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Abstract: Model-based optimization is an increasingly popular way of determining the values
of the degrees of freedom for a process. The drawback is that the available model is often
inaccurate. An iterative set-point optimization method called “modifier adaptation” overcomes
this obstacle by incorporating process measurements into the optimization framework. We
extend this technique to optimization problems where the model inputs do not correspond to the
plant inputs. Using the example of an incineration plant, we argue that this occurs in practice
when a complex process cannot be fully modeled and the missing part encompasses additional
degrees of freedom. This paper shows that the modifier-adaptation scheme can be modified
accordingly. This extension makes modifier adaptation much more flexible and applicable, as
a wider class of models can be used. The proposed method is illustrated through a simulated
CSTR example.
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1. INTRODUCTION

Industrial processes are usually designed such that the
operator can manipulate certain degrees of freedom (or
inputs) to steer the process appropriately. Some of these
inputs are chosen to meet safety requirements and operat-
ing constraints, while the remaining ones can be chosen to
optimize a performance measure, such as profit or product
quality. In practice, these online decisions are made by the
operator based on process observation and experience.

Alternatively, these degrees of freedom can be deter-
mined in a systematic way using process optimization
techniques. Two radically different optimization strate-
gies exist: experimental evolutionary operation and model-
based numerical optimization. Evolutionary operation is
a structured approach for gradually varying the plant
inputs based on observing the measured response to these
variations, similarly to the way an operator would (Box
and Draper, 1969). In numerical optimization, powerful
computational algorithms are applied to a model of the
plant to compute optimal values for the inputs. Numerical
optimization is more suited to complex and constrained
optimization problems than evolutionary optimization, es-
pecially when the number of inputs is large. However, if
the model does not accurately match the plant, the inputs
computed through numerical optimization are neither op-
timal nor even feasible for the plant.

Over the past three decades, a number of methods have
been proposed to reduce numerical optimization’s reliance
on an accurate model. These methods incorporate mea-
surements in the optimization framework to offset the
effect of modeling errors and disturbances. In some ways,
it is a fusion of evolutionary operation and numerical
optimization, as the advantages of using process measure-

ments to characterize the plant behavior are combined
with numerical optimization’s capability to handle large
constrained systems. There are three main ways of in-
corporating measurements in the optimization framework:
(i) adapt the process model that is used subsequently
for optimization as in the so-called two-step approach
(Jang et al., 1987), (ii) adapt the optimization problem
and repeat the optimization (Tatjewski, 2002; Gao and
Engell, 2005), and (iii) directly adapt the inputs through
an appropriate feedback strategy (Skogestad, 2000; Srini-
vasan and Bonvin, 2007)). Although repeated parameter
estimation and optimization (the two-step approach) is
very appealing in that it is a logical way of improving both
model accuracy and plant performance, it is very unlikely
to converge to the true plant optimum in the presence of
structural plant-model mismatch (Forbes et al., 1994). In
this article, we focus on measurement-based optimization
techniques of type (ii), for which the optimization problem
is repeatedly solved online. Modifier adaptation (MA) is a
good representative of this class of techniques (Marchetti
et al., 2009).

With MA, measurements are used to implement zeroth-
and first-order corrections to the cost and constraint
functions, while the process model is left unchanged. A
major advantage of MA is that the adequacy conditions
(which are necessary conditions for convergence to the
plant optimum) are much simpler to satisfy than the
corresponding conditions of the two-step approach in the
case of structural plant-model mismatch (Forbes et al.,
1994; Marchetti, 2009). This is a very valuable property
since structural mismatch is almost invariably present in
complex processes as there are always simplifying assump-
tions made at the modeling stage. However, experimental
plant gradients need to be estimated, an onerous task that
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has received increased attention recently in the literature
(Marchetti et al., 2010; Bunin et al., 2013).

Although MA has been designed to resolve plant-model
mismatch, the model must still satisfy the following con-
ditions:

(1) have the same set of inputs as the plant,
(2) predict a locally convex (concave) cost function at the

plant minimum (maximum).

