).
To be able to discriminate between the two hypotheses
stated in (19), we identify the unknown true system (1)
in closed-loop operation with the existing MPC controller
C(Gmod). To this end, an external signal r(t) ∈ Rm is
added to the input of the system: u(t) = uMPC(t) +
r(t) where uMPC(t) is the input signal computed by the
MPC controller. By applying the excitation signal r(t) for
(t = 1, . . . , N) to the closed-loop system and measuring
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the signals ZN = {u(t), y(t) | t = 1, . . . , N}, a model

{G(z, θ̂N ), H(z, θ̂N )} of the true system is identified using
prediction error identification.

The identified model G(z, θ̂N ) is then exploited to choose
between hypotheses H0 or H1. We recall that the identifi-
cation experiment for the diagnostic tool should be cheap.

Consequently, θ̂N has a large uncertainty compared to the
size of Dadm. To accommodate for the large uncertainty

of θ̂N inherent to a cheap experiment, we make use of
its uncertainty ellipsoid (16). We know that θ0 lies in Eid
with probability α. Thus, for a given α, we can compute
the fraction κ of transfer function G(θ), with θ ∈ Eid, that
lie inside Dadm.

Inspired by Tyler and Morari (1996), and using the idea
described above, we can now define a more careful decision
rule. The hypothesis H1 will only be chosen as the correct

hypothesis if the identified model G(z, θ̂N ) is not only
outside Dadm, but is far outside Dadm. With far, we mean
that κ� 1. The decision rule becomes

G(z, θ̂N ) ∈ Dadm ⇒ choose H0

G(z, θ̂N ) /∈ Dadm, but close to Dadm ⇒ choose H0.

G(z, θ̂N ) /∈ Dadm and far outside Dadm ⇒ choose H1.
(20)

The numerical procedure of the above computation is

as follows. Once an identified model G(θ̂N ) has been
obtained, we randomly pick a large number of θ’s from
its associated set Eid, where α is chosen by the user. For
each one of these θ’s, we verify via (6) whether G(θ) ∈
Dadm. This allows us to calculate the fraction κ, which is
subsequently used to deduce which of the hypotheses is
correct according to (20).

The data ZN obtained from the cheap identification ex-
periment is passed on to the next steps in the support
strategy. This information is used as a prior, and keeps
the overall costs as low as possible.

3.4 Automated Tuning for MPC

The tuning component in the automated support strategy
can be either used at commissioning or when new tuning
is required in the course of MPC automatic performance
maintenance. The latter is implemented when the diag-
nosis test detects a disturbance change or a new model
is identified because the the performance drop is due to
the changes in the plant dynamics. Only the weighting
matrices Q and R in (7) are considered as tuning parame-
ters. We also assume that the constraints are inactive and
the disturbance energy distribution has low-pass charac-
teristics. The auto-tuning method is based on the impact
of modeling uncertainty on closed-loop performance as
described in Tran et al. (2012). Without any modeling
errors, increasing the closed loop bandwidth of the sys-
tem results in a decrease in the output variance. On the
contrary, in the presence of modeling errors, increasing the
bandwidth of the closed-loop system from some frequency
onwards will lead to an increase in the output variance.

This relation is illustrated in Fig.2 on the quadruple-tank
system from (Johansson (1997)).
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Figure 2. Relation between closed-loop bandwidth and
output variance.

This relation shows that there exists a specific bandwidth
(ωds) where the balance between nominal performance and
robustness is achieved. Hence, the aim of the auto-tuning
method is to find this bandwidth. The MPC auto-tuning
method consists of the following steps:

(1) Initialization: Determine a certain initial bandwidth
based on disturbance characteristics and available in-
formation on modeling errors. Find the corresponding
MPC tuning parameters. Fix the prediction horizon
so as to cover the main dynamics of the open-loop sys-
tem and the control horizon based on computational
capacity.

(2) Automation: Increase the bandwidth. Find the corre-
sponding MPC tuning parameters.

(3) Monitoring: Monitor the output variance. Compare
it with the previous tuning. If the variance decreases,
keep increasing the bandwidth. If the output variance
increases, the previous tuning is assumed to be opti-
mal.

