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Abstract: Multivariate statistical process control (MSPC) techniques play an important role in industrial 
batch process monitoring and control.  One particularly popular approach to MSPC is partial least 
squares (PLS), which has been successfully applied many times in the modelling, estimation and control 
of batch processes.  However, the nonlinear nature of many real, complex chemical systems means that 
traditional linear PLS is not always suitable. In this paper, the use of a nonlinear multi-way PLS is 
proposed to address the issues of non-linearity in batch processes. By analysing and comparing linear 
multi-way PLS, Neural network multi-way PLS, Type I and Type II nonlinear multi-way PLS models, 
the advantages and limitations of these methods are identified and summarised. 
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1. INTRODUCTION 

Batch processes are widely used in industry as they 
outperform continuous operations in the manufacturing of 
certain chemicals and materials (Korovessi et al., 2006). In 
particular, batch processing is frequently used in the 
manufacture of low volume, high value products, such as 
pharmaceuticals or specialty chemicals. In batch processing, 
the materials are processed over a finite period of time, where 
the operational conditions are typically specified to follow a 
pre-determined recipe. To ensure safe and efficient operation 
of these processes and to improve or maintain product 
quality, it is important that these processes be continuously 
monitored during operation. However, as a result of 
disturbances to the process, such as changes in the initial 
conditions of the batch, and the frequent absence of on-line 
quality measurements, this can be challenging.   
 
In an attempt to monitor processes such as this, the chemical 
industry has seen a rapid increase in the number of sensors 
that have been made commercially available. Unfortunately, 
because of the large amounts of data available and the highly 
correlated nature of these measurements, it can be difficult to 
interpret the data once it has been collected. To help with the 
interpretation of large quantities of process measurements, 
many researchers have successfully applied data analysis 
tools, such as those available within the field of Multivariate 
Statistical Process Control (MSPC) (Martin et al., 1996). 
Within MSPC, there are two techniques which have received 
considerable interest. These are Principal Component 
Analysis (PCA) and Partial Least Squares (PLS). For the 
monitoring of batch processes, both techniques have proven 
to be useful (Piovoso et al., 1996; Lennox et al., 2001). 
However, when there exist measurements of the output 
quality from the batch, even if these measurements are only 
available at the end point of the batch, PLS has been shown 
to be a highly useful tool for monitoring the process, as it is 

able to detect features within the data that highlight process 
changes that may have a direct impact on product quality. 
 
The PLS method was originally developed and applied in the 
area of econometrics by H. Wold (Wold, 1982). Since then it 
has been applied in many other industries, including chemical 
(Martens et al., 1989; Wold et al., 1984). The properties of 
PLS that have made it so popular in process monitoring can 
be stated as follows (Ferrer et al., 2008): It is a good 
alternative to classical multiple linear regression and 
principal component regression methods as it has been shown 
to have robustness to limited sized data sets and highly 
collinear data.; it has relatively low computational 
requirements; it is efficient in dealing with situations where 
there are missing measurements. 
 
A major limitation with PLS is that industrial processes are 
always nonlinear to some extent. This is not always a 
problem as many processes are only operated around limited 
operating regions, where linear PLS techniques tend to 
provide acceptable accuracy. However, batch processes are 
often operated over relatively large spaces and hence non-
linear extensions to PLS may be required. When PLS is 
applied to batch processes, a technique referred to as multi-
way PLS (MPLS) is frequently applied. This technique 
analyses the behaviour of the process relative to the mean 
trajectories of the process variables. In doing so, a major 
nonlinearity in the data is removed. However, there remain 
situations when this approach is insufficient to track the non-
linear behaviour of the process. 
 
