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Abstract: In this work, we discuss a recently proposed approach for supervised dimensionality reduc-
tion, the Supervised Distance Preserving Projection and, we investigate its applicability to monitoring
material’s properties from spectroscopic observations. Motivated by continuity preservation, the SDPP
is a linear projection method where the local geometry of the points in the low-dimensional subspace
mimics the geometry of the points in the response space. Such a mapping facilitates an efficient regressor
design and it may also uncover useful information for visualisation. An experimental evaluation is
conducted to show the performance of the SDPP and compare it with a number of state-of-the-art
approaches for unsupervised and supervised dimensionality reduction. For the task, the results obtained
on a benchmark problem consisting of a set of NIR spectra of diesel fuels and six different chemico-
physical properties of those fuels is discussed. Based on the experimental results, the SDPP leads to
accurate and parsimonious projections that can be used in the design of efficient regression models.

Keywords: Supervised Distance Preserving Projection, Dimensionality reduction, Principal Component
Analysis, Partial Least Squares, Multivariate quality control, Soft-sensor design

1. INTRODUCTION

Spectrophotograms are recognised sources of information in
a variety of fields ranging from analytical chemistry to pro-
cess industry. Many applications reported in the research and
industrial literature regard the estimation of important qual-
ity indexes (typically, chemical and physical properties) in a
material starting from a collection of light absorbance spectra
(Workman, 1999). The information encoded in the spectra re-
sults from the interaction between light and matter and it is
displayed as complex curves conditioned by the composition
of the analysed samples. The composition, in turn, determines
the properties of interest. Without specific methods of analy-
sis, such information is not easily accessible and, cannot be
directly extracted and used for estimation purposes. In fact, one
intrinsic characteristic of the measurements acquired by a spec-
trophotometer is that the absorbance spectrum can be regarded
as a regular function observed at discretised arguments in the
instrument’s operating range of wavelengths. Because of such
a distinctive feature, the calibration problem of estimating the
response output (the property of interest) is defined from very
high-dimensional and collinear input covariates (the spectra).

To address the calibration problem, one common regression
approach is used in practice. The standard solution is to rely
on full-spectrum methods for linear dimensionality reduction
coupled with linear regression. Reference models and de facto

standard in multivariate calibration are the well-known Princi-
pal Component Regression, which performs Principal Compo-
nent Analysis (PCA, Jolliffe (2002)) followed by Multiple Lin-
ear Regression (MLR), and Partial Least-Squares Regression,
which combines Projection to Latent Structures (PLS, Wold
et al. (2001)) and MLR. PCA is an unsupervised dimensionality
reduction method that learns a low-dimensional input subspace
by maximising the variance of the covariates and PLS is a
supervised method that constructs a low-dimensional input sub-
space by maximising the covariance between the projected co-
variates and the output. Following the advances in dimension-
ality reduction, the kernelised extensions Kernel-PCA (KPCA,
Schölkopf et al. (1998)) and Kernel-PLS (KPLS, Rosipal and
Trejo (2002)) have been developed and used to perform nonlin-
ear projections of the spectral data (Rosipal et al., 2003).

In this work, we discuss a recently proposed approach for super-
vised dimensionality reduction, the Supervised Distance Pre-
serving Projection (SDPP, Zhu et al. (2013)) and we investigate
its applicability to the calibration problem from spectroscopic
observations. Motivated by continuity preservation, the SDPP
minimises the difference between distances among projected
covariates and distances among responses, locally. The minimi-
sation of distance differences leads to the effect that the geome-
try of the input points in the low-dimensional subspace mimics
the geometry of the corresponding points in the response space.
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Being the projection map linear and parametric, the SDPP can
easily handle the out-of-sample data. Such a simple map facil-
itates the design of efficient regressors that estimate product’s
properties from very high-dimensional spectral observations.