In the auto-tuning procedure, we need to relate the se-
lected bandwidth to the tuning parameters of MPC. The
closed-loop bandwidth is determined by the weighting
matrices Q and R as shown in Tran et al. (2012). In
the unconstrained case, the control input of MPC can be
considered as a state feedback (Maciejowski (2002)) and
its sensitivity and complimentary sensitivity functions can
be computed. The cut-off frequencies of the sensitivity
function define the bandwidth of the closed-loop system
which determines the capacity of rejecting disturbances.
To find the tuning parameters Q and R that give a certain
desired bandwidth, we formulate the following optimiza-
tion problem:

min
Q,R

(ωds − ωcs(σi(Q,R)))2 (21)

3.5 Re-identification of the model

The re-identification component is a closed loop identifi-
cation method which is referred to as MPC-X (MPC with
excitation) and is presented in Larsson et al. (2013). The
excitation signal requirements are introduced as an extra
constraint in the MPC formulation. In this section, we
explain the identification and outline the underlying least
costly identification concepts.
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Application set The previously defined application set
(5) is typically non convex and difficult to work with.
Therefore, we approximate the application set with an
ellipsoid given by

Θapp(β) ≈ Eapp(β) ,
{
θ : θTAθ + 2bT θ + c ≤ 0

}
. (22)

The ellipsoid (22) is not necessarily centered at θo. The
ellipsoid could come from a Taylor approximation of J
evaluated at θo or from fitting it to a number of points θ
fulfilling the inequality in (5). The approximation method
chosen determines the matrixA, the vector b and the scalar
c in (22).

Applications oriented input design The objective of
applications oriented input design is to provide an input
signal which, when used in an identification experiment,
gives a model that fulfills any performance requirements
on the application when used in the control design, e.g.,
as the model in MPC. To achieve this, we require

Eid ⊆ Eapp. (23)

This inclusion implies that the estimated model parame-
ters will lie in the set of acceptable parameters with the
specified probability α. By the S-procedure, the inclusion
(23) holds if and only if there exists a τ > 0, such that[

IN1 (θ̂init) −IN1 (θ̂init)θ̂init
−θ̂TinitIN1 (θ̂init) θ̂

T
initI

N
1 (θ̂init)θ̂init − χ2

α(nθ)

]
� τ

[
A b
bT c

]
,

(24)

as shown in Boyd and Vandenberghe (2003).

Receding horizon implementation and MPC-X We in-
clude the (24) as an additional constraint in the receding
horizon implementation of MPC given in (7) for a plant
described as in 11 where we assume that u(t+ k) = u(t+
k−1) for k > Nu. This formulation of the MPC is referred
as MPC-X, non-convex and typically difficult to solve.
Therefore we make a convex relaxation based on LMI
lifting and dropping a troublesome rank constraint on the
resulting variables. The relaxation is detailed in Larsson
et al. (2013) and based on the works of Manchester (2010);
Luo et al. (2010).

We make two comments regarding the MPC-X formula-
tion. First, even though the formulation allows for different
control and prediction horizons, we will only consider the
case Nu = Ny. In the (most common) case of Ny > Nu
some assumption on the inputs beyond the control horizon
has to be made. Typically they are set to be constant or
zero, neither choice is suitable for the case where exci-
tation is desired. Second, since the information matrix is
constructed as the sum of Nu rank 1 matrices, Nu has to
be at least as long as the rank of the matrix on the right
hand side of the excitation constraint (24).

4. IMPLEMENTATION OF AUTOMATED SUPPORT
STRATEGY ON A DISTILLATION COLUMN CASE

STUDY

A distillation column case study is selected to illustrate
the automated support strategy. To this end, a simulation
environment for benchmark validation provided by Lundh
and Modén (2012) is used. The model of the distillation
column consists of 110 trays and describes the composition
profile. A detailed description of this process is given in

Skogestad (1997).The reboiler and the condenser are not
modelled. The model has 2 control variables (top (ytop)
and bottom purity (ybot)) and 2 manipulated variables
(liquid (LF ) and vapor flow rates(V F )). The feed (F =
219 Kmol/min) flow with a light component composition
of zF = 0.65 enters the column at the 39th tray. It is
assumed that the relative volatility is α = 1.35 and the
liquid holdup is constant at M = 30 kmol. The objective of
the controller is to keep the bottom and top compositions
at their set points.

4.1 Linear input-output model

We consider a linear state space model to represent the
process in MPC implementation in the form (11) where
x ∈ R2, u ∈ R2, y ∈ R2 are the system states, inputs
and outputs respectively. The state space matrices are
linearly dependent on the parameter vector θ, meaning,
each element of the matrices correspond to one element
in θ. To ensure identifiability of the linear model, we
assume that we know the true elements of C in (11). The
considered linear model can thus be written as

Σlin :=



x(t+ 1) =

(
θ1 θ2
θ3 θ4

)
x(t) +

(
θ5 θ6
θ7 θ8

)
u(t)+(

θ9 θ10
θ11 θ12

)
e(t),

y(t) =

(
θ̂init13 θ̂init14

θ̂init15 θ̂init16

)
x(t) + e(t)

(25a)

MPC-X currently only handles output error systems. This
means that MPC-X assumes θ9, . . . , θ12 = 0 in (25). The
input signal to be used in the identification experiment
is therefore designed as if the system was output error.
Despite this, we still use the obtained input signal to
identify the linear model in (25), that is, to estimate
θ1, . . . , θ12.