Several nonlinear PLS methods have been proposed and 
these tend to be divided in to Type I and Type II methods. A 
detailed overview of these methods is provided by Wold 
(1989).  In Type I methods, the inputs in to the PLS model 
are specified to be cross and squared terms of the input 
variables. However, for Type II methods, non-linear 
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functions are implemented in the inner structure of the PLS 
model. For example, Wold (1989) used quadratic functions of 
the inner variables. For increased functionality, the use of a 
neural network was proposed in the inner structure of the 
model (Qin et al., 1992). This was extended further by Baffi 
et al (2000), who utilised Radial Basis Functions. Related 
works in this area included that by Frank, 1990 & Wold, 
1992, who used smoothing splines to provide the non-linear 
function within the model and Hiden et al., 1998, who 
proposed the use of genetic programming. In this paper, non-
linear PLS modelling techniques are integrated within a 
multi-way model to provide a mechanism to track the 
nonlinear behaviour of general batch processes. 
 
The paper is organised as follows: section 2 outlines the basic 
PLS algorithm and discusses several of its extensions, 
including MPLS, nonlinear PLS and neural network PLS 
(NNPLS). In section 3 and 4, linear MPLS is applied as a 
predictive tool to provide long term estimates for both linear 
and nonlinear systems and its performance compared with 
that obtained using nonlinear MPLS and multiway NNPLS. 
The capabilities of the non-linear PLS techniques are further 
illustrated through their application to a benchmark 
simulation of a fermentation process. Finally, some 
concluding remarks are made in section 5. 

2. FUNDAMENTALS OF PLS, NONLINEAR PLS AND 
NNPLS 

2.1 Partial Least Squares Regression (PLS) 

PLS, also known Projections onto Latent Structures, was 
proposed by Herman Word (Wold et al., 1984) as a 
regression tool that could be applied to ill-conditioned data 
sets. It can be considered to be a more robust alternative to 
classical multiple linear regression. PLS is a projection 
method that models the relationship between a response 
matrix, Y and a predictor matrix, X. These matrices are 
decomposed as follows: 

1

A
T

a a
a

X t p E
=

= +∑                                                                 (1)                                                                               

1

A
T

a a
a

Y u q F
=

= +∑                                                                 (2) 

These equations can also be expressed as: 
TX TP E= +                                                                        (3)                                                                                       
TY UQ F= +                                                                       (4)                                                                                     

Where X is a data matrix of independent variables, Y is a data 
matrix of dependent variables, T and U are the score 
matrices, P and Q are the loading matrices, and E and F are 
the residual matrices for X and Y. In the PLS model, the 
original descriptors are transformed to a new variable space 
based on a small number of orthogonal factors (latent 
variables). The number of latent variables that are retained in 
the model, A, is determined by cross-validation.  
 
To enable PLS to track the dynamics of batch processes, 
multiway PLS has been proposed. MPLS is an extension of 
PLS that enables it to handle 3-Dimensional data arrays 
(Nomikos. et al., 1994). Measurement data from a batch 

process is typically stored as a 3-dimensional matrix (X) of 
size IxJxK, where I is the number of batches, J is the number 
of measured observations in a complete batch and K is the 
number of measured variables. If MSPC is to be applied, 3-
Dimensional data must be transformed to a 2-Dimensional 
matrix. There are different approaches for rearranging the 
data sets. The most common approach, and the one adopted 
in this paper is batch-wise unfolding, which unfolds the 
matrix in accordance to the direction of batches by Nomikos. 
et al. (1994). PLS is then applied to the unfolded matrix, 
which has dimension IxJK.  

2.2 Nonlinear PLS model 

To improve the modelling capabilities of PLS, several 
nonlinear extensions have been proposed to enable it to better 
handle nonlinear systems. These methods can be divided into 
two categories: Type I and Type II Nonlinear PLS methods.  

2.2.1 Type I nonlinear PLS  

In the Type I Nonlinear PLS method, the observed variables 
are appended with nonlinear transformations. Following this, 
traditional linear PLS is then applied.  For example, the X 
matrix can be augmented with transformed terms. The 
addition of transformed terms in X within PLS models was 
firstly proposed by Wold (1989), where he proposed the use 
of quadratic terms in the PLS model.  Other studies involving 
this technique have utilised quadratic and higher order 
polynomial terms, while ignoring cross-terms (Berglund,et 
al., 1997 & 1999). The capabilities of the technique were 
illustrated through its application to some nonlinear systems.  