Condition (2) is likely to be satisfied by any reasonable
model. Furthermore, it has recently been shown that
this condition can be enforced by the use of a convex
approximation of the process model (François and Bonvin,
2013). The present article proposes a more general MA
formulation that can be applied when Condition (1) does
not hold, for example when the plant and the model have
different sets of inputs.

The paper is organized as follows. After a short review
of MA in Section 2, the motivating example of an 80-
MW incineration plant is presented in Section 3. Section
4 describes the general MA scheme, which is tested in
simulation on a continuous stirred-tank reactor in Section
5. Finally, Section 6 concludes the paper.

2. REAL-TIME OPTIMIZATION VIA MODIFIER
ADAPTATION

2.1 Problem Formulation

The problem of improving the steady-state performances
of a process, while meeting certain constraints, can be
formulated mathematically as a nonlinear program (NLP):

u∗

p := arg min
u

φp (u)

s.t. Gp (u) ≤ 0 , (2.1)

where u is the nu-dimensional vector of inputs, Gp the nG-
dimensional vector of process constraints and φp (u) the
cost function. Here, the subscript (·)p indicates a quantity
related to the plant.

In practice, the functions φp and Gp are not known, and
a plant model is used instead, leading to the following
model-based NLP:

u∗ := arg min
u

φ (u, θ)

s.t. G (u, θ) ≤ 0 , (2.2)

where φ and G represent the models of the cost and
constraint functions. These models require the identifi-
cation of model parameters, here represented by the nθ-
dimensional vector θ. We will assume in this paper that φ
and G are differentiable.

If the model matches the plant perfectly, solving Prob-
lem (2.2) provides a solution to Problem (2.1). Unfortu-
nately, this is rarely the case since the structure of the
models φ and G as well as the model parameters θ are
likely to be incorrect, which implies that the model-based
optimal inputs u∗ will not correspond to u∗

p.

2.2 Real-Time Optimization via Modifier Adaptation

With MA, process measurements are used to iteratively
modify the model-based Problem (2.2) in such a way that,
upon convergence, the necessary conditions of optimality
(NCO) of the modified optimization problem match those
of the plant. This is made possible by using modifiers that,
at each iteration, are computed as the differences between
the measured and predicted values of the constraints and
the measured and predicted cost and constraint gradients.
This forces the cost and constraints in the model-based
optimization problem to locally match those in the plant-
based problem.

At the kth iteration, the optimal inputs computed using
the modified model are applied to the plant, and the
resulting values of the plant constraints and the cost and
constraint gradients are compared to the model-based
predictions. Then, the following optimization problem is
solved to determine the next u∗

k+1:

u∗

k+1 := argmin
u

φm (u) := φ (u) + λ
φT

k (u − u∗

k)

s.t. Gm (u) := G (u) + ǫG
k + λGT

k (u− u∗

k) ≤ 0

with ǫG
k := Gp (u∗

k) − G (u∗

k) ,

λ
φT
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∂u

∣
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∣

∣

u
∗

k

−
∂φ

∂u

∣

∣

∣

∣

u
∗

k

,

λGT

k :=
∂Gp

∂u

∣

∣

∣

∣

u
∗

k

−
∂G

∂u

∣

∣

∣

∣
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,

where the nG-dimensional vector ǫG
k encompasses the

zeroth-order modifiers, and the nu-dimensional vector λ
φ
k

and the (nu ×nG) matrix λG
k are the first-order modifiers.

These gradient terms must be estimated using measure-
ments collected at subsequent operating points close to u∗

k,
for example using finite differences, or with more elaborate
methods (Marchetti et al., 2010; Bunin et al., 2013). If
gradients are available and the MA scheme converges, then
it will do so to the plant optimum, provided the process
model is adequate (Marchetti et al., 2009).

3. MOTIVATING EXAMPLE: INCINERATION
PLANT

The authors worked on a practical optimization problem
that did not satisfy the conditions for standard MA. The
plant is the steam cycle of an 80-MW incineration plant,
a combined heat and power regenerative Rankine cycle.
Energy released by incinerating refuse is used to heat
water to 400◦C at 50 bar, which drives a turbine to
generate electricity. Steam is bled from the turbine at two
intermediate stages and passed through heat exchangers
that heat water for district heating. A simplified diagram
of the system is show in Figure 1. The optimization
objective is to adjust the pressures, temperatures and mass
flowrates of the two intermediate bleeds from the turbine
in order to maximize the electrical efficiency for a given
district heating demand.