4.2 Performance measure

For the case study, we used J (t,ΣC(G,H,C(Gmod))) =∑
i=ybot,ytop

{c1,iPviol + c2,i|yi − bi|} where we chose c1,1 =

c1,2 = c2,1 = c2,2 = 1, the time window over which
averaging takes place is Twin = 300 samples, and bi are
the constraints on the top and bottom products of the
column. These are set to 0.08 for ybot and 0.92 for ytop.

Application set We need to find the application set (22).
The approach here is to randomly sample parameter values
θ and to evaluate the application cost for these parameters
in simulation. Based on the parameter values that give
sufficiently low application cost, we can estimate A, b and
c in (22). Finding these estimates can be formulated as a
convex optimization problem and as such it can be solved
efficiently Boyd and Vandenberghe (2003).

4.3 Simulation scenarios

We consider three different scenarios in the simulation
study.

Nominal operations During initial identification, the
variance of the control inputs are var(LF ) = var(V F ) =
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100. The model is obtained around the desired operating
point where the top composition is 0.95 and the bottom
one is 0.05. The variance of the feed rate and feed com-
position are var(∆F ) = 64 and var(∆zF ) = 2.5 × 10−3,
respectively. These disturbance signals are then filtered
by a second-order Butterworth low-pass filter with cutoff
frequency 0.05. The noise on the outputs has a variance of
0.1.

Plant change The directionality is well known and
frequently observed phenomenon in high purity distillation
columns. To induce a performance drop due to a change
in plant dynamics, an input uncertainty of ”rotation type”
is introduced, which is similar to the uncertainty shown in
Skogestad and Morari (1987) and Skogestad and Morari
(1988):(

∆LFimp
∆V Fimp

)
=

(
cosφ sinφ
− sinφ cosφ

)(
∆LFMPC

∆V FMPC

)
, (26)

where ∆LFMPC and ∆V FMPC are the control inputs
computed by the MPC, i.e. the deviation of the liquid
and vapor flow from their nominal values; ∆LFimp and
∆V Fimp are the control inputs implemented on the plant;
φ is the rotation angle of the inputs. In the following,
φ = 0 at the commissioning phase, and then a rotation of
φ = −π/5 is used give a plant change. The explanation of
the performance drop is given in more detail in Tran et al.
(2012) and partly in Özkan et al. (2012). It was proved
that the model uncertainty limits the MPC’s ability to
restore nominal performance.

We run a simulation of 1,600 samples in four phases of 400
samples each:

(1) Normal operation using commissioning model.
(2) Operation under plant change.
(3) Re-identification phase.
(4) Operation using new model from phase 3) in MPC.

The performance index is calculated for each phase. To
evaluate the performance of the identification, we make a
Monte Carlo simulation with 310 trials. We evaluate the
benefit of the extra excitation added in MPC-X by running
the same simulations without the excitation constraint
active in the MPC. The parameters of MPC-X were chosen
to be Ny = Nu = 8, α = 0.99.

Disturbance change The second scenario, a change in
disturbance characteristics, is realised by changing the
cutoff frequency of the second-order Butterworth low-pass
filter to 0.1. The variance of the feed rate disturbance is
increased from var(∆F ) = 64 to var(∆F ) = 225 and the
feed composition disturbance from var(∆zF ) = 2.5×10−3

to var(∆zF ) = 2.5× 10−3.

5. IMPLEMENTATION RESULTS

The auto-tuning method is applied to the distillation
column during the nominal operation to achieve the op-
timal bandwidth for the closed loop. To this end, we
solve the optimization problem in (21). We consider the
cut-off frequency ωcs(σ(Q,R)) of the minimum singular
value of the closed loop system. In the MPC, Q is an
identity matrix since the bottom and top compositions
are of equal importance and R = ρI2. In this case, ρ is

the only optimization variable. The reasoning behind this
choice is that increasing ρ will lead to a decrease in the
maximum crossover frequency of the sensitivity function
and reducing ρ will lead to an increase in that frequency.
The bandwidth range the controller can attain is [0;0.1]
rad/min (the maximum bandwidth of 0.1 rad/min is the
cutoff frequency of the sensitivity function of the case
ρ ≈ 0). Therefore, a low bandwidth of 0.01 rad/min is
implemented as a starting point. The bandwidth is then
increased by 0.01 rad/min after every 2000 minutes and
the variance of the outputs is computed. The relation
between the bandwidth of the controller and the output
variance after running 10 simulations for 10 bandwidth
points is given by the solid curve in Figure 3. The optimal
bandwidth is 0.06 rad/min and the corresponding output
variance is 0.3264. Q and R corresponding to the optimal
bandwidth is then fixed as the tuning parameter values at
the commissioning.
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Figure 3. Relation between bandwidth and output variance
of the distillation column at commissioning and after
a change in the disturbance.