The remainder of this paper is organised as follows. Section 2
overviews the Supervised Distance Preserving Projection and
the two optimisation schemes to solve it. In Section 3, an ex-
perimental evaluation is conducted to show the performance of
the SDPP and compare it with four state-of-the-art approaches:
PCA, PLS, KPCA and KPLS. For the task, a benchmark prob-
lem from the Southwest Research Institute (SwRI) consisting of
a set of Near Infrared (NIR) spectra of diesel fuels and six dif-
ferent chemico-physical properties of those fuels is discussed.

2. THE SDPP

The Supervised Distance Preserving Projection (SDPP) is di-
mensionality reduction method based on simple geometric in-
tuitions on the assumed continuity of the mapping from the
covariates to the response space. The Weierstrass definition of
continuity of a function states that if two points are close in
the covariates space, then they are also close in the response
space; The SDPP is designed to find a low-dimensional sub-
space where such a continuity is preserved. In the following,
the basic formulation of the SDPP is overviewed, along with
the two principal optimisation schemes designed to solve it.

2.1 Formulation of the SDPP

Formally, we are given n data points {x1,x2, . . . ,xn} ∈ Rd and
their corresponding responses {y1,y2, . . . ,yn} ∈ Rm, and we
assume the existence of a continuous mapping f : X 7→ Y .
Provided that the input space X is well-sampled, we expect
that for each point x ∈ X and for every εy > 0 there exists
an εx > 0 such that d(x,x′)< εx⇒ δ ( f (x), f (x′))< εy, where
d(·, ·) and δ (·, ·) are distance functions in X and Y , respec-
tively. Under this condition, the Supervised Distance Preserving
Projection is designed to compute a low-dimensional subspace
Z of dimensionality r with r � d, where such a continuity
is preserved. The SDPP achieves this by matching the local
geometry of the data points in the Z and Y spaces. The
geometrical structure is expressed by pairwise distances over
neighbourhoods of the input covariates. Inside the neighbour-
hoods, the SDPP minimises the difference between distances
among projected covariates and distances among responses.

The Supervised Distance Preserving Projection assumes that
the subspace Z can be obtained by a linear transformation of
X ; that is, for an input point x, the new representation in the
subspace is z = WT x, where the projection matrix W ∈ Rd×r.
Concretely, the SDPP seeks for a linear transformation W that
parameterises the input distances by minimising the criterion

J(W) =
1
n

n

∑
i=1

∑
x j∈N (xi)

(d2
i j(W)−δ

2
i j)

2, (1)

where N (xi) is a neighbourhood of xi. To characterise pair-
wise distances, the conventional Euclidean metric is commonly
used; that is, d2

i j(W) = ‖zi− z j‖2 and δ 2
i j = ‖yi−y j‖2.

Figure 1 pictorially depicts the functioning of the SDPP, where,
for an input point x, three nearest neighbours {x1,x2,x3} are
considered and a transformation W that leads to a similar
geometry between the Z -space and the Y -space is found. To

match the local geometry of the Y -space, one of the three
nearest neighbours, x2, is moved, after projection, outside the
neighbourhood in the Z -space while another point is moved
inside. This match is beneficial to the regression from the
subspace Z to the response space Y and to the visualisation
of the relationship existing between inputs and responses.

X − space Y − space

Z − space

y2

y1

y3

y

z
z1
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z3
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x2
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x y = f(x)

y = g(z)W

Fig. 1. A schematic illustration of the SDPP. Solid lines indicate
connections between nearest neighbours.

The criterion of the SDPP, Equation 1, is similar to the S-
Stress (Takane et al., 1977), the objective used in one of the
variants of another dimensionality reduction approach, the Mul-
tidimensional Scaling (MDS, Cox and Cox (2000)). Both the
SDPP and the S-Stress are, in fact, formulated from squared
pairwise distances, whereas the Kruskal’s Stress used in other
MDS variants is based on plain pairwise distances. The S-Stress
is, however, defined for an unsupervised method and, thus no
response information is used. Moreover, the S-Stress pursues
global distance preservation, whereas the SDPP captures the lo-
cal geometry by incorporating a neighbourhood graph into the
cost. In the formulation of the Supervised Distance Preserving
Projection, locality for each data point xi is explicitly controlled
by considering its k nearest neighbours N (xi). The number of
neighbours k is thus a hyper-parameter of the SDPP and it has
to be provided by the user beforehand or to be tuned from data.