The available system model has the following 5 inputs:
the temperature and mass flowrate at point A, TA and
wA; the temperature and mass flowrate at point B, TB
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Fig. 1. The steam cycle of the 80-MW incineration plant.

and wB; and the mass flowrate at point C, wC . All the
variables in the steam cycle can be calculated from these
inputs. These 5 variables were chosen as the model inputs,
not necessarily because they correspond to the actual plant
inputs, but because they help solve the system equations
for this complex cycle. In fact, it was later established
that, from the operator’s point of view, the plant has
only two real inputs, the pressure at point A, pA, and
the pressure at point B, pB. The block diagrams for the
model and the plant are shown in Figure 2. The model has
more inputs than the plant because certain relationships
between variables are not modeled: 1) reliable equations
for modeling the steam turbine are not available, and
2) it is not known how the control loop that adjusts
wC is implemented. As a result, the model is missing
three equations, which results in three additional inputs.
Furthermore, note that the true plant inputs are not
among the model inputs. Although the model is useful
for offline numerical optimization and computation of
u, it cannot be used for standard MA to compute the
plant inputs c because Condition (1) described in the
Introduction is not satisfied. One option would be to
improve the model such that it encompasses the same
set of inputs as the plant, but this would require detailed
models of the turbine and the controller for wC , which
unfortunately are not available. The manner in which
the model equations are solved would also need to be
changed. Hence, it is difficult to reformulate the model
such that its inputs u are the same as those of the plant,
c. However, as we will be shown in the next section, re-
modeling is not necessary, and MA can be generalized such
that the model can be used in its current form. This is
particularly convenient because measurements (which are
in abundance for this system) can be used to compensate
for the three missing equations.

4. GENERALIZED MODIFIER ADAPTATION

We now show how the standard MA scheme can be altered
when the plant and the model have different sets of inputs.
The aim is to avoid remodeling the system. As we will
show, this is completely unnecessary!

We first present the generalized MA algorithm. Then, a
theorem will show that the proposed algorithm can be seen

Model

Plant
c = [pA, pB ]

T electrical efficiency, Φp(c)

Fig. 2. Model and plant inputs for the incineration plant.

as a specific version of standard MA. Finally, a corollary
will state that, if the proposed algorithm converges, it will
do so to the plant optimum.

4.1 Basic Idea of Generalized Modifier Adaptation

The method described next can be applied in the following
context:

(1) The plant cost function Φp(c) depends on the nc plant
inputs c.

(2) The model cost function φ(u) has nu inputs u, with
nu ≥ nc.

(3) A model c(u) expressing the mapping from u to c is
available.

This allows a model in virtually any form to be used, if
it has at least as many inputs as the plant. In contrast,
standard MA can only be applied if c and u are the
same as indicated by Condition (1) in the Introduction.
Although the proposed approach is fairly general, we will
only present the unconstrained scenario in the remainder
for the sake of simplicity. Future work will treat the
constrained case in detail.

The generalized MA scheme proceeds as follows. At the kth

iteration, the plant inputs ck+1 are obtained by solving the
following model-based optimization problem:

Generalized MA Problem 1.

u∗

k+1 := argmin
u

φ(u) + λT
k (c(u) − ck), (4.1)

ck+1 := c(u∗

k+1), (4.2)

with λT
k =

∂Φp

∂c
(ck) −

∂φ

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+

, (4.3)

with (.)+ indicating the Moore-Penrose pseudo-inverse.
We claim that all fixed points of this iterative procedure
satisfy the plant NCO.