5.1 Plant change

The plant change scenario results in a performance drop
which activates the diagnostic component of the support
strategy. Using the algorithm discussed in the previous
section, we did a cheap experiment. The identified model
has an order of m = 8. We, then, sample the 95-percentile
confidence region and check whether the associated trans-
fer functions lie in Dadm. We conclude that, out of 2000
samples, 80.799% of the models lie outside Dadm. Hence,
we can conclude that H1 is true. Hence, the performance
drop was due to a plant change. This conclusion requires
identification of a new model in closed loop.

Results The performance index for the four different
phases and two simulation setups are illustrated in Fig-
ure 4. It is clear that adding the constraint results in degra-
dation of performance during the re-identification phase.
However, the new model results in acceptable performance
in 94 % of the cases. We also note that the spread of the
resulting performance measure is small. This should be
compared to the case without the excitation constraint,
where the re-identification (naturally) does not degrade
performance but the resulting models are able to restore
performance in 62 % of the cases. Furthermore, while the
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Figure 4. Box plots of the performance measures of the four
phases of the 310 Monte Carlo trials for the two cases
where normal MPC or MPC-X is used. During the
excitation phase (3) the cost for MPC-X is higher than
for normal MPC where no extra excitation is added.
However, in the new model phase (4), the number of
models with acceptable performance is significantly
higher for the MPC-X case. The acceptable level is
below the solid line.
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Figure 5. Top (red) and bottom (blue) compositions for
the plant change scenario when MPC-X with extra
excitation during phase 3 is used. The performance
measures for the different phases are 0.08, 0.15, 0.20,
0.07, respectively.

median performance measure is reasonable, the spread is
very large. Another observation is that when the model
has been identified from normal closed loop data, in 13 %
of the cases the resulting closed loop is unstable, while
this happened for only 2 % of the models identified with
MPC-X. One typical simulation is shown in Figure 5.

Discussion We do not reach the goal of 99 % re-identified
models giving acceptable performance. There are a number
of approximations made along the way which surely con-
tribute to the discrepancy. It is also important to comment
on the fact that because of the conflicting nature of the
amplitude and excitation constraints of MPC-X, it is easy
to run into a situation where the problem is infeasible.
In these cases, MPC-X instead solves the original MPC
problem, without extra excitation. In the Monte Carlo
study here, this happened for at least one sample in 39
of the trials and for more than one sample in 7 of the
trials.

5.2 Disturbance characteristics change

The performance drop due the disturbance change is
realized by changing its variance and frequency content.
We, then, sample the 95-percentile confidence region and
check whether the associated transfer functions lie in
Dadm. We conclude that, out of 2000 samples, 11.69% of
the models lie outside Dadm. Hence, H0 is true, i.e., the
performance drop is due to a disturbance change.

Results In this scenario, the auto-tuning method is
re-implemented when the performance drop is due to
a change in the disturbance. The relation between the
bandwidth and the output variance is given by the dashed
curve in Fig. 3. At the commissioned bandwidth of 0.06
rad/min, the variance goes up to 0.5066 due to the change
in the disturbance. The auto-tuning method can bring the
variance down to 0.4236 by increasing the bandwidth. The
corresponding bandwidth 0.09 rad/min is the new optimal
bandwidth of the current system.

Discussion The auto-tuning method always aims for the
best balance between disturbance rejection and robustness
starting at a low-bandwidth setting. This low-bandwidth
point can be decided based on information available on
the disturbance model and model uncertainty. Since MPC
systems in practice are generally tuned conservatively,
choosing a low bandwidth is consistent.

6. CONCLUSIONS

The automated support strategy and its components have
been presented and demonstrated on a binary distillation
column example. Once a performance drop is experienced,
we are able to distinguish the cause of it with a high proba-
bility. The subsequent respective actions then can restore
the nominal performance. More specifically, the MPC-X
algorithm has been successfully implemented in MATLAB.
Initial experiments on the case study show promising re-
sults. Further research is needed to understand the reason
behind the numerical problems occurring when estimating
the complete state-space model of the distillation column
(including the C-matrix) and why the gain of using the
optimal excitation signal compared to normal excitation
signal is so small. The auto-tuning method succeeded in
finding the tuning parameters resulting in the best balance
between robustness and performance in commissioning
and when a change in disturbance characteristics is ob-
served. The optimization problem solved in the tuning al-
gorithm has only considered ρ as the optimization variable
but this could easily be extended to the complete set of
diagonal elements in the weighing matrices. An additional
research question is also considering system constraints in
automated tuning of MPC systems.
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