2.2 Optimisation of the SDPP

To optimise the objective function of the Supervised Dis-
tance Preserving Projection, two different strategies have been
designed: i) a Semidefinite Quadratic Linear Programming
(SQLP) problem and ii) a Conjugate-Gradient (CG) optimisa-
tion. The two formulations are overviewed in the following.

SQLP Starting from the square of the pairwise distances
d2

i j(W) = (xi−x j)
T WWT (xi−x j)

= (xi−x j)
T P(xi−x j),

with P = WWT a positive semidefinite (PSD) matrix denoted
as P� 0, the optimisation of SDPP can be formulated as an in-
stance of convex quadratic semidefinite programming (QSDP).

After defining τi j = xi − x j, the squared pairwise distances
(parameterised by the projection model W) can be written as

d2
i j(W) = τ T

i j Pτi j = vec(τi jτ
T
i j )

Tvec(P) = lTi jp,
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where vector li j = vec(τi jτ
T
i j ) and vector p = vec(P). vec(·)

is an operator that concatenates all the columns of a matrix into
a new vector. The objective can be re-written as a function of p,

J(p) = pT

(
1
n ∑

i j
Gi jli jlTi j

)
︸ ︷︷ ︸

A

p+

(
−2

n ∑
i j

Gi jδ
2
i jli j

)T

︸ ︷︷ ︸
b

p

+
1
n ∑

i j
Gi jδ

4
i j︸ ︷︷ ︸

c

= pT Ap+bT p+ c, (2)

where A ∈ Rd2×d2
,b ∈ Rd2×1, and c is a constant that can be

ignored later in the optimisation. In Equation 2, Gi j is used to
denote the neighbourhood graph of xi. Gi j is defined as

Gi j =

{
1 if x j is a neighbor of xi,

0 otherwise.

The SDPP is then optimised from the equivalent QSDP problem

min
p

pT Ap+bT p

s.t. P� 0 (3)
It is important to notice that the QSDP formulation does not
optimise the projection matrix W directly, instead it optimises
the PSD matrix P = WWT . The projection matrix W can be
computed either as the square root of P or, alternatively, from
a Singular Value Decomposition of P to obtain an orthogonal
projection matrix W. In the latter case, the i-th column of
W is calculated as

√
λivi, being λi and vi the i-th eigenvalue

and eigenvector of P, respectively. The dimensionality of the
projection subspace is determined by analyzing the eigenvalues.

Equation 3 can be also written as a semidefinite programming
(SDP) problem. Because of the low-rank structure of A, the
QSDP problem can be in fact reformulated into the equivalent
semidefinite quadratic linear programming (SQLP) problem

min
p,u

(e1− e2)
T u+bT p

s.t. (e1 + e2)
T u = 1,

Bp−Cu = 0,

u ∈Kq+2,

P� 0, (4)

where q is the rank of A, by Cholesky factorisation A = BT B
with B ∈ Rq×d2

, C = [0q×2,Iq×q] and ei is the i-th basis vector
with i = 1,2, . . . ,q + 2. Km is used to denote the second-
order cone of dimension m (i.e., Km = {(x0;x) ∈ Rm|x0 ≥
‖x‖}). The SQLP formulation sets the problem into a standard
framework of optimisation with semidefinite constraints, which
is supported by many efficient optimisation libraries.

The solution of the SQLP problem requires O(d6.5) arithmetic
operations and it is, in that sense, convenient when compared to
the SDP solution that requires O(d9) operations.