4.2 Analysis

Let us consider standard MA for the case where the cost
model Φ(c) in terms of the plant inputs c is available. The
input values c∗k+1 are obtained by solving the following
model-based optimization problem:

Standard MA Problem 2.

c∗k+1 := argmin
c

Φ(c) + λ̃
T

k (c − c∗k), (4.4)

with λ̃
T

k =
∂Φp

∂c
(c∗k) −

∂Φ

∂c
(c∗k). (4.5)

It is assumed here that Φ(c) is not available, as only
the models φ(u) and c(u) are known. The objective is
to choose Φ(c) in such a way that c∗k+1 can be obtained.
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Theorem 4.1. [Equivalent problems]
Consider the generalized MA Problem 1 and the standard
MA Problem 2. If the cost model Φ(c) is chosen as:

Φ(c) :=min
u

φ(u)

s.t. G(u, c) := c(u) − c = 0, (4.6)

then Problems 1 and 2 are equivalent.

Proof: We will first show that the non-modified versions of
Problems 1 and the 2 are equivalent, that is, ck+1 = c∗k+1
with

u∗

k+1 := argmin
u

φ(u), (4.7)

ck+1 := c(u∗

k+1), (4.8)

and

c∗k+1 := argmin
c

Φ(c). (4.9)

The solution to problem (4.7) is u∗

k+1 and the correspond-
ing cost value is φ∗ := φ(u∗

k+1). It follows from (4.6)
that Φ(c) ≥ φ∗ ∀ c. Next, according to the definition of
ck+1 in (4.8), the constraint in the optimization problem
(4.6) is satisfied for c = ck+1 and u = u∗

k+1, and since
u∗

k+1 is the unconstrained minimizer of φ, we have that
Φ(ck+1) = φ(u∗

k+1) = φ∗. But, as Φ(c) ≥ φ∗, ck+1 must
be the minimizer of Φ(c), i.e., ck+1 = c∗k+1.

It remains to be shown that the modifier terms, λT
k

(

c(u)−

ck

)

and λ̃
T

k (c − c∗k) are the same, which is done hereafter
by induction. First note that (i) c(u) = c from (4.6), and
(ii) the equivalence of the non-modified problems gives
c1 = c∗1. Starting from this latter condition, Problems 1
and 2 are equivalent if it can be shown that ck = c∗k implies
ck+1 = c∗k+1.

For this, assume that ck = c∗k. We first show that
λk = λ̃k by applying post-optimal sensitivity analysis to
the optimization problem (4.6). It is a standard result
that the variation of the optimal inputs with respect
to a parameter (in this case c) may be expressed in
terms of the derivatives of the cost and constraints of the
optimization problem (Fiacco, 1983). For any parameter
value c0, Fiacco (1983) showed that, under mild conditions
(calling for the existence of an optimal solution for c0 with
unique associated Lagrange multipliers µ∗ 6= 0), a unique
optimal solution function u∗(c), and a unique optimal cost
function Φ∗(c) exist and are continuously differentiable in
the neighborhood of c0. The first-order NCO state that
the following conditions hold at u∗(c0) and c0:

1

∂φ

∂u
+ µ∗

T ∂G

∂u
= 0, (4.10)

which implies

µ∗
T

= −
∂φ

∂u

(

∂G

∂u

)+

. (4.11)

This is because the Lagrange multipliers express the sensi-
tivity of the cost function to variations in the constraints.
Also, in order for the constraint G to remain satisfied when
c varies, the following must hold:

∂G

∂u

∂u

∂c
+

∂G

∂c
= 0. (4.12)

1 Function arguments are omitted in the following derivation to
make it more readable. All functions and partial derivatives are
evaluated at u

∗(c0) and c0.

Next, we are interested in calculating
∂Φ

∂c
=

∂φ

∂c
=

∂φ

∂u

∂u

∂c
, (4.13)

which, using (4.10), can be expressed as
∂Φ

∂c
= −µ∗

T ∂G

∂u

∂u

∂c
, (4.14)

or, using (4.11) and (4.12)

∂Φ

∂c
= −

∂φ

∂u

(

∂G

∂u

)+
∂G

∂c
(4.15)

=
∂φ

∂u

(

∂c

∂u

)+

. (4.16)

Equations (4.3) and (4.5) are identical if ck = c∗k. In other

words, if ck = c∗k then λT
k = λ̃

T

k . Hence, Problems 1
and 2 are equivalent at iteration k, which implies that
c(u∗

k+1) = ck+1 = c∗k+1 and concludes the proof.