2.2.2 Type II nonlinear PLS  

In contrast to the Type I nonlinear PLS method, Type II 
nonlinear PLS method assumes a nonlinear relationship 
within the latent variable structure of the model. Type II 
Nonlinear PLS model, was first proposed by Wold et al. 
(1989) and has been shown to be able to provide an accurate 
fit to more complex nonlinear relationships than Type I PLS 
(Hiden et al., 1998). 
 
In this paper, the Type I and II non-linear structures are 
integrated within MPLS models to enable them to more 
accurately approximate non-linear batch processes. In the 
studies described in Section 3, the Type II nonlinear PLS 
models were constructed using the technique proposed by 
Baffi et al. (2000). The principle of this algorithm is as 
follows:   
 
In traditional PLS, the inner relation between t and u is 
defined as follows, where t and u are score vectors and h 
denotes residuals: 
u bt h= +                                                                            (5)                                                          
In the algorithm proposed by Baffi et al (2000), the inner 
relation is replaced by a quadratic polynomial (2nd order): 

2
0 1 2u c c t c t h= + + +                                                           (6)                                                      

 
A limitation with this approach is that by choosing a second 
order polynomial, the type of relationship that can be 
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modelled is restrictive. Therefore, in the applications 
described in Section 3 of this paper, higher order terms are 
also included. The relationships are provided in equation 7. 

2 3 4
0 1 2 3 4

2 3 4 5 6
0 1 2 3 4 5 6

u c c t c t c t c t h

u c c t c t c t c t c t c t h

= + + + + +

= + + + + + + +
                   (7)                    

2.3 NNPLS 

An alternative to using polynomials in the inner relationship 
of the PLS model is to use a neural network to describe this 
relationship. In this case, the PLS inner model can be 
represented as follows: 1 1 1( )U N t r= +  

Where ( )N •  denotes the nonlinear relation represented by a 

neural network, which is determined by minimizing the 
residual 1r (Qin et al., 1992). 

The residual matrices are derived as 
1 1 1

1 1 1( )

T

T

E X t J

F Y N t G

= −

= −
                                                                (8) 

J and G are the loading matrices.  
 
The neural network used in the NNPLS method can be 
trained using the back-propagation algorithm. However, 
using this method the learning can be slow to converge and in 
this work the Levenberg-Marquardt method was used instead. 
The number of hidden layers and hidden units are important 
factors when designing a neural network. In this work, cross-
validation was used to determine the size of the neural 
networks (Qin et al., 1992).   
 
NNPLS can be expressed as: 

1

1

test test
h h h

test test
h h h

U E M

t F G

−

−

=

=
                                                                    (9)                                                                          

 and  
1

1 ( )
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h h h h

test test test T
h h h h

E E t J

F F N t G

−

−

= −

= −
                                                    (10)                                           

Where hM , hG  and hJ  have been determined in the NNPLS 

method. M is weight. 

3. SIMULATED STUDIES 

3.1 Application of Linear PLS to example systems 

To demonstrate its capabilities, linear MPLS was applied to 
four example systems. These systems were: system 1: Linear 
time invariant; system 2: Nonlinear time invariant; system 3: 
Linear time varying; system 4: Nonlinear time varying.  
The linear time invariant system was defined as:  

1 2( ) 0.3 ( ) 0.2 ( ) 0.1 ( 1)y t x t x t y t= − + −                           (11) 

The linear time varying system was defined as:  
0.6

1 2( ) 0.5 ( ) 0.7 ( ) 0.1 ( 1)y t t x t t x t y t= ⋅ + ⋅ + −                   (12) 

The nonlinear time invariant system was defined as: 
2 2
1 1 2 2( ) 0.9 ( ) 0.6 ( ) 0.2 ( ) 0.4 ( ) 0.1 ( 1)y t x t x t x t x t y t= − + − + − (13) 

The nonlinear time varying system was defined as: 

2 0.3 0.5 2
1 1 2

0.6
2

( ) 1.2 ( ) 0.8 ( ) 0.9 ( )