Conjugate-Gradient optimisation When the dimensionality
of the original dataset is very high, the size of A in the SQLP
formulation becomes extremely large. Due to the large size of
the matrix A, the SQLP solution is therefore feasible only for
not very high-dimensional problems (e.g. when d < 100). This
aspect brings practical limitations related to storing capacity
and further optimisation. To overcome these shortcomings, an

Algorithm 1 Conjugate-Gradient optimisation of SDPP
Input: Training data matrices X and Y, neighbourhood graph
G, initialised projection matrix W0
Output: Optimised projection matrix W.

1. Compute gradient ∇WJ;
2. Vectorize the projection matrix, w0 = vec(W0);
3. Vectorize the gradient, g0 = vec(∇WJ);
4. Initialize the conjugate direction as ν0 =−g0;
for t = 1→ T do

5. Calculate βt by Polak-Ribiére’s rule, βt =
gT

t (gt−gt−1)

gT
t−1gt−1

;

6. Update the conjugate direction, ν t =−gt +βtν t−1;
7. Perform line search, ηt = argminη J(w+ην t);
8. Update w, wt+1 = wt +ηtν t

end for
9. Reshape the vector wT+1 into the matrix W.

alternative optimisation approach based on the conventional
conjugate-gradient (CG) search has been formulated.

After denoting the (squared) pairwise distances as Di j = d2
i j(W)

and ∆i j = δ 2
i j, the objective function in Equation 1 is written as

J(W) =
1
n ∑

i j
Gi j(Di j−∆i j)

2 (5)

The gradient with respect to W is then equal to ∇WJ =
4/n∑i j Gi j(Di j − ∆i j)τ i jτ

T
i jW. A more compact form of the

gradient can be obtained after denoting Q = G� (D−∆) with
� representing the element-wise product of two matrices, the
symmetric matrix R = Q+QT and S a diagonal matrix with
Sii = ∑ j Ri j. Straightforward algebraic manipulations lead to

∇WJ =
4
n

XT (S−R)XW, (6)

where each row of the data matrix X is a data point xi and
L = S−R is the Laplacian matrix. The conjugate-gradient op-
timisation of the objective of the SDPP is given in Algorithm1.

It is worth noticing that the CG approach allows for a direct
optimisation of the projection matrix W. In comparison to the
SQLP approach where the dimensionality of the projection
subspace is selected a posteriori, here it is defined beforehand.

3. MONITORING DIESEL FUELS

In this section, we illustrate the effectiveness of the Super-
vised Distance Preserving Projection and we compare its per-
formance with four state-of-the-art methods for unsupervised
and supervised dimensionality reduction. For comparison, we
consider Principal Component Analysis (PCA), Partial Least
Squares (PLS), Kernel Principal Component Analysis (KPCA)
and Kernel Partial Least Squares (KPLS). When kernel meth-
ods are used, standard Gaussian kernels are employed, with the
optimal kernel width estimated by cross-validation. As for the
neighbourhood size in SDPP, the heuristic to define locality to
be equal to 10% of the available data points is used (k = 0.1n).

The application consists of analysing six different properties
in summer diesel fuels starting from a set of spectral obser-
vations. The data are provided by the Southwest Research
Institute (http://www.swri.org) and publicly available for
benchmarking purposes from the Eigenvector Research Incor-
porated (http://www.eigenvector.com). The absorbance
spectra are acquired by means of a spectrophotometer operating
in the 900− 1700nm range. The absorbance is measured on
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the basis of the NIR principle with a 2nm resolution, Figure
2. Each observation consists of the 401-channel spectrum of
absorbances (xi ∈Rd , with d = 401) and the corresponding val-
ues of six different chemico-physical properties (yi ∈ Rm, with
m= 6): i) Boiling point at 50% recovery; ii) Cetane number; iii)
Density at 15◦C; iv) Freezing temperature; v) Total Aromatics;
and, vi) Viscosity at 40◦C. The measurements of the product’s
properties are obtained in laboratory by reference methods.
The dataset consists of n = 135 observations for learning the
projection models and 125 observations for testing. The six
outputs and corresponding spectra are analysed independently.