4.3 Optimality

Corollary 4.1. [Optimality upon convergence]
If the generalized MA scheme converges, it will do so to a
point satisfying the plant first-order necessary conditions
of optimality.

Proof: Upon convergence after K iterations, cK+1 = cK ,
thereby satisfying the first-order NCO for Problem (4.4):

∂Φ

∂c
(cK) + λ̃

T

K = 0. (4.17)

On the other hand, (4.5) gives:
∂Φp

∂c
(cK) = λ̃

T

K +
∂Φ

∂c
(cK), (4.18)

which implies
∂Φp

∂c
(cK) = 0. (4.19)

Hence, if the scheme converges, it converges to a point
satisfying the plant NCO.

5. SIMULATED EXAMPLE

The method is illustrated on the Williams-Otto reactor
(Williams and Otto, 1960). We will use the version from
Roberts (1979), which has become a standard test problem
for real-time optimization techniques (Marchetti et al.,
2010). The plant (simulated reality) is an ideal continuous
stirred-tank reactor with the following reactions:

A + B
k1

→ C, k1 = k10e
−E1/(RT ), (5.1)

C + B
k2

→ P + E, k2 = k20e
−E2/(RT ), (5.2)

C + P
k3

→ G, k3 = k30e
−E3/(RT ), (5.3)

where the plant inputs, c = [XA, FB ]T , are the mass
fraction of A in the reactor and the inlet flowrate of
B. An ideal controller adjusts the reactor temperature
T to ensure that the value of XA specified by the plant
operator is reached. The inlet flowrate of A is handled by
an (assumed unknown) controller to satisfy FA = FB

2.4 . The
desired products are P and E and the reactor mass holdup
is 2105 kg.

The model is a two-reaction approximation:

A + 2B
k∗

1

→ P + E, k∗

1 = k∗

10e
−E∗

1
/(RT ), (5.4)

A + B + P
k∗

2

→ G, k∗

2 = k∗

20e
−E∗

2
/(RT ), (5.5)

IFAC DYCOPS 2013
December 18-20, 2013. Mumbai, India

42



where k∗

10 and k∗

20 are the two model parameters that
are adjusted to fit the plant data. The model inputs
u = [FA, FB , T ]T are the flowrates of A and B, and the
reactor temperature. The material balance equations for
the plant and the model are given in Appendix A. The
profit function to be maximized is

Profit =1143.38XP (FA + FB) + 25.92XE(FA + FB)

−76.23FA − 114.34FB, (5.6)

where XP and XE are the mass fractions of the products
P and E. The plant and model cost functions Φp(c) and
φ(u) are constructed from this cost function and the plant
and model equations, respectively. Block diagrams for the
model and the plant are shown in Figure 3. Table 1
gives the numerical values of the fixed plant and model
parameters.

Model

Plant
c = [XA, FB ]

T Φp(c)

Fig. 3. Comparison of the model and plant inputs for the
Williams-Otto reactor.

Table 1. Values of the plant parameters and the
two fixed model parameters (the other model
parameters are adjusted as shown in Table 2

to generate the investigation cases A-C).

parameter unit value
k10 s−1 1.660× 106

k20 s−1 7.212× 108

k30 s−1 2.675× 1012

E1 kJ mol−1 5.5427 × 104

E2 kJ mol−1 6.9280 × 104

E3 kJ mol−1 9.2377 × 104

E∗

1
kJ mol−1 6.7157 × 104

E
∗

2
kJ mol−1 1.0341 × 105

Generalized MA was found to work extremely well on this
system, converging to the plant optimum for virtually any
degree of plant-model mismatch. One important practi-
cal aspect regards the filtering of the modifiers. As in
Marchetti et al. (2009), we use a first-order low-pass filter:

λk =(I − K)λk−1

+K

(

∂Φp

∂c
(ck) −

∂φ

∂u
(uk)

(

∂c

∂u
(uk)

)+
)T

. (5.7)

This equation replaces Equation (4.3). The choice of the
filter matrix K is discussed in detail in Marchetti et al.
(2009). As can be expected, with more filtering the method
is more likely to converge, but it will do so more slowly.
In a practical implementation, the filter would need to be
tuned manually.