0.7 ( ) 0.1 ( 1)

y t t x t t x t t x t

t x t y t

= ⋅ − ⋅ + ⋅

− ⋅ + −
             (14) 

In each system, x1 and x2 were specified to be equal to a 
PRBS signal with amplitude between -1 and 1, and switching 
time of 1 sample. The initial value of y was 0. White noise 
with a standard deviation of 0.3 and 0.4 was added to the 
measurements of x1 and x2 respectively. Each of the systems 
was considered to operate as a batch. With each batch 
containing 50 samples. For each system, 200 batches of data 
were collected for training the models, and 20 batches were 
collected for testing purposes. Cross validation was used to 
determine the number of latent variables, which in each case 
was found to be 25. The accuracy of the models was 
measured using the sum of square error (SSE) which was 
calculated over the testing data sets. The results are displayed 
in Figures 1(a)-(d).  In these figures, the dotted line is the 
predicted value for the output, y, and the solid line is the 
actual value.   

 

Fig.1. PLS model prediction 

Figures 1(a) and 1(b) show that linear MPLS is able to 
approximate the output of both the linear time invariant and 
linear time varying systems reasonably well. The SSE for 
these two systems was 28.5 and 29.7, respectively. However 
Figures 1(c) and 1(d) show that the MPLS model was not as 
accurate when used to predict the output of the nonlinear time 
invariant and nonlinear time varying systems. The SSE in 
these two cases was 151.4 and 198.2, respectively. 
 
The results show that as might be expected, linear MPLS can 
predict the linear systems very well. However, this algorithm 
was not able to track the dynamics contained in the two non-
linear systems. These systems demonstrate that linear MPLS 
is suitable for modelling linear, time-varying systems. 
However, problems may be encountered when this algorithm 
is used to model non-linear systems. 

3.2 Nonlinear Multiway PLS model  

To illustrate the capabilities of the non-linear extensions to 
MPLS, these algorithms were applied to the nonlinear 
systems, defined by Equation 15 to Equation 19.  

3.2.1 Application of Type I Nonlinear MPLS to the simulated 
systems  

Before investigating the simulated systems introduced in 
section 3.1, the limitation of using Type 1 Nonlinear MPLS is 
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first illustrated through its application to two simple non-
linear systems. These are defined as follows: 
System 5: 2

1 2.5 1.5 3Y X X= + +                                 (15) 

System 6: 3
2 2.5 1.5 3Y X X= + +                                 (16) 

X was specified to be white noise with a mean of 0 and a 
standard deviation of 1.  For each system, 50 batches of data 
were collected for training the models, and 20 batches were 
collected for testing purposes. With each batch containing 20 
samples. For each system a Type I Nonlinear MPLS model, 
using second order polynomials only was used to predict the 
endpoint. 

  
The accuracy of the models over the testing data are shown in 
Figure 2(a). In this figure, the predicted endpoint value is 
seen to be very close to the actual endpoint value suggesting 
high accuracy. However, figure 2(b) shows that in the 
situation where the order of the non-linearity does not match 
that of the process, then problems are introduced and the 
accuracy of the prediction is reduced significantly. In real 
studies, the exact order of any nonlinear relationship will not 
be known a-priori and hence the required expansion of x will 
be difficult to determine. Hence, Type I MPLS is not 
recommended. 

 

Fig.2. The predicted endpoint of the simple nonlinear system 
by Type I nonlinear MPLS model   

3.2.2 Application of Type II Nonlinear MPLS model to 
simulated systems 

In this section, 4th order Type II Nonlinear MPLS is used to 
approximate system 6, as defined in section 3.2.1. To provide 
a comparison, linear MPLS is also applied. 

 

Fig.3. The predicted endpoint of the simple nonlinear system 
by Type II nonlinear MPLS model   

In Figure 3, the red dots are the endpoints predicted by the 
Type II nonlinear MPLS model and the diamonds are 
endpoints predicted by linear MPLS. The accuracy of the 
Type II model is significantly greater than the accuracy of the 
linear model. In the Type II nonlinear MPLS model, the 
predicted endpoint value is very close to the real endpoint 
value. This shows that the Type II Model can be used to 
predict this simple nonlinear system.  
 