900 1000 1100 1200 1300 1400 1500 1600 1700

0

0.2

0.4

0.6

0.8

1

Wavelength [nm]

A
b
so
rb
an
ce

Spectra

Fig. 2. Visualisation of the spectra in the wavelength domain.

The spectra show the typical overlapped absorbance bands aris-
ing from different hydrocarbon functional groups and reflect
the samples composition. The major absorbance features in the
experimental region are assigned to the second overtone (≈
1100− 1300nm), the combination bands (≈ 1300− 1550nm)
and the first overtone (≈ 1600 − 1800nm) of the Carbon-
Hydrogen vibrations (Wheeler, 1959; Weyer, 1985). In details,
in the second overtone region, we can observe the aromatic
bonds at ≈ 1150nm, the methylene bonds at ≈ 1220nm indi-
cating the presence of linear hydrocarbons, whereas the methyl
bonds at≈ 1200nm indicate the presence of branched hydrocar-
bon although the absorbance is also influenced by the amount
of linear paraffin. By the same token, the combination bands for
methylene (≈ 1400nm), and methyl (≈ 1350nm) mimic what
observed in the short-wavelength range. The vibrations of the
C-H bond on different functional groups lead to distinct absorp-
tion peaks, therefore, the six chemico-physical properties of
the fuels can be explored from spectra since phenomenological
relationships between chemical structure and properties exist.

3.1 Visualisation of the projected spectra

In order to get an insight on the spectra and their low-
dimensional arrangement with respect to the six properties, we
projected the spectra (d = 401) onto a bi-dimensional subspace
(r = 2). For the task only the learning points were used. The
testing points were projected afterwards with the out-of-sample
formulations of the methods. The 2D subspace was selected to
support the presentation on easily intelligible visual displays.

Figure 3 shows the bi-dimensional projections of the input
spectra using a colouring scheme that dyes the points according
to the corresponding values of the response, for each prop-
erty and each for each method. From the figure, it is pos-

sible to notice how the projections obtained with supervised
methods (PLS and KPLS) appear visually superior when com-
pared to what obtained with the unsupervised methods (PCA
and KPCA); an expected result. On the other hand, the bi-
dimensional subspaces learned by the SDPP are based on two
highly informative features that allow for an ordered arrange-
ment of the projected input points with respect to the responses.
This is particularly true for the density, the total aromatics and
the viscosity of the fuel samples. For such properties, the input
spectra are arranged almost linearly, indicating that a mono-
dimensional projection would be sufficient for reconstructing
the outputs. For the cetane number and the freezing point, also
for the SDPP projections onto a higher a number of features
seem to be needed for reconstructing the responses.

The qualitative assessment of the projections and corresponding
visualisations can be quantified after recalling that when the
data dimensionality is reduced it is not necessarily possible to
preserve all the similarities. The reduction causes two main
kind of errors: i) Data point that are not neighbours in the
original space can be mapped close by in the projection space,
causing data points to be falsely identified as similar; and, ii)
Data points that are neighbours in the original space can be
mapped far away in the projection space, causing similarity
relations not to be correctly reconstructed. Based on Venna
and Kaski (2001), such errors can be used to measure the
trustworthiness and the continuity of the X →Z mapping.

• The trustworthiness of a projection is defined by denoting
with Ukr(i) the set of points that are in kr-neighbourhood
of zi in the projection space but not in the original one
and, with r̃(i, j) the rank of x j in the ordering based on its
distance from xi. Trustworthiness of X →Z is then

MX→Z
trust (kr) = 1−C(kr)

n

∑
i=1

∑
j∈Ukr (i)

(r̃(i, j)− kr)

• The continuity of a projection is defined by letting Vkr(i)
be the set of points that are in the kr-neighbourhood of xi
in the X -space but not in the Z -space and, by letting
r̂(i, j) be the rank of z j in the ordering based on its
distance from zi. Continuity of X →Z is then

MX→Z
cont (kr) = 1−C(kr)

n

∑
i=1

∑
j∈Vkr (i)

(r̂(i, j)− kr),

The neighbourhood size kr is to be understood as the amplitude
of the region of interest over which the figures of merit are
evaluated. The term C(kr) simply scales the measures into [0,1]:

C(kr) =


2

nkr(2n−3kr−1)
if kr <

n
2
,

2
n(n− kr)(n− kr−1)

if kr ≥
n
2
.