Another key issue in the implementation of this scheme
is the evaluation of the plant gradient, which is done via
finite differences. At the kth iteration, three different values
of c are applied to the plant, ck, ck + [∆XA, 0]T and

ck + [0, ∆FB]T , where ∆XA and ∆FB are small scalar
perturbations. The gradient is then computed as:

(∂Φp

∂c

)T

(ck) =

[

Φp(ck+[∆XA,0]T −Φp(ck))
∆XA

Φp(ck+[0,∆FB]T −Φp(ck))
∆FB

]

. (5.8)

As gradient estimation is not the focus of this paper, our
simulations assume no measurement noise. In practice, the
gradient calculation method should be robust to measure-
ment noise. While this is outside the scope of this paper,
the interested reader is referred to Marchetti et al. (2010),
and Marchetti and Basualdo (2012).

Figures 4 and 5 show the evolution of the plant inputs and
the profit for the 3 pairs of adjusted parameters given in
Table 2.

Table 2. Values of the adjusted model param-
eters for the three different cases

Case k∗

10
(s−1) k∗

20
(s−1)

A 7900 12500
B 8100 12500
C 8100 12300

0
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Fig. 4. Evolution of the plant inputs during the first
20 iterations of the generalized MA scheme, for 3
different values of the adjusted model parameters.
The contour lines are for the plant cost.
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Fig. 5. The profit as a function of the iteration number
k. Note that, at each iteration, the plant must be
evaluated at 3 slightly different operating points in
order to estimate the gradient according to (5.8).
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6. CONCLUSIONS

Optimization via modifier adaptation relies on a model
of the process. It has typically been assumed that the
model and plant inputs have the same set of inputs. As
the motivating example of an incineration plant shows,
this will often not be the case. For example, in a controlled
plant, c can represent the CVs, while u are the MVs, with
the modeled relationship c(u). The available “inputs” for
the controlled plant are typically the set points for the
CVs. Reformulating the model such that its inputs and
the plant inputs are the same can be extremely difficult if
the model is complex (calling for model inversion) or the
controller not perfectly known. In addition, as the model is
only an approximation of the plant, its set of inputs might
not include all the plant degrees of freedom, in which case
model inversion is generally impossible. Generalized MA
avoids remodeling the system, at no extra computational
cost. This means that a much broader class of optimization
problems can be tackled, in particular problems where the
plant has an unmodeled control structure. The present
work represents a proof of concept and needs to be
extended to handle constrained optimization problems.
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Appendix A. CSTR BALANCE EQUATIONS

The 3-reaction simulated reality (plant) is governed by
(Marchetti, 2009; Zhang and Forbes, 2000):

0 = FA − (FA + FB)XA − Wr1, (A.1)

0 = FB − (FA + FB)XB −
MB

MA
Wr1 − Wr2, (A.2)

0 = −(FA + FB)XC +
MC

MA
Wr1 −

MC

MB
Wr2 − Wr3,(A.3)

0 = −(FA + FB)XP +
MP

MB
Wr2 −

MP

MC
Wr3, (A.4)

0 = −(FA + FB)XG +
MG

MC
Wr3, (A.5)

XE =
ME

MP
XP +

ME

MG
XG, (A.6)

with

r1 = k1XAXB, (A.7)

r2 = k2XBXC , (A.8)

r3 = k3XCXP . (A.9)

The model equations encompassing two reactions are:

0 = FA − (FA + FB)XA − Wr1 − Wr2, (A.10)

0 = FB − (FA + FB)XB −
MB

MA
2Wr1 −

MB

MA
Wr2,(A.11)

0 = −(FA + FB)XP +
MP

MA
Wr1 −

MP

MA
Wr2, (A.12)

0 = −(FA + FB)XE +
ME

MA
Wr1, (A.13)

XG =
MG

ME
XE +

MG

MP
XP , (A.14)

with

r1 = k1XAX2
B, (A.15)

r2 = k2XAXBXP . (A.16)

By assuming MA = MB = MP , all the molecular weight
ratios Xi are defined from the stoichiometry of the reac-
tions. Note that explicit expressions for the cost functions
are too lengthy to give, as they are the solution of the
above nonlinear equations.
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