To illustrate the capabilities and limitation of Type II 
nonlinear MPLS, the ability of this model to approximate 
three different modifications to system 3 is now presented. 
The systems used for this test are defined as follows: 
 
4th order nonlinear system:  

4 2 2
1 1 1 2

2

( ) 0.6 ( ) 0.9 ( ) 0.6 ( ) 0.2 ( )

0.4 ( ) 0.1 ( 1)

y t x t x t x t x t

x t y t

= + − +
− + −

                (17) 

5th order nonlinear system: 
5 4 2
2 1 1 1

2
2 2

( ) 0.4 ( ) 0.6 ( ) 0.9 ( ) 0.6 ( )

0.2 ( ) 0.4 ( ) 0.1 ( 1)

y t x t x t x t x t

x t x t y t

= + + −

+ − + −
             (18) 

6th order nonlinear system: 
6 5 4 2
1 2 1 1

2
1 2 2

( ) 0.5 ( ) 0.4 ( ) 0.6 ( ) 0.9 ( )

0.6 ( ) 0.2 ( ) 0.4 ( ) 0.1 ( 1)

y t x t x t x t x t

x t x t x t y t

= + + +

− + − + −
             (19) 

Table 1 shows the errors that result when Type II (defined 
with second, fourth and sixth order polynomials) MPLS 
models are used to approximate each of these systems. The 
errors provided are the sum square error over the testing data 
sets. 

Table 1. The List of SSE (when Type II nonlinear MPLS 
is applied in the nonlinear testing systems) 

Type II 
nonlinear 

MPLS 

Testing system 

 4th order 
nonlinear 
system 

5th order 
nonlinear 
system 

6th order 
nonlinear 
system 

2nd order 577 3.1e+004 2.1e+005 
4th order 3.5e-025 4.2e+004 4.0e+004 
6th order 3.6e-024 1.7e-021 1.0e-019 

 
The results in Table 1 show that when the system is known, 
the order of the Type II nonlinear MPLS model can be 
precisely determined. For example, when the testing system 
is a 4th order nonlinear system, 4th and 6th order Type II 
nonlinear MPLS can predict the end-point values very well. 
However, there are large errors for the 2nd order Type II 
nonlinear MPLS.  

4 CASE STUDIES 

To illustrate the capabilities of the non-linear extensions to 
MPLS, the Type 2 algorithms were applied to a benchmark 
simulation of a penicillin batch fermentation process. The 
fermentation process investigated is the Pensim simulator 
(Birol et al 2002), details for which are provided in Appendix 
A. There are two primary quality output variables in this 
process, biomass and penicillin, which are each affected by 
the primary manipulated variable, substrate feed rate. By 
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analysing the response of this system it can be determined 
that the relationship between substrate and biomass is linear 
and time invariant, and for penicillin the relationship is 
nonlinear and time varying. Because of space constraints, the 
results for the estimation of biomass are not provided here. 
However, because this has a linear, time invariant 
relationship to substrate, this relationship can be 
approximated with high accuracy using linear MPLS. 
 
In the following data, Pseudo-Random Binary Signals 
(PRBS) with high/low values of -0.005 and 0.005, were 
applied to the nominal feedrate of substrate (0.045 l/h) in 
order to excite process dynamics. The training data consisted 
of 50 batches, with 20 batches used for testing each model. 
Each batch was allowed to run for 200 samples, with a 
sample time of 1 hour. The number of latent variable, 
selected using crossing validation, was found to be 13. 

4.1 Application of Type I Nonlinear MPLS model to 
Estimation of Penicillin 

The ability of linear MPLS and Type I nonlinear MPLS to 
predict penicillin for one particular unseen test batch is 
shown in Figure 4. The expansion of the X matrix is still 
considered with the quadratic term 2x  only. 

 

Fig.4. Penicillin prediction using Linear MPLS and Type I 
nonlinear MPLS  

The results illustrate that the Type I nonlinear MPLS model 
did not significantly improve the accuracy of the prediction. 
The reason is that in the Type I nonlinear model, the 
expansion of the X matrix is only considered with the 
quadratic term 2x . However, the actual relationship of the 
Penicillin system is of a higher order.  

4.2 Application of Type II Nonlinear MPLS model to Pensim 

In this section the ability of linear MPLS and 2nd, 4th and 
6th order Type I nonlinear MPLS to estimate the final end-
point concentration of penicillin is illustrated. The end-point 
measurement is used because in most fermentation processes, 
quality measurements, such as penicillin concentration will 
only be available at the end of a batch. The results are shown 
in Figure 5.  
 
 

 

Fig.5. The application of Type II nonlinear MPLS  

Linear MPLS, as shown in Figure 5(a), produced a SSE of 
0.0826. The 2nd order Type II nonlinear PLS, shown in 
Figure 5(b), produced a SSE of 0.0557, the 4th order Type II 
nonlinear MPLS, shown in Figure 5(c), produced a SSE of 
0.0257 and the 6th order Type II nonlinear MPLS, shown in 
Figure 5(d), produced a SSE of 0.0072. This result shows that 
as the order of the model improves so too does the accuracy 
of the model. 

4.3 Application of Multi-way Neural Network PLS to Pensim 

To illustrate the benefit of using multi-way NNPLS, the 
ability of this model to predict the endpoint of penicillin 
concentration is presented. Figure 6 shows a comparison of 
the predictions made using Type II non-linear MPLS (the red 
dots) with that obtained using the multi-way NNPLS. For the 
multi-way NNPLS (the diamonds), the SSE was calculated to 
be 2.94e-04, which compared favourably with the SSE for 
the Type II MPLS, which was 0.0072.  

 

Fig.6. 6th Type II nonlinear MPLS model and Multi-way 
NNPLS are used to predict the end-point value of Penicillin 

The primary advantage in using the multi-way NNPLS is that 
it provides high accuracy without the need to determine the 
order for the model, which can be a critical parameter with 
Type II MPLS models.  

5.  CONCLUSIONS 

This paper has shown that for modelling batch processes, it is 
not always appropriate to use MPLS models. Whilst such 
models have been shown to be very useful, when the 
dynamics of the process are highly non-linear then, non-
linear extensions to MPLS can offer significant benefits. Of 
the non-linear extensions to MPLS that were tested, it was 
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found that the multi-way NNPLS produced the most accurate 
results and had the added advantage that no a-priori 
information regarding the order of the dynamics was 
required. When applying Type II nonlinear MPLS, it was 
shown that specifying the order of the model was vital to 
producing an accurate model. 

Appendix A. PENSIM 

Pensim is a benchmark simulation of a fed-batch 
fermentation system. The simulator is based on a series of 
detailed mechanistic models that describe an industrial fed-
batch fermentation process used for the production of 
penicillin. The original models have been proposed by the 
Control Group at Illinois Institute of Technology (Briol et al, 
2002)  
 
18 measurements are collected at each sampling instant and 
in this study, the following measurements were used in the 
model: aeration rate, agitator power, substrate feed rate, 
substrate feed temperature, substrate concentration, dissolved 
oxygen concentration, biomass concentration, penicillin 
concentration, culture volume, carbon dioxide concentration, 
pH, fermentor temperature, generated heat, acid flow rate, 
base flow rate, cooling water flow rate. The functional 
relationships between the process variables are summarized 
in Table 2.  

Table 2. Functional relationship among the process 
variables 

Model Structure 

( , , , , )LX f X S C H T=  
( , , , , )LS f X S C H T=  

( , , , , )L LC f X S C H T=  
( , , , , , )LP f X S C H T P=  

2 ( , , )CO f X H T=  
( , , )H f X H T=  

 
In Table 2, X is biomass concentration; S is substrate 
concentration; LC  is dissolved oxygen concentration; P is 

penicillin concentration; 2CO  is carbon dioxide 

concentration; H is hydrogen ion concentration for PH; T is 
temperature. 
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