Figure 4 shows the measures of trustworthiness and continu-
ity of the bi-dimensional projections achieved by PCA, PLS,
KPCA, KPLS and SDPP for a region of interest kr ranging in
[2,64]. The diagrams highlight how PCA and PLS are the best
performers, with both trustworthiness and continuity monoton-
ically increasing with the amplitude of the region of interest.
This is not surprising considering that PCA can be understood
as a method for globally preserving pairwise distances and PLS
is known to find features that are often similar to the principal
components. On the other hand, the corresponding kernel ex-
tensions returned projections that are only moderately faithful.
Similar results are also obtained by the SDPP, indicating that
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Fig. 3. Bi-dimensional projection and visualisation of the input spectra. Colouring based on output values is used to dye the inputs.

the apparent quality of its bi-dimensional displays does not
necessarily correspond to an accurate preservation of the simi-
larities existing between spectra, before and after projection.

This result is not surprising because such criterion is not embed-
ded in the SDPP’s cost function. In that respect, the SDPP aims
at mapping inputs characterised by similar outputs close by in
the projection space. To design accurate regressors it is, in fact,
more desirable and expected that the continuity of the mapping
from Z to Y is as high as possible. In the spirit of Venna and
Kaski (2001), a measure of the continuity of the Z → Y map
can be defined by letting Vkr(i) be now the set of points that are

in the neighbourhood of size kr in the Z -space but not in the
Y -space and, by letting r(i, j) be the rank of y j in the ordering
based on its distance from yi. The continuity of Z → Y is

MZ→Y
cont (kr) = 1−C(kr)

n

∑
i=1

∑
j∈Vkr (i)

(r(i, j)− k),

Note that here kr and C(kr) bear the same meaning as before,
whereas k is the locality parameter of the SDPP (i.e., k = 0.1n).

Figure 5 shows the measure of continuity for regression after
the bi-dimensional projections achieved by PCA, PLS, KPCA,
KPLS and the SDPP. Again, a region of interest kr ranging in
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Fig. 4. Trustworthiness and continuity of the X →Z projection and visualisation, for a region of interest kr ∈ [2,64].
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Fig. 5. The measure of continuity for the Z → Y regression, for a region of interest kr ∈ [2,64].

[2,64] is used. In this case, the diagrams highlight how SDPP
is consistently the best performer in accurately representing the
continuity between the projected spectra and their correspond-
ing responses, for a wide amplitude of the region of interest.
This is also true for those outputs that appeared to require a
higher number of features to faithfully capture the input-output
relationships. The result suggests that, for all the responses,
simple linear regression models calibrated globally over all the
learning samples projected by the SDPP would be sufficient to
estimate the properties of the fuels from the projected spectra.

4. CONCLUSIONS

The Supervised Distance Preserving Projection is a supervised
dimensionality reduction method designed to project high-
dimensional covariates onto a low-dimensional subspace where
the geometry of the input points mimics the geometry of the
corresponding output points in the response space. Such type of
projection is desirable for designing accurate and yet parsimo-
nious regression models from very high dimensional and possi-
bly correlated input spaces. This type of regression problems is
typically encountered in chemometrics, where the calibration
of material’s properties from very high-dimensional spectral
observations remains a major application area. In this work,
the applicability of the SDPP under these ill-posed regression
conditions is investigated on a set of NIR spectra of diesel fuel
samples and six corresponding chemico-physical properties.
Based on the experimental results, we found that the SDPP can
be used to generate informative and yet parsimonious projec-
tions finalised to the design of efficient calibration models